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Interaction of gated and ungated plasmons in two-dimensional electron systems
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Unique properties of plasmons in two-dimensional electron systems (2DESs) have been studied for many
years. Existing theoretical approaches allow for analytical study of the properties of ungated and gated plasmons
in two fundamental, ideal cases—the 2DES in a dielectric environment and under an infinite metallic gate,
respectively. Here we introduce an analytical theory of the interaction of gated and ungated plasmons in partly
gated 2DES. Generally, a finite-width gate is formed by a metallic strip placed over an infinite plane hosting 2D
electrons. Our solution, in particular, describes the propagating plasmon modes with their charge density having
N nodes under the gate. In this regard, a new mode with N = 0 has been found in addition to the gapped modes
with N = 1, 2, . . . previously derived from numerical calculations. Unexpectedly, this fundamental plasmon
mode has been found to differ substantially from the rest. In fact, it is characterized by gapless square root
dispersion and represents a hybrid of gated and ungated plasmons. In contrast to the higher modes, the currents
and lateral fields of the fundamental mode are localized mainly to the outside area in the vicinity of the gate.
Heretofore, such a “near-gate plasmon” has never been considered.

DOI: 10.1103/PhysRevB.99.165304

I. INTRODUCTION

Plasma oscillations (plasmons) in 2DES are radically dif-
ferent from conventional 3D plasmons. When 2DES is em-
bedded in a dielectric medium with permittivity κ, the 2D
plasmons can be characterized by the following square root
dispersion law [1]:

ωp(q) =
√

2πne2q

κm
, q =

√
q2

x + q2
y , (1)

where n is the 2D electron concentration, m is the electron
effective mass, and q is the 2D wave vector of the plasmon.

Furthermore, screening an electron-electron (e-e) interac-
tion with a metallic gate leads to reduction in the ungated
plasmon frequency (1) by the factor of

√
2dq, where d is the

distance between the gate and 2DES. Consequently, at long
wavelengths (qd � 1) the dispersion for the gated plasmons
becomes linear [2]:

ωg(q) = qVp, Vp =
√

4πne2d

mκ

, (2)

where Vp is the velocity of gated plasmons.
Originally 2D plasmons were observed in 2D systems

of electrons on a liquid helium surface [3] and in silicon
inversion layers [4,5]. Thus far, plasmons have been studied
in different 2D electron systems including semiconductor
heterojunctions and quantum wells [6–14], graphene [15–18],
topological isolators [19–21], transition metal dichalcogenide
monolayers [22], etc.

Dependence of plasmon frequency on 2D electron concen-
tration n permits easy tuning of the 2D plasmons over a wide
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frequency range by means of a gate voltage control. For this
reason, 2D gated structures are proving promising not only in
fundamental studies of collective excitation physics, but also
as detectors and emitters of electromagnetic radiation in the
terahertz range [23–36].

When a perpendicular magnetic field is imposed on a
restricted 2DES (with or without a gate), the two types of
plasmons emerge—the bulk magnetoplasmons with a spec-
trum gap and the gapless, one-way, edge magnetoplasmons
(EMPs). Both the exact solution [37,38] and the modeling
approximation [39] show that in the case of a semiplanar form
of the 2DES, EMPs can exist at any magnetic field strength
regardless of the metallic gate. What is more, in a classi-
cally strong magnetic field, EMPs are subject to insignificant
damping, even in low-mobility samples. It is these properties
that have been stimulating EMP research for a number of
years [40–45]. In addition, it has recently been shown [46]
that the gated magnetoplasmons may belong to one of the 2D
classes within the framework of topological classification of
bosons [47], and that EMPs are topologically protected. These
findings have generated a great deal of interest in 2D plasmon
physics as well.

Due to their peculiar nature, mathematical analysis of 2D
plasmons has always been rather challenging. Considering a
confined 2DES, for example, in the form of a half-plane, a
strip, or a disk, the relationship between the charge density
and the induced electric field is nonlocal. Therefore, the cal-
culation of the confined plasmon spectrum involves finding a
solution to a complicated integral equation, which, in fact, can
be solved analytically only for several oversimplified cases
[48–55].

In this paper we report the analytical investigation of
the influence the finite strip-shaped metallic gate has on
the 2D plasmon spectrum in infinite 2DES. In addition to
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FIG. 1. System under consideration with the gate and the 2DES
assumed to be infinite in y.

being interesting in itself from the fundamental standpoint,
the given geometry, shown in Fig. 1, represents an elemen-
tary constituent of a metallic grating that can be applied to
excite 2D plasmons [4]. Similar configurations have been
implemented in detectors and emitters of electromagnetic
radiation.

As a rule, the 2DES with a finite gate is examined by means
of numerical methods [56–64], which generally includes cal-
culation of the absorption of electromagnetic wave with its
electric field component directed across a long metal strip. In
this case, however, the plasmon modes governed by gapless
dispersion law, even if they exist, are not expressed. In the
course of our analysis, we prove that it is the fundamental
mode that has this feature.

In the system under consideration, it has been assumed,
as a matter of convenience, that e-e interaction of the gate
electrons is screened by the electrons of 2DES, in contrast
to the case of a finite 2DES with an infinite gate, where
e-e interaction of electrons in 2DES is screened by the gate
electrons instead. In this particular instance, it is also con-
venient to solve the integral equation for the charge electron
density in the gate. The analytical solution to the problem is
found based on two realistic assumptions: (1) the sought-for
frequency of the new plasmon mode is small compared to
that of the ungated plasmon, and (2) the distance between
the gate and 2DES d is small compared to the gate size
Lx and the plasmon wavelength (d � Lx, q−1). Given these
approximations and an assumption of sufficiently large gate
conductivity, see Sec. III, the exact integral equation for
the plasmon charge density can be reduced to a differential
equation with boundary conditions specified at the edges of
the gate. The resultant solutions describe the plasmons which
propagate along the gate and are confined to the regions under
and near the gate. The spectrum of these plasmons consists
of a series of 1D subbands ωN (qy), shown in Fig. 2, where
N denotes an integer number of half-wavelengths across the
strip, N = 0, 1, 2, . . .

For the fundamental mode (N = 0) with |qy|Lx � 1, the
plasmon spectrum is defined by

ω0(qy) =
√

8πe2nd

mκ

|qy|
Lx

. (3)

The dispersion of the fundamental mode is rather unusual as
it combines the features of both ungated (1) and gated (2)
plasmons. The currents in this mode are localized mainly to
the outside region near the gate. We shall further refer to the
mode in (3) as to the “near-gate” plasmon. Equation (3) is one

/
/

FIG. 2. Spectrum of the 2D plasmons in 2DES with the gate in
the form of a strip, obtained analytically (in blue) and numerically (in
green). The fundamental mode N = 0 is a hybrid near-gate plasmon.
Also shown (in red) is the boundary of the bulk plasmon continuum
ω = ωp(qy ), within which the excited higher modes N = 1, 2, . . .

have a finite lifetime. The parameter
√

d/Lx was assumed to have
the value 0.05.

of the key results of this paper. The influence of the external
perpendicular magnetic field on the fundamental mode ω0(qy)
is analyzed in Sec. III.

II. PLASMONS IN 2DES WITH A STRIP-SHAPED GATE

The following discussion pertains to the system geometry
in Fig. 1, with an infinite 2DES in z = 0 plane and a metallic
gate at the distance d above it. The gate is infinitely long
in y, has a finite width defined by [−Lx/2, Lx/2] in x, and
conductivity σg.

The desired solutions are restricted to the waves propagat-
ing along the gate according to exp(iqyy − iωt ). We consider
the spectra in the long-wavelength limit |qy| � kF , where h̄kF

is the Fermi momentum and take the classic approach (Ohm’s
law with the collisionless Drude model for conductivity of
2DES) to describe the electron dynamics. We also neglect the
electromagnetic retardation effects.

The Poisson equation for the plasmon potential ϕ(x, z) can
be formulated as follows:

(
∂2

x + ∂2
z − q2

y

)
ϕ(x, z) = −4π

κ

[ρ(x)δ(z) + ρg(x)δ(z − d )],

(4)
where we assume the 2DES and the metallic gate have in-
finitesimal thickness; ρ(x) and ρg(x) are the plasmon charge
densities in 2DES and in the gate, respectively; and ρg(x)
equals zero outside the strip.
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Using Green’s function Eq. (4) can be put in the following
equivalent form:

ϕ(x, z) =
∫ ∞

−∞
G(x − x′, z)ρ(x′)dx′

+
∫ ∞

−∞
G(x − x′, z − d )ρg(x′)dx′, (5)

where G(x, z) = 2K0(|qy|
√

x2 + z2)/κ, K0(x) is the modified
Bessel function of the second kind and zeroth order.

If we define the plasmon potential in 2DES and in the
gate as ϕ(x) = ϕ(x, 0) and ϕg(x) = ϕ(x, d ), respectively, the
Fourier transformation of Eq. (5) will lead to

ϕ(qx ) = 2π

κ

√
q2

y +q2
x

(
ρ(qx ) + ρg(qx )e−d

√
q2

y +q2
x
)
,

ϕg(qx ) = 2π

κ

√
q2

y +q2
x

(
ρ(qx )e−d

√
q2

y +q2
x + ρg(qx )

)
.

(6)

The Ohm’s law and the continuity equation can be used to
derive the relation between ϕ(qx ) and ρ(qx ) as follows:

iωρ(qx ) = σ
(
q2

x + q2
y

)
ϕ(qx ), (7)

where σ = σ (ω) is the dynamic conductivity of 2DES.
Eliminating ϕ(qx ) and ρ(qx ) in Eqs. (6) and (7), and then

taking the inverse Fourier transform leads to

ϕg(x) = α

κ

∫ +∞

−∞

eiqxxe−2d
√

q2
y +q2

x ρg(qx )

1 − α
√

q2
y + q2

x

dqx

+ 2

κ

∫ Lx/2

−Lx/2
K0(|qy||x − x′|)ρg(x′)dx′, (8)

where σ = e2n/(−iωm), based on the collisionless Drude
model for conductivity, and α = 2πe2n/(κmω2).

Since the plasmons of interest are coupled to the gate
and their spectrum lies “outside” the spectrum of the bulk
plasmons existing far from the gate, their frequency ω is
lower than that of the bulk plasmon ωp(qy) for the same wave
vector qy. This condition can be stated as α|qy| > 1. Thus, the
denominator in the first integral in Eq. (8) does not go to zero.

For the case of α|qy| � 1, we can introduce the following
expansion:

α

1 − α
√

q2
y + q2

x

=
∞∑

M=0

−1

αM
(
q2

y + q2
x

)(M+1)/2 . (9)

In the series above, it is sufficient to keep only the first two
dominant terms with M = 0, 1. Hence, after this approxima-
tion, Eq. (8) takes the form of

ϕg(x) + 1

κ

∫ +∞

−∞
eiqxxρg(qx )

e−2d
√

q2
y +q2

x

α
(
q2

y + q2
x

)dqx

= 2

κ

∫ Lx/2

−Lx/2

K (x − x′)ρg(x′)dx′, (10)

where


K (x) = K0(|qy||x|) − K0(|qy|
√

x2 + 4d2). (11)

Next, we can make further approximations of d � Lx and
|qy|d � 1. In these limits, 
K (x) becomes a δ function [2]
Cδ(x), with coefficient C defined by the integrated area of

K (x). In fact, it can be found that C = 2πd , which is the

so-called local capacity approximation. Moreover, on the left-
hand side of Eq. (10) the factor exp(−2dq) can be reduced
to one.

Based on these additional assumptions, Eq. (10) can be
modified as

ϕg(x) + 1

κα

∫ +∞

−∞
eiqxx ρg(qx )

q2
y + q2

x

dqx = 4πd

κ

ρg(x), (12)

where −Lx/2 � x � Lx/2.
Finally, expressing ρg(qx ) in terms of ρg(x) allows Eq. (12)

to be rewritten in a more convenient way as

4πd

κ

ρg(x) = π

|qy|κα

∫ Lx/2

−Lx/2
e−|qy||x−x′|ρg(x′)dx′ + ϕg(x).

(13)
Here it is worth noticing that since the gate conductivity σg

is typically large enough, the plasmon potential ϕg(x) inside
the metal strip becomes negligible compared to the other two
terms in Eq. (13). More detailed discussion on the estimation
of σg and ϕg(x) is presented in Sec. III.

In fact, the assumption of negligible ϕg(x) is crucial to
finding the exact solution to (13) as it enables the reduction
of the integral equation to the differential form [65]:(

∂2
x − q2

y + ω2

V 2
p

)
ρg(x) = 0, (14)

with the boundary conditions specified as

(∂xρg(x) − |qy|ρg(x))|x=−Lx/2 = 0,

(∂xρg(x) + |qy|ρg(x))|x=Lx/2 = 0.
(15)

At this stage, we can also introduce the effective transverse
wave number k to replace the nonconserved transverse wave
vector qx according to

k2 = ω2

V 2
p

− q2
y , (16)

where k takes a discrete value for a given qy, as shown below.
The solutions to Eqs. (14) and (15) have a certain parity

since the even and odd solutions have the form of cos kx and
sin kx with k defined by the dispersion relation as follows:

k

(
tan

kLx

2

)±1

= ±|qy|, (17)

where the “+” and “−” signs correspond to the even and odd
modes, respectively.

It can be noted that the dispersion equation for odd modes
has a trivial solution for k = 0, which can be disregarded as it
implies zero charge density ρg(x) = 0.

From Eq. (17) we obtain a discrete series of the plasmon
modes N = 0, 1, 2, . . . with mode frequencies ωN (qy) and
transverse wave numbers kN (qy), as illustrated in Figs. 2
and 3. For |qy|Lx � 1 the fundamental N = 0 mode has an
unusual square root dispersion (3), in contrast to the linear
dispersion in 2DES with an infinite gate [2]. Note that this
mode has frequency much lower than ωp(qy), therefore con-
dition α|qy| � 1 is satisfied.

The plasmon spectrum outside the bulk continuum was
also determined numerically. By first expanding ρg(x) in
Eq. (8) into its series form, with sin(πPx/Lx ), P = 1, 3, 5, . . .
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FIG. 3. Quantization rule for the transverse wave number kN as
a function of the wave vector along the strip qy. The curves are
universal and do not depend on parameters of the system.

and cos(πPx/Lx ), P = 0, 2, 4, . . . denoting the odd and the
even modes, correspondingly, and then following a standard
computational procedure, we arrived at the spectrum plotted
in green in Fig. 2. It is clear that for the fundamental mode
the numerical and analytical solutions match perfectly. For the
higher excited modes N = 1, 2, 3, . . . the results show close
agreement overall, though numerical solution yields slightly
lower frequencies.

The analytically obtained modes with N > 0 have nonzero
frequencies at qy = 0, thus they lie inside the bulk spectrum
(1) and strongly interact with the continuum of ungated
plasmons. Analogous, for instance, to the interedge magne-
toplasmons [66], such an interaction can lead to the decay
of the gated modes and to the appearance of small imaginary
corrections to the plasmon frequency, due to the finite lifetime
of exited modes.

If one neglects these corrections, then these modes have
long wavelength asymptotes:

ω2
N/V 2

p = [
π2N2/L2

x

] + bN |qy|/Lx, (18)

where |qy|Lx � 1, bN = 2 for N = 0 and bN = 4 for N > 0;
i.e., at qy = 0 the frequency ωN equals the frequency of the
gated plasmon (2) according to the common “quantization
rule” qx → πN/Lx.

For |qy|Lx � 1, all the modes have asymptotic behavior
described by ω2

N/V 2
p = [π2(N + 1)2/L2

x ] + q2
y , i.e., ωN tends

to the frequency of the gated plasmon (2) as qx → π (N +
1)/Lx.

The predicted spectrum ωN (qy) can be understood in terms
of relation (2), provided that qx is replaced by effective
transverse wave number kN , defined by Eq. (17). Figure 3
illustrates the dependence of kN on qy, where the curves

FIG. 4. Plasmon charge density (a) and (b) and normalized elec-
tric field EN

x (c) and (d) in 2DES for the modes N = 0 and N = 1
as a function of x/Lx . In (a) and (b) the charge densities in 2DES
and in the gate are denoted by red and blue traces. In (c) and (d) the

electric field is normalized by
√∫ +∞

−∞ E 2
x (x)dx/Lx . Other parameters

were set as follows: qyLx = 0.3,
√

d/Lx = 0.05. The gate is bounded
in x direction by the interval [−1/2, 1/2].

are plotted in dimensionless variables (kLx, qyLx ) and do not
depend on parameters of the system.

Figure 4 displays the plasmon charge density distribution
in 2DES and in the gate, and the electric field component Ex

in 2DES for the modes N = 0, 1. From these data it is evident
that the plasmon charge density in 2DES is localized entirely
to the region under the gate. For |x| � Lx and |qy|Lx � 1, the
electric field Ex(x) in 2DES decreases with the characteristic
length of the order of |qy|−1. For the parameters indicated in
Figs. 4(c) and 4(d), the typical ratio of normalized electric
fields EN

x under the gate for N = 0 and N = 1 is approxi-
mately 1/3 and tends to zero as |qy|Lx → 0.

III. DISCUSSION

In the course of our investigation we obtained analytical
spectra for the condition of α|qy| � 1, as stated in (9). How-
ever, this assumption becomes invalid for the modes N =
1, 2, . . . both inside and in the vicinity of the bulk continuum.
Nevertheless, as demonstrated in Fig. 2, the analytical and
numerical solutions have been found to be in close agreement,
even in the vicinity of the bulk continuum. In this regard,
first, it should be noted that in fact, the expansion in (9)

is valid when α|q| � 1, where |q| =
√

q̃2
x + q2

y and q̃x takes

the typical values of qx with the greatest contribution to the
first integral in Eq. (8). It is clear from Fig. 3 that q̃x is
of the order of kN (qy). Consequently, we find that for the
estimated dispersion curves (plotted in blue in Fig. 2) the

condition α
√

q2
y + k2

N (qy) � 1 is satisfied, even for the data

representing the region inside the bulk continuum. Therefore,
the obtained analytical solution remains valid (accurate to

165304-4



INTERACTION OF GATED AND UNGATED PLASMONS IN … PHYSICAL REVIEW B 99, 165304 (2019)

small corrections that may take imaginary values), even when
the condition α|qy| � 1 is violated.

Next, we identify the conditions under which the plasmon
potential in the gate ϕg(x) in Eq. (13) can be neglected in
comparison with 4πdρg(x)/κ. In this case, by applying the
continuity equation within the gate, the ϕg and the correspond-
ing gate conductivity σg can be estimated as

ϕg ∼
∣∣∣∣∣ iωρgL2

x

σg
(
1 + q2

y L2
x

) ∣∣∣∣∣, σg � ωL2
x κ

4πd
(
1 + q2

y L2
x

) . (19)

Moreover, it can be noted that in the limit |qy|Lx � 1, the
result in (19) has a straightforward physical interpretation. If
we define the capacitance C̃ = LxLyκ/(4πd ), the resistance
R = Lx/(σgLy), and Ly ≈ π/qy, then, according to (19), the
time it takes the capacitor to discharge through R should be
much less than the plasma oscillation period 2π/ω.

In the given analysis we did not take into account the
electromagnetic retardation effects, thus, the produced results
are applicable only for ω � cq/

√
κ, where c is the speed of

light in vacuum.
Thus far, in our analysis we have made no allowance for

any external magnetic field applied to the system. There-
fore, assuming that gate conductivity σg does not depend
on magnetic field, the special case of interest to consider
is when the system is placed in the perpendicular magnetic
field B. Provided such a condition, the conductivity σ in
Eq. (7) is replaced with the diagonal conductivity σxx(ω, B).
Consequently, in the collisionless approximation, parameter α

in Eq. (8) takes the following form:

α = 2πe2n

κm
(
ω2 − ω2

c

) , (20)

where ωc = |e|B/(mc) is the electron cyclotron frequency.
Hence, ω2 in (8) is now replaced with ω2 − ω2

c , yielding the

B-dependent plasmon spectrum ωN (B) =
√

ω2
N + ω2

c .
Regarding the magnetic field effect discussion, it is worth

mentioning that we did not find EMP modes [37,39] as their
existence is contingent on the condition of inhomogeneous
Hall conductivity, which is not the case in our system.

Thus, we show that the metallic gate itself confines plas-
mons, even without any changes in electron density within
2DES, i.e., when 2DES is homogeneous. This conclusion
is in qualitative agreement with the results in Refs. [56,64]

obtained numerically for several excited modes in graphene
with metallic grating and other 2DESs [62,63].

Finally, as a matter of practical example, we estimate
the fundamental mode numerics for the following charac-
teristic parameters of the 2DES formed by GaAs/AlGaAs
quantum well: the electron concentration n = 3 × 1011 cm−2,
the average dielectric permittivity κ = 7, the mobility μ =
105 cm2/(V s) at 77 K and 104 cm2/(V s) at 300 K. For the
gate dimensions, d = 200 nm, Lx = 1 μm, and Ly = 10 μm
we find ω/(2π ) = 0.25 THz and the following quality factors:
ωτ = 6 at 77 K and ωτ = 0.6 at 300 K. If we take into
account the fact that the electromagnetic retardation can sig-
nificantly increase the quality factor of plasmons [43,67,68],
then plasmons can be well defined even at room temperatures.

IV. CONCLUSION

In summary, we have examined analytically the plasmon
modes in 2DES with the gate formed by a metallic strip over
a 2D electron plane. The oscillating charge of these modes is
found to be confined under the gate. The plasmon spectrum
has been characterized by the mode number N = 0, 1, 2, . . .

and the wave vector along the gate qy. Higher modes (N =
1, 2, . . . ) are known from numerical calculations and possess
the gapped dispersion law. In addition, a new mode (N = 0)
is found. This fundamental mode is a hybrid of gated (ω0 ∝
|qy|

√
d) and ungated (ω0 ∝ √|qy|) plasmons. It did not appear

in numerical calculations of the THz absorption due to its gap-
less spectrum. Its currents and fields are localized mainly to
the outside region near the gate. Up until now, this “near-gate
plasmon” has never been considered. The obtained spectra can
be interpreted in terms of the gated plasmon spectrum (2), in
which qx is replaced by the quantized wave number kN , see
Fig. 3, kN lies between πN/Lx and π (N + 1)/Lx. Our findings
are promising for possible applications in integral sub-THz
optics and nanoplasmonics, for example, to transmit sub-THz
signals within the integrated circuits.
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