
PHYSICAL REVIEW B 99, 165402 (2019)
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Quantum fluctuations in vacuum can exert a dissipative force on moving objects, which is known as Casimir
friction. Especially, a rotating particle in the vacuum will eventually slow down due to the dissipative Casimir
friction. Here, we identify a dissipationless force by examining a rotating particle near a bi-isotropic media that
generally breaks parity symmetry or/and time-reversal symmetry. The direction of the dissipationless vacuum
force is always parallel with the rotating axis of the particle. We therefore call this dissipationless vacuum force
the axial Casimir force.
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I. INTRODUCTION

Originating from quantum fluctuations, the Casimir effect
describes the phenomenon where an attractive force emerges
between two noncontacted, uncharged plates in vacuum [1].
The Casimir effect tells us that vacuum is not empty but full of
fluctuations with photons popping in and out. In fact, there are
many other effects that can manifest the fluctuating nature of
vacuum. For example, quantum fluctuations can exert a torque
on bodies that lack rotational symmetry, called Casimir torque
[2,3]. If some discrete symmetries are broken in materials,
quantum fluctuation can transmit symmetry breaking effect
to nearby atoms and perturbs the atom’s spectra, namely the
quantum atmosphere effect [4]. In recent years, another inter-
esting phenomenon, called Casimir friction, was discovered.
Here, objects moving relative to each other can feel a dissi-
pative viscous force due to the exchange of Doppler-shifted
photons [5]. Perhaps counterintuitively, a spinning object in
vacuum will eventually slow down due to Casimir friction
[6]. In recent years, theorists have proposed many models that
feature the Casimir friction [7], and some of them are closely
related to experimental phenomena [8,9].

However, to our best knowledge, all the proposed Casimir
friction phenomena (motion-induced vacuum forces) are dis-
sipative. A natural question then arises: Is it possible to find a
dissipationless motion-induced vacuum force? This question
is partially motivated by the recent progress in quantum Hall
physics, where dissipationless Hall viscosity emerges as a
new topological signature [10]. We address this question in
this paper by examining a rotating particle near a bi-isotropic
material (BIM) plate. Existing commonly in nature, BIMs
include materials that break time-reversal symmetry (TRS) or
parity symmetry (PS) or both (PTS) [11]. In recent years, the
widely studied Chern insulators [12] and chiral metamaterials
[13] can be classified as bi-isotropic materials breaking TRS
and PS, respectively.

We show that, in addition to the dissipative Casimir fric-
tion, a dissipationless force can emerge for a rotating par-
ticle near a PS or TS (or both) breaking BIMs. Since the

dissipationless rotation-induced force is always parallel to the
particle’s rotation axis and changes sign when its spinning
direction is reversed, we, therefore, call it the axial Casimir
force (ACF). Two cases are of particular interest: (i) When the
rotation axis is parallel to the BIM plate, the axial Casimir
force is lateral (L-ACF); (ii) when the rotation axis is perpen-
dicular to the BIM plate, the axial Casimir force is vertical
(V-ACF) (Fig. 1). We calculate ACF both numerically and
analytically and show that TS breaking is crucial for V-ACF,
whereas, by contrast, PS breaking is important for L-ACF. Let
us observe that very recent experiments have already achieved
a superfast rotation of nanoparticles, making the ACF within
the experimental reach [14].

II. MODEL

We consider a spherical, isotropic particle rotating with fre-
quency � located at the position r0 = (0, 0, d ) above a BIM
plate at z = 0 plane [Fig. 1(a)]. Without loss of generality,
we assume that the rotating axis lies in the x-z plane and
forms a θ angle with the x axis. In this paper, we study the
dissipationless ACF along the rotating axis n̂. Particularly,
when θ = 0, the ACF lies in the x direction, becoming a
L-ACF; when θ = π/2, the ACF is parallel with the z direc-
tion, leading to the V-ACF.

We assume that the particle is small enough that it can be
safely described by polarization function α(ω), for instance
a small metallic ball. (In other words, the size of the particle
R is much smaller that the distance d .) The electromagnetic
force that exerts on an electric dipole in the direction n̂ can be
evaluated via the formula Fn = pi(t )∂n̂Ei(r0, t ) (i ∈ {x, y, z}),
where pi(t ) and Ei(r0, t ) are, respectively, the instantaneous
electric dipole moment at time t and the electric field at
the particle. (Einstein summation rule is implied throughout
this paper.) Note that we have omitted any magnetic dipole
contribution, which is much smaller than the electric dipole
contribution [9]. We will further elaborate this point later in
the paper. Although the average electric dipole and electric
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FIG. 1. Schematic of the structure. d is the distance from the
center of the rotating object to the BIM plane. � represents the
rotating frequency of the object. n̂ is the unit vector in the rotating
direction. θ is the angle between n̂ and the x direction. (a) shows
the general case, while (b) shows two special rotating directions,
perpendicular to the BIM plane (top) and parallel with the BIM plane
(bottom).

field are zero in vacuum, quantum fluctuation can still induce
an instantaneous dipole, therefore exerting a force on the
particle. (This is also the mechanism of Van der Waals force.)
There are two kinds of fluctuations that contribute to the
ACF: (i) fluctuations of the dipole moment of the particle
and (ii) fluctuations of the field caused by the electromagnetic
response of the BIM plate. Therefore, the total ACF includes
two terms, i.e.,

Fn = 〈
pf l

i (t )∂n̂E ind
i (r0, t )

〉 + 〈
pind

i (t )∂n̂E f l
i (r0, t )

〉
, (1)

where 〈· · · 〉 stands for the average over fluctuations in vac-
uum. In this formula pf l (ind )

i and E f l (ind )
i are, respectively,

the fluctuating (induced) electric dipole moment and electric
field at the particle. (Note that the cross terms 〈pf l∂n̂E f l〉 and
〈pind∂n̂E ind〉 vanish in vacuum because dipole moment and
electric field arise from different sources.) When the particle
is not rotating, the force in the z direction is the usual Casimir-
Polder force. As soon as the particle rotates, ACF will emerge,
having an additional component in the z direction.

Applying Fourier transformation, one can write
down the induced field (dipole moment) in terms of
the fluctuation of the dipole moment (electric field) in
ω space, yielding E ind

i (r, ω) = Gi j (r, r0, ω)pf l
j (ω) and

pind
i (ω) = αi j (ω)E f l

j (r0, ω), where Gi j and αi j represent
Green’s tensor and polarization tensor, respectively. Substitute
the above equations into Eq. (1), and one can obtain

Fn̂ =
∫ ∞

−∞

dωdω′

4π2
e−i(ω+ω′ )t{〈pf l

i pf l
j ∂n̂Gi j (r0, r0, ω

′)
〉

+ 〈
αi j (ω)∂n̂E f l

i (r0, ω
′)E f l

j (r0, ω)
〉}

, (2)

where one should notice that the derivative only acts on
the first component of Green’s tensor, i.e., ∂n̂Gi j (r0, r0, ω) ≡
∂n̂Gi j (r, r0, ω)|r=r0 . We emphasize that, in Eq. (2), pi and αi j

are the effective electric dipole moment and electric polar-
izability in the laboratory frame, respectively. However, the
electric dipole and polarizability are defined in the rotating
frame of the particle. Therefore, one needs to identify the
transformation from electric dipole or polarizability (p̃i or α̃i j)

in the rotating frame to those in the laboratory frame [6,15]:
pi(ω) = �+

i j p̃ j (ω+) + �0
i j p̃ j (ω) + �−

i j p̃ j (ω−) and αi j (ω) =
	+

i jkl α̃kl (ω+) + 	0
i jkl α̃kl (ω) + 	−

i jkl α̃kl (ω−), where ω± = ω ±
� is the Doppler-shifted frequency due to rotation. Here, �0,
�± and 	0, 	± represent the transformation tensor for dipole
moment and polarizability. (See Appendix A.)

By applying fluctuation-dissipation theorem (FDT) to
Eq. (2), we obtain a compact expression of axial Casimir
force:

Fn(�) = Fx(�) cos2 θ + Fz(�) sin2 θ. (3)

In this formula, θ denotes the rotating direction of the particle
[Fig. 1(a)], Fx/z denotes the ACF in the x/z direction with
expressions:

Fx/z(�) = h̄

π

∫ ∞

0
dω Im{
x/z}[Im α(ω+)N (ω+)

− Im α(ω−)N (ω−)]. (4)

Here, the differential Green’s functions 
x/z are deter-
mined by the surface Green’s tensor Gi j of the BIM plate
via 
x = ∂xGyz − ∂xGzy and 
z = ∂zGxy − ∂zGyx; N (ω±) ≡
n(T1, ω±) − n(T2, ω) is defined by the difference of Bose-
Einstein distribution, where T1 and T2 are temperatures at the
rotating particle and the BIM plate, respectively. Note that,
in deriving the above formula, we have used the isotropic
assumption of the electric polarizability of the particle, i.e.,
α̃i j (ω) = α̃(ω)δi j (i, j ∈ {x, y, z}). Equations (3) and (4) are
the main results of this paper. We stress that the ACF is
different from the usual Casimir-Polder force, because ACF
exists only when the particle is rotating with a finite speed.
We shall compare ACF with the usual Casimir-Polder force
later in this paper and in the Appendix.

III. CRITERION OF ACF-TRS/PS BREAKING

In this part, we demonstrate that the emergence of an
ACF requires TRS/PS breaking of the underlying BIM plate.
A BIM plate can generally be described by the constitutive
relations D = εE + (χ − iκ )

√
ε0μ0H and B = μH + (χ +

iκ )
√

ε0μ0E, where ε (ε0) and μ (μ0) are, respectively, the
permittivity and permeability of the BIM plate (vacuum). The
essence of BIMs is encoded in the magnetoelectric parameters
χ and κ , which characterize the nonreciprocity and chirality
of the system, respectively. BIM with χ 	= 0 and κ = 0 has
been called Tellegen medium, where TRS is broken. By
contrast, BIM with χ = 0 and κ 	= 0 has been labeled Pasteur
medium, where PS is violated. Materials with χ = 0 and
κ = 0 is usually called simple isotropic medium, whereas, by
contrast, both χ 	= 0 and κ 	= 0 represent more general BIMs.
[See Table I.]

With the constitutive relations of BIMs, one can study the
electromagnetic response of BIMs. To obtain the ACF, one
needs the expression of the Green’s tensor of the BIM plate.
In general, the surface Green’s tensor G can be expressed in
terms of Fresnel coefficients for reflection at the BIM plate
[16], i.e.,

G(r, r′, ω) = i

2π

∫
d2kρ

eikρ ·(r−r′ )+ikz (z+z′ )

kz
rμνMμν, (5)
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TABLE I. Classification of BIMs [11] with axial Casimir force.

Nonreciprocity Chirality Classification Axial Casimir force

χ = 0 κ = 0 simple BIM Fn = 0
χ = 0 κ 	= 0 Pasteur Fx 	= 0; Fz = 0
χ 	= 0 κ = 0 Tellegen Fx = 0; Fz 	= 0
χ 	= 0 κ 	= 0 general BIM Fx 	= 0; Fz 	= 0

where kρ = (kx, ky) and kz =
√

ω2 − k2
ρ represent the wave

vectors in the x-y plane and the z direction, respectively;
rμν = Ere f

μ /Ein
ν (μ, ν ∈ {s, p}) stands for the reflection co-

efficient from ν-polarized photons to μ-polarized photons;
the superscript in (ref) simply denotes incident (reflection)
photons. The explicit expressions of the matrices Mμν are
given in Appendix C. In contrast to common PTS materials,
the cross reflection coefficients rsp and rps are usually nonzero
for BIMs due to the fact that magnetoelectric effect can mix s
and p polarizations in general.

Based on the constitutive relations and boundary condi-
tions, one can obtain the cross-reflection coefficients [11]

rsp(rps) = 2η0ηc0

�
[±i(c+ − c−) cos β − (c+ + c−) sin β].

(6)

Here, η = √
μ/ε (η0 = √

μ0/ε0) represents the impedance
of the BIM (vacuum); c0 = cos θ0, where θ0 is the incident
angle of an EM wave; c± = cos θ± =

√
k2
± − k2

ρ /k±, where
θ± stand for refractive angles and k± = k(cos β ± κr ); sin β =
χr = χ (

√
ε0μ0/

√
εμ) and κr = κ (

√
ε0μ0/

√
εμ) are the

relative magnetoelectric parameters; � = (η2
0 + η2)c0(c+ +

c−) + 2η0η(c2
0 + c+c−) cos β. For lossless media, k± � 0 im-

plies the relationship χ2
r + κ2

r � 1 [17].
The key element that induces the ACF is the differential

Green’s functions 
x/z, which can be expressed by the cross-
reflection coefficients through


x/z(ω) = ω

2π

∫ ∞

−∞
d2kρ e2i

√
w2−k2

ρd gx/z(rsp ∓ rps). (7)

Here, gx = k2
x /

√
ω2 − k2

ρ and gz =
√

ω2 − k2
ρ . Substituting

Eq. (7) into Eqs. (3) and (4), one can immediately obtain the
ACF Fn in an arbitrary direction n̂.

Based on the above formulas, we give the criterion for the
emergence of ACF in the following:

(i) For simple isotropic materials (with PS and TRS), χ =
κ = 0, and one can find 
x = 
z = 0. Consequently, both
Fx and Fz vanish, leading to the vanishing of ACF in any
direction.

(ii) For Pasteur materials (with TRS but without PS), χ = 0
and κ 	= 0 lead to 
z = 0 and 
x 	= 0. As a result, Fx 	= 0 and
Fz = 0 indicate that the ACF only vanishes in the z direction.

(iii) For Tellegen materials (with PS but without TRS),
κ = 0 but χ 	= 0, and one can show 
x = 0 whereas 
z 	= 0,
which results in Fx = 0 and Fz 	= 0. In this case, the ACF only
vanishes in the x direction.

(iv) For more general cases (without PS and TRS) where
χ 	= 0 and κ 	= 0, 
x 	= 0 and 
z 	= 0, ACF can persist in any
direction.

FIG. 2. Numerical calculation of ACF vs angle θ , rotating fre-
quency �, and distance d . (a) shows the normalized ACF |Fn|norm =
|Fn/(Fn)max| at different angles. Red, blue, and black curves corre-
spond to Pasteur BIM (χ = 0, κ = 1), Tellegen BIM (χ = 1, κ = 0),
and general BIM (χ = 0.1, κ = 0.5), respectively. Other parameters
are set as: d = 12R, T = 0.01R−1

0 , � = 10−9R−1
0 , ωp = 0.1R−1

0 ,
τ−1

0 = 0.01R−1
0 . (b) gives distance dependence of ACF. Note that the

force values are normalized by F0 = h̄c/R2. The inset of (c) gives
the zoomed-in ACF at θ = π/2. Parameters are set as: κ = −0.5,
χ = 0.1, and other parameters are the same as those in (a). Figure
(c) shows the frequency dependence of ACF. Red, blue, and black
curves correspond to angle θ = 0, θ = π/2, θ = π/4, respectively.
Parameters are set as: d = 12R0, and other parameters are the same
as those in (b). (d) corresponds to the temperature dependence of
ACF at angles θ = 0, θ = π/2, and θ = π/4, respectively.

Based on the above analysis, ACF is a general phenomenon
that exists in many materials, including topological materials
and chiral materials. [See Table I.]

IV. NUMERICAL CALCULATION AND
ANALYTICAL LIMIT

We calculate the ACF numerically by considering a rotat-
ing particle described by the Drude model, where the electric

permittivity is modeled by ε = εb + ω2
p

ω(ω+iτ−1 ) . In the formula,
εb is background static electric permittivity, τ is the scattering
time of electrons, and ωp is called as plasmonic frequency.
The polarizability can be obtained from ε and reads as α(ω) =
4πR3

0ε0
ε−ε0
ε+2ε0

, where R0 is the radius of the particle, and ε0 is
the vacuum permittivity. For simplicity, we set η = η0 in the
calculation. The numerical results are summarized in Fig. 2.
In Fig. 2(a), the angle-dependent ACF is shown, where L-
ACF Fx exists at κ 	= 0, whereas V-ACF Fz exists at χ 	= 0.
In a general case where χ 	= 0 and κ 	= 0, both Fx and Fz

exist. Figure 2(b) shows the distance dependence of ACF at
different angles. One can see that the decaying behavior of
ACF depends on the angle θ . At θ = 0, the L-ACF is two
orders smaller than V-ACF [inset of Fig. 2(b)]. Figure 2(c)
gives the rotating-frequency dependence of ACF, from which
one can see the ACF increases linearly with �. In Fig. 2(d),
the temperature dependence of ACF is shown, where ACF
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FIG. 3. Comparison between numerical calculation and analyt-
ical calculation of ACF. (a) and (b) show the L-ACF and V-ACF,
where the analytical result (red curve) and numerical result (blue
curve) are consistent at low temperature. The distance is set d = 5R0,
while other parameters are the same as that in Fig. 2.

increase with T nonlinearly at low temperature but linearly
at high temperature.

We analytically obtain ACF in the low-frequency limit
ωd → 0, which can be fulfilled at low temperatures due to the
differential distribution function N (T, ω). For Tellegen ma-
terials, one has χ = 1 and κ = 0 and rsp = rps = −1, which
leads to 
x = 0 and Im{
z} = −ω/2d3. By contrast, for
Pasteur materials, χ = 0 and κ = 1 results in rsp = −rps =
−2i

√
1 − s2/(2

√
1 − s2 + √

4 − s2) and leads to 
z = 0 and
Im{
x} = −4ω4/3 + 3πω5d/4. Further, if ω � ωp, one can
have the imaginary polarizability Im{α} ≈ −12πω/(ω2

pτ ).
Under realistic conditions, when the rotating frequency is
much smaller than plasmonic frequency, one can approx-
imately obtain Im{α(ω+)}N(ω+) − Im{α(ω−)}N(ω−) ≈
2� Im{α}∂ωN(ω, T) + �3 Im{∂ωα}[∂2

ωN(ω, T)] assuming
T1 = T2 = T . By substituting these approximations into the
ACF expression Eq. (4), one can readily obtain the analytical
expressions of V-ACF and L-ACF:

Fz = − h̄R3
0

ω2
pτd3

[4π2T 2� + �3] (8)

Fx = −16h̄R3
0

ω2
pτ

[
240ζ (5)T 5� + 16ζ (3)T 3�3

+2T

5
�5 + Sign[�]

30
�6

]
. (9)

Note that we set parameters χ → 1 (χ → 0) and κ → 0
(κ → 1) in obtaining analytical result of laterally (vertically)
ACF. In Fig. 3 we compare our analytical result with
numerical results showing consistence at low temperature.
From the analytical expressions, one can understand why
ACF depends on rotating frequency linearly and nonlinearly
on temperature at low temperatures.

V. MAGNETIC CONTRIBUTION

Our previous calculation is based on the dipolar approx-
imation, i.e., the size of the particle is much smaller than
the cutoff wavelength of photons 1/ωp and the distance d .
For a large object, the dipolar approximation is not valid,
and one should use the scattering-matrix method to calculate
the Casimir force [18]. Notice that the magnetic contribu-
tion is neglected in our previous calculation. The magnetic

FIG. 4. Magnetic contribution to the ACF. Red (blue) curve
represents the force ratio between the electric L-ACF (V-ACF) and
magnetic L-ACF (V-ACF). (a) and (b) show how the force ratio
scales with the distance d and the particle size R, respectively.
Parameters are chosen as κ = 0.5, χ = 0.1, R = R0 in (a), and
d = 6R0 in (b).

contribution can be easily included by replacing the electric
polarization α with the magnetic polarization β. Also, the
electric Green’s tensors Gi j should be replaced by the mag-
netic Green’s tensors Hi j which can be easily obtained from
the electric counterparts by swapping polarization indices, i.e.,
Hi j = Gi j (s ↔ p).

We calculate the magnetic polarizability and show
that, for small particles, the magnetic contribution is
vanishingly small. The magnetic polarizability for a
spherical particle with radius R is given by β(ω) =
−R3[ 1

2 − 3
2(ε−1)ω2R2 + 3

2
√

(ε−1)ωR
cot(

√
ε − 1ωR)] [9]. With

the magnetic polarizability and magnetic Green’s tensor, one
can calculate the magnetic contribution of the ACF. In Fig. 4,
we numerically calculated the ratio between the electric con-
tribution and the magnetic contribution. Our result shows
that the magnetic contribution to the ACF is vanishingly
small if ωPR � 1. In fact, the small magnetic contribution
can be understood analytically. In the small particle limit
(ωp R � 1), the magnetic polarizability becomes β(ω) →
−R3(ωpR)2/30, and the magnetic and the electric polarization
ratio β(ω)/α(ω) � 1. This is quite different from the large
metallic sphere case (ωPR � 1), where magnetic fluctuations
contribute the same order as the electric counterpart [19,20].

VI. DISCUSSION AND COMMENTS

(1) The ACF is parallel with rotating axis, and it does
not exert torque on the rotating particle. Consequently, the
ACF cannot induce the heat transfer between the particle and
the BIM plate. Hence, we again illustrate the dissipationless
nature of ACF [6].

(2) Let’s compare the ACF with the usual Casimir-Polder
force. The usual Casimir-Polder force exists only in the z
direction and depends on rss and rpp. In Appendix C, we
show that the usual Casimir-Polder force can be made as small
as possible and even vanished in certain cases. Also, from
equation (8), one can see that V-ACF decays slower that the
usual Casimir force (∝1/d5).

(3) In this paper, the nonequilibrium effects and spatial
dispersion effects are ignored in the calculation, which could
become important in some circumstances [21]. The noniner-
tial effect is also neglected in our approach, which may be
interesting for further study [22].
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(4) Quantum levitation may be possible by using V-
ACF. For example, a particle with radius R0 = 10 nm and
density ρ0 = 0.1 g cm−3 has gravitational force FG ≈ 4 ×
10−21 N. If it rotates above a BIM plate, the V-ACF can
reach Fn ≈ 10FG for parameters � = 10−5R−1

0 ≈ 100 GHz,
d = 3R0 = 30 nm, ωp = 0.1R−1

0 ≈ 1 eV, τ−1 = 200 meV,
T = 0.03R−1

0 ≈ 500 K, χ = 1, and κ = 0. Note that the very
recent experiments have already achieved a superfast rotation
of nanoparticles, making the ACF within the experimental
reach [14].

VII. SUMMARY

We have identified the first dissipationless rotation-induced
force in vacuum, named axial Casimir force. The axial
Casimir force emerges when a particle rotating above a plate
that has either time-reversal symmetry breaking or parity-
symmetry breaking. Various topological materials and chi-
ral materials are promising candidates to observe the axial
Casimir force. Due to V-ACF, quantum levitation is also pos-
sible for a particle rotating nearby a BIM plate. Furthermore,
the axial Casimir force has a slower scaling law with distance
and can dominate over the common Casimir-Polder force in
certain cases.
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APPENDIX A: DERIVATION OF L-ACF

In this section, we calculate the L-ACF in detail. The
L-ACF is contributed from two pieces including the dipole
fluctuation and the field fluctuation. We calculate them sepa-
rately.

Dipole fluctuation distribution—We can compute the first
term of Eqn. (2):

Fx,p =
∫ ∞

∞

dωdω′

4π2
e−i(ω+ω′ )t 〈pi(ω)∂xEi(r0, ω

′)〉

=
∫ ∞

∞

dωdω′

4π2
e−i(ω+ω′ )t

×〈pi(ω)∂xGi j (r0, r0, ω
′)p j (ω

′)〉, (A1)

where the derivative only acts on the first component of the
Green function, i.e., ∂xG(r0, r0, ω) = ∂xG(r, r0, ω)|r=r0 . Now,
comes the important part. Based on the FDT, one can connect
the quantity 〈pi p j〉 with atomic polarizability αi j . Since the
particle is rotating, the atomic polarizability is only well
defined in its rotating frame. In the expression of Eq. (A1), pi

is the electric dipoles that are defined in the laboratory frame.
In order to express electric polarizability in terms of electric
dipoles p̃i in the rotating frame, one needs the coordinate

transformation [6]

px(ω) = p̃x(ω)

py(ω) = 1
2 [ p̃y(ω+) + i p̃z(ω+) + p̃y(ω−) − i p̃z(ω−)] (A2)

pz(ω) = 1
2 [−i p̃y(ω+) + p̃z(ω+) + i p̃y(ω−) + p̃z(ω−)],

where ω± = ω ± � is the Doppler-shifted frequency with �

denotes the rotation frequency of the particle. In the main text,
we expressed the coordinate transformation of electric dipole
by the form: pi(ω) = �+

i j p̃ j (ω+) + �0
i j p̃ j (ω) + �−

i j p̃ j (ω−).
Now, one can read out �±

i j and �0
i j from the above equations.

Due to the translational symmetry in the x, y, and z direction
of the surface, the surface Green function satisfies ∂xGxx =
∂xGyy = ∂xGzz = 0. One can find the explicit expression of
surface Green’s tensor in Appendix C, where we show that
only the terms ∂xGyz, ∂xGzy, ∂xGxz, and ∂xGzx need to be
calculated. (Due to the isotropic assumption of the rotating
particle (αxy = αxz = 0), we do not need to calculate ∂xGxz

and ∂xGxy, which always appear, respectively, with αxy and αxz

at the same time.) The L-ACF induced from dipole fluctuation
is

Fx,p =
∫ ∞

−∞

dω

4π2
[〈py(ω)∂xGyz(r0, r0,−ω)pz(−ω)〉]

+ [〈pz(ω)∂xGzy(r0, r0,−ω)py(−ω)〉]. (A3)

Substitute Eq. (A2) into Eq. (A3), and one can obtain

〈py(ω)∂xGyz(r0, r0,−ω)pz(−ω)〉
= 1

4∂xG∗
yz〈[ p̃y(ω+) + i p̃z(ω+) + p̃y(ω−) − i p̃z(ω−)]

× [−i p̃y(ω′
+) + p̃z(ω′

+) + i p̃y(ω′
−) + p̃z(ω′

−)]〉
= iπ h̄∂xG∗

yz

{
Im{α̃yy(ω+) + α̃zz(ω+)}(n(T1, ω+) + 1

2

)
− Im{α̃yy(ω−) + α̃zz(ω−)}(n(T1, ω−) + 1

2

)}
, (A4)

where ω± = ω ± �, ω′
± = −ω ± �, and T1 is the particle

temperature.
In the same way, one can obtain

〈pz(ω)∂xGzy(r0, r0,−ω)py(−ω)〉
= −iπ h̄∂xG∗

zy

{
Im{α̃yy(ω+) + α̃zz(ω+)}(n(T1, ω+) + 1

2

)
− Im{α̃yy(ω−) + α̃zz(ω−)}(n(T1, ω−) + 1

2

)}
. (A5)

Several comments in order: (i) Since the electric field E(t )
is real, the Green function Gi j (t ) = 〈Ei(t )Ej (0)〉 is also real,
i.e., G∗

i j (t ) = Gi j (t ). Due to the expression of Green function

in ω-space, Gi j (t ) = ∫
dω
2π

e−iωt Gi j (ω) we can obtain G∗(ω) =
G(−ω). The same reason also suggests α∗(ω) = α(−ω). (ii)
When we make the simplification

∫ ∞
−∞ �→ ∫ ∞

0 , it’s not as
simple as

∫ ∞
−∞ = 2

∫ ∞
0 . In fact, we should use the equality∫ 0

−∞
dω ∂xG∗

yz(ω)Im{α(ω+)}
(

n(ω+) + 1

2

)

=
∫ ∞

0
dω∂xG∗

yz(−ω)Im{α(−ω−)}
(

n(−ω−) + 1

2

)

=
∫ ∞

0
dω∂xGyz(ω)Im{α(ω−)}

(
n(ω−) + 1

2

)
. (A6)
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Note that the FDT in the rotating frame leads to the
relation 〈p̃i(ω) p̃ j (ω′)〉 = 2π h̄δ(ω + ω′)Im{α̃i j (ω)}coth( βω

2 ).
Therefore, the Casimir force Fx,p due to electric dipole fluc-
tuation is

Fx,p = ih̄

4π

∫ ∞

−∞
dω(∂xG∗

yz − ∂xG∗
zy)

×
{

Im{α̃yy(ω+) + α̃zz(ω+)}
(

n(T1, ω+) + 1

2

)

− Im{α̃yy(ω−) + α̃zz(ω−)}
(

n(T1, ω−) + 1

2

)}
.

One can express the above result only in the frequency region
ω � 0 by using Im{α̃(−ω)} = Im{α̃∗(ω)} = −Im{α̃(ω)} and
(n(T1,−ω) + 1

2 ) = −(n(T1, ω) + 1
2 ):

Fx,p = h̄

2π

∫ ∞

0
dωIm{∂xGyz − ∂xGzy}

×
{

Im{α̃yy(ω+) + α̃zz(ω+)}
(

n(T1, ω+) + 1

2

)

−Im{α̃yy(ω−) + α̃zz(ω−)}
(

n(T1, ω−) + 1

2

)}
.

Field fluctuation distribution—One can compute the sec-
ond term of Eq. (2) induced by the electric field fluctuation.

Fx,E =
∫ ∞

−∞

dωdω′

(2π )2
e−i(ω+ω′ )t 〈αi j (ω)E f l

j (ω)∂xE f l
i (ω′)

〉
,

(A7)

where αi j denotes the effective polarizability seen in the
laboratory frame, corresponding to the polarizability α̃ in its
rotating frame via [6]:

αxx(ω) = α̃xx(ω)

αyy(ω) = 1
4 (α̃yy(ω+) + α̃zz(ω+) + α̃yy(ω−) + α̃zz(ω−))

= αzz(ω) (A8)

αyz(ω) = i
4 (α̃yy(ω+) + α̃zz(ω+) − α̃yy(ω−) − α̃zz(ω−)),

= −αzy(ω)

from which one can read out 	±
i jkl and 	0

i jkl in the main text.

Substituting α̃yz(ω) and 〈E f l
z (ω)∂xE f l

y (ω′)〉 = 〈∂xE f l
y (ω′, r0)

E f l
z (ω, r0)〉 = 4πδ(ω + ω′)Im{∂xGyz(r0, r0, ω

′)}(n(T2, ω
′) +

1
2 ) (T2 is the temperature of the surface) into Eq. (A7), one
can obtain

Fx,E = − h̄

2π

∫ ∞

0
dω Im{∂xGyz − ∂xGzy}

× Im{α̃yy(ω+) + α̃zz(ω+) − α̃yy(ω−) − α̃zz(ω−)}

×
[

n(T2, ω) + 1

2

]
. (A9)

Combine the force induced by dipole fluctuation and field
fluctuation distribution, and we can obtain the final expression

of ACF:

Fx = h̄

2π

∫ ∞

0
dω Im{∂xGyz − ∂xGzy}[Im{α̃yy(ω+)

+ α̃zz(ω+)}N (ω+) − Im{α̃yy(ω−) + α̃zz(ω−)}N (ω−)],

(A10)

where N (ω±) = n(T1, ω±) − n(T2, ω). Even at zero tempera-
ture T1 = T2 = 0, N (ω±) 	= 0 which indicates that the ACF is
totally contributed from quantum fluctuation. By assuming the
particle is isotropic, i.e., αi j = αδi j , the formula in the main
text is obtained.

APPENDIX B: DERIVATION OF ACF
IN AN ARBITRARY DIRECTION

In this section, we show how to calculate the ACF of a
particle rotating along an arbitrary axis n̂ = (cos θ, 0, sin θ ).
We calculate the Casimir force in the x, y, z directions, respec-
tively, and project them along the rotating axis. (pθ

x, pθ
y, pθ

z )
represents electric dipole of the particle in the laboratory
frame, which can be obtained via coordinate rotation:(

pθ
x

pθ
z

)
=

(
cos θ − sin θ

sin θ cos θ

)(
px

pz

)
, (B1)

where px and pz are the electric dipoles that are obtained
in last section. The polarization at n̂ = (cos θ, 0, sin θ ) cor-
responds to the polarization at n̂ = (1, 0, 0) via

αθ
xx = cos2 θαxx + sin2 θαzz; αθ

yy = 〈py py〉 = αyy;

αθ
zz = cos2 θαzz + sin2 θαxx; αθ

xy = − sin θαzy;
(B2)

αθ
yx = − sin θαyz; αθ

xz = sin θ cos θαxx − sin θ cos θαzz

αθ
zx = αθ

xz; αθ
yz = cos θαyz; αθ

zy = cos θαzy.

In the following, we obtain the Casimir force (induced by
rotation) in the x direction Fx and in the z direction Fz,
respectively. Then, the total ACF is

Fn(θ ) = Fx(θ ) cos θ + Fz(θ ) sin θ. (B3)

The ACF in the x-direction—Notice that the L-ACF cal-
culated here is different from that in Appendix A. Because
the rotating axis is not parallel with the plate anymore, i.e.,
Fx(θ ) 	= Fx, thus one needs to re-calculate the L-ACF in this
case. Again, the L-ACF is induced from two parts contribu-
tions: (i) the electric dipole fluctuation and (ii) the electric
field fluctuation, i.e., Fx(θ ) = Fx,p + Fx,E , where

Fx,p =
∫ ∞

−∞

dωdω′

(2π )2
e−i(ω+ω′ )t

× 〈
pθ

i (ω)∂xGi j (r0, r0, ω
′)pθ

j (ω
′)
〉
; (B4)

Fx,E =
∫ ∞

−∞

dωdω′

(2π )2
e−i(ω+ω′ )t 〈αθ

i j (ω)E f l
j (ω)∂xE f l

i (ω′)
〉
. (B5)

Substituting the electric dipole into the expression of the
dipole-induced Casimir force, one can obtain

Fx,p = h̄

2π

∫ ∞

0
dω[sin θ cos θ fp1 + cos θ fp2 − sin θ fp3],

(B6)
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where

fp1 = Re {(∂xGxz + ∂xGzx )}
× {

4 Im{α̃xx(ω)}(n(T1, ω) + 1
2

)
− Im{α̃yy(ω+) + α̃zz(ω+)}(n(T1, ω+) + 1

2

)
− Im{α̃yy(ω−) + α̃zz(ω−)}(n(T1, ω−) + 1

2

)}
. (B7)

fp2 = Im{(∂xGyz − ∂xGzy)}
× {

Im{α̃yy(ω+) + α̃zz(ω+)}(n(T1, ω+) + 1
2

)
− Im{α̃yy(ω−) + α̃zz(ω−)}(n(T1, ω−) + 1

2

)}
; (B8)

fp3 = Im{(∂xGyx − ∂xGxy)}
× {

Im{α̃yy(ω+) + α̃zz(ω+)}(n(T1, ω+) + 1
2

)
− Im{α̃yy(ω−) + α̃zz(ω−)}(n(T1, ω−) + 1

2

)}
. (B9)

The electric fluctuating field contribution to the lateral
Casimir force is

Fx,E = h̄

2π

∫ ∞

0
dω[sin θ cos θ fE1 + cos θ fE2 − sin θ fE3],

(B10)

where

fE1 = Im{∂xGxz + ∂xGzx}Re{4α̃xx − (α̃yy(ω+) + α̃zz(ω+)

+ α̃yy(ω−) + α̃zz(ω−))} × (
n(T2, ω) + 1

2

)
fE2 = −Im{∂xGyz − ∂xGzy} Im{α̃yy(ω+) + α̃zz(ω+)

− α̃yy(ω−) − α̃zz(ω−)} × (
n(T2, ω) + 1

2

)
fE3 = −Im{∂xGyx − ∂xGxy} Im{α̃yy(ω+) + α̃zz(ω+)

− α̃yy(ω−) − α̃zz(ω−)}(n(T2, ω) + 1
2

)
. (B11)

Therefore, the total L-ACF in the x direction is

Fx(θ ) = h̄

2π

∫ ∞

0
dω[sin θ cos θ ( fp1 + fE1)

+ cos θ ( fp2 + fE2) − sin θ ( fp3 + fE3)]. (B12)

The ACF in the y direction Fy—The force in the y direc-
tion has the same form as that in the x direction. The only
difference is that all derivatives on Green tensors change from
∂xGi j to ∂yGi j . If we let θ = 0, the expression coincides with
the expressions in Ref. [15].

The ACF in the z direction Fz—The form of Fz is different
from Fx and Fy due to the nonvanishing diagonal terms ∂zGii.
We can write the Casimir force in the form Ftot

z (θ ) = F d
z (θ ) +

Fz(θ ), where F d
z (θ ) is the Casimir force due to the diagonal

terms ∂zGii, and Fz(θ ) is the rotation-induced Casimir force.
Fz(θ ) has the similar form as Fx(θ ) and Fy(θ ), and one can
obtain Fz(θ ) by the substitution ∂x/yGi j → ∂zGi j . The diago-
nal Casimir force F d

z (θ ) corresponds to the usually referred
Casimir-Polder force, whereas the off-diagonal Casimir force
is induced by rotation.

The total ACF along the rotating axis is

Fn = Fx(θ ) cos θ + Fz(θ ) sin θ

≈ Fx cos2 θ + Fz sin2 θ, (B13)

where Fx ≡ Fx(θ = 0) and Fz ≡ Fz(θ = π/2). In deriving
Eq. (B13), we have used the approximation that �/ω � 1. We
also use the fact that fp2 + fE2 and fp3 + fE3 vanish for Fz(θ )
and Fx(θ ), respectively. (The reason relies on the Green’s
tensor form in Appendix C.) Note that we derived the formula
Eq. (3) announced in the main text. In the following, one
can derive the diagonal term F d

z (θ ) by considering the dipole
fluctuation and the field fluctuation, respectively.

The Casimir force in the z direction induced by dipole
fluctuation is

F d
z,p =

∫ ∞

−∞

dωdω′

(2π )2
e−i(ω+ω′ )t{〈pθ

x (ω)∂zGxx(r0, r0, ω
′)pθ

x (ω′)
〉

+ 〈
pθ

y∂zGyy pθ
y

〉 + 〈
pθ

z ∂zGzz pθ
z

〉}
. (B14)

The Casimir force in the z direction induced by field
fluctuation is

F d
z,E =

∫ ∞

−∞

dωdω′

(2π )2
e−i(ω+ω′ )t (4π h̄δ(ω + ω′))

{
αθ

xxIm{∂zGxx}

+αθ
yyIm{∂zGyy} + αθ

zzIm{∂zGzz}
}(

n(T2, ω) + 1

2

)
.

(B15)

Unlike the case of rotation-induced Casimir force, the signs
before the integral in the expressions of F d

z,p and F d
z,E are

the same. This is definitely reasonable, meaning that, even
without rotation, these two terms still exist. Adding up the
dipole contribution and the field contribution, we get the total
diagonal Casimir force in the z direction:

F d
z ≈ 2h̄

π

∫ ∞

0
dω Im{∂z(Gxx + Gyy + Gzz ) × α(ω)}

×
[

n(T, ω) + 1

2

]
, (B16)

where the following assumptions are implied: equal
temperature T1 = T2, isotropic polarizability αi j = α δi j ,
and [α(ω+)(n(T, ω+) + 1

2 ) + α(ω−)(n(T, ω−) + 1
2 )] ≈

2α(ω)[n(T, ω) + 1
2 ] for � � kBT . In the limit of T → 0,

the diagonal Casimir force F d
z = h̄

π

∫ ∞
0 dω Tr[αi j∂zGi j],

which agrees with the Casimir-Polder formula in Ref. [23].
According to Appendix C, the differential Green’s function
reads ∂z(Gxx + Gyy + Gzz ) = rssk2 + rpp(k2

ρ − k2
z ). For a

metallic surface, rss = −rpp, and ∂z(Gxx + Gyy + Gzz ) =
− 1

2π

∫
dkxdky e2ikzz rss(2k2

z ), consequently, the above formula
become consistent with the Casimir-Polder formula in
Refs. [9] and [23].

APPENDIX C: SURFACE GREEN’S TENSOR
FOR BIM PLATE

General expression of surface Green’s tensor—The surface
Green’s tensor can be derived from the knowledge of Fresnel
coefficients, i.e., rss and rpp in usual cases, where rss (rpp)
stands for the reflection coefficients from TE(TM) wave to
TE(TM) wave [24]. However, when there is a mix between TE
wave and TM wave, the surface Green’s tensor also depends
on rsp and rps [16], where rps (rsp) stands for the cross-
reflection coefficients from TE (TM) wave to TM (TE) wave.
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We then give the general expression of the surface Green
function by taking rps (rsp) into consideration

G(r, r′, ω)= i

2π

∫
dkxdky

kz
eikx (x−x′ )eiky (y−y′ )eikz (z+z′ )

× [rssMss + rppMpp + rspMsp + rpsMps], (C1)

where [16]

Mss =

⎛
⎜⎜⎜⎝

k2
y

k2
ρ
k2 − kxky

k2
ρ

k2 0

− kxky

k2
ρ

k2 k2
x

k2
ρ
k2 0

0 0 0

⎞
⎟⎟⎟⎠, (C2)

Mpp =

⎛
⎜⎜⎜⎝

− k2
x k2

z

k2
ρ

− kxkyk2
z

k2
ρ

−kxkz

− kxkyk2
z

k2
ρ

− k2
y k2

z

k2
ρ

−kykz

kxkz kykz k2
ρ

⎞
⎟⎟⎟⎠, (C3)

Msp =

⎛
⎜⎜⎜⎝

kxkykz

k2
ρ

k
k2

y kz

k2
ρ

k kyk

− k2
x kz

k2
ρ

k − kxkykz

k2
ρ

k −kxk

0 0 0

⎞
⎟⎟⎟⎠, (C4)

Mps =

⎛
⎜⎜⎜⎝

− kxkykz

k2
ρ

k k2
x kz

k2
ρ

k 0

− k2
y kz

k2
ρ

k kxkykz

k2
ρ

k 0

kyk −kxk 0

⎞
⎟⎟⎟⎠. (C5)

The Fresnel reflection coefficients are given by [11]

rss = 1

�

{(
η2 − η2

0

)
c0(c+ + c−) + 2η0η

(
c2

0 − c+c−
)

cos β
}
;

rpp = −1

�

{(
η2 − η2

0

)
c0(c+ + c−) − 2η0η

(
c2

0 − c+c−
)

cos β
}
;

rsp = 2η0ηc0

�
[i(c+ − c−) cos β − (c+ + c−) sin β];

rps = −2η0ηc0

�
[i(c+ − c−) cos β + (c+ + c−) sin β]. (C6)

Corresponding definitions, e.g., kρ , �, etc. are the same as
those in the main text. Let’s check the trivial case for an ideal
metal plate, where χ = κ = 0, and η = √

μ/ε → 0. In this
case, rpp = −rss = 1 and rsp = rps = 0. In another interesting
case, by assuming η �→ η0 and β �→ π/2 (perfect Tellegen
materials), rss = rpp = 0 leads to the vanishing of the usual
Casimir-Polder force.

APPENDIX D: DERIVATION OF ANALYTICAL LIMIT
OF AXIAL CASIMIR FORCE

In this part, we give the detail derivation of the ACF for
Tellegen and Pasteur materials in the low frequency limit
ωd → 0. For Tellegen materials, χ → 1 and κ → 0. Thus,
the reflection coefficients can be obtained rsp = rps → −1
leading to 
x = 0 and


z = −2ω4
∫ ∞

0
ds

(
s
√

1 − s2 e2i
√

1−s2ωd
)
. (D1)

In the limit ωd → 0, one can obtain Im{
z} ≈ −ω/2d3.
For Pasteur materials, χ → 0 and κ → 1. Thus, the reflec-

tion coefficients can be obtained rsp = −rps → −2i
√

1−s2

2
√

1−s2+√
4−s2

leading to 
z = 0 and


x =
∫ ∞

0
ds

s3 e2i
√

1−s2ωd

√
1 − s2

[
(−2i)ω4

√
1 − s2

2
√

1 − s2 + √
4 − s2

]
. (D2)

In the limit ωd → 0, one can obtain Im{
x} ≈ −4ω4/3 +
3πω5d/4 ≈ −4ω4/3. Under the assumption ω � ωp, the
imaginary part of the polarizability reads Im{α(ω)} ≈
−12πR3

0ω/ω2
pτ .
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