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Deconfined quantum critical point in one dimension
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We perform a numerical study of a spin-1/2 model with Z2 × Z2 symmetry in one dimension which
demonstrates an interesting similarity to the physics of two-dimensional deconfined quantum critical points
(DQCP). Specifically, we investigate the quantum phase transition between Ising ferromagnetic and valence
bond solid (VBS) symmetry-breaking phases. Working directly in the thermodynamic limit using uniform matrix
product states, we find evidence for a direct continuous phase transition that lies outside of the Landau-Ginzburg-
Wilson paradigm. In our model, the continuous transition is found everywhere on the phase boundary. We
find that the magnetic and VBS correlations show very close power-law exponents, which is expected from
the self-duality of the parton description of this DQCP. Critical exponents vary continuously along the phase
boundary in a manner consistent with the predictions of the field theory for this transition. We also find a regime
where the phase boundary splits, as suggested by the theory, introducing an intermediate phase of coexisting
ferromagnetic and VBS order parameters. Interestingly, we discover a transition involving this coexistence phase
which is similar to the DQCP, being also disallowed by the Landau-Ginzburg-Wilson symmetry-breaking theory.

DOI: 10.1103/PhysRevB.99.165143

I. INTRODUCTION

The deconfined quantum critical point (DQCP) is a fas-
cinating proposal by Senthil et al. [1,2] whereby a quantum
many-body system undergoes a generic second-order tran-
sition between phases with incompatible order parameters,
which is prohibited in the Landau-Ginzburg-Wilson (LGW)
symmetry-breaking paradigm. The original work predicted
such a transition from a Neel phase to a valence bond
solid phase in a spin-1/2 system on a two-dimensional (2d)
square lattice, and extensive numerical studies have provided
evidence for a continuous (or weakly first order) transition
[3–20]. This DQCP was revisited recently in light of improve-
ments in the understanding of the interplay between symme-
tries and dualities [21–24], stimulating additional numerical
studies [25–27], although some questions about the transition
remain (for a very recent review, see Ref. [28]).

In this paper, we numerically study a simpler version of
DQCP realized in one dimension (1d), following the recent
theoretical proposal [29] of a continuous quantum phase
transition in a particular 1d model having Ising-type Z2 ×
Z2 symmetry as well as translation symmetry. The transi-
tion is between an Ising ferromagnet and a valence bond
solid (VBS); as was the case for the 2d DQCP, the phases
on either side break different symmetries and a continuous
phase transition is disallowed in the Landau-Ginzburg-Wilson
theory. Reference [29] found close parallels between this
transition and an easy-plane Neel to VBS DQCP in 2d, but
the 1d version is more tractable and, in particular, allows a
controlled field theory description. Such a transition therefore
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is proposed to constitute an example of deconfined quantum
criticality in 1d. While some of the properties of this DQCP
are special to 1d, such as continuously varying critical indices,
the field theory description offers new perspectives that could
be worthwhile to pursue in 2d as well [29].

Here, we present strong numerical evidence supporting the
1d proposal in a concrete model. We use matrix product states
(MPS) working directly in the thermodynamic limit, and we
develop a specialized “finite-entanglement scaling” protocol
that allows us to study this transition with high precision.
A nontrivial aspect of the infinite-volume MPS study of the
DQCP is that the MPS ground state at fixed bond dimen-
sion undergoes a first-order transition, which turns out to be
advantageous for accessing properties of the true continuous
DQCP via scaling in finite bond dimension. Our numerical
study confirms key predictions of the 1d DQCP theory, thus
providing a definitive example of such a phase transition.
We note that non-Landau continuous transitions were found
previously in 1d fermionic models, in Refs. [30–35].

The paper is organized as follows. In Sec. II, we give an
overview of the system and symmetries, summarize field the-
ory predictions for the transition, and introduce our concrete
model and its phase diagram. In Sec. III, we describe the
numerical study of the ferromagnet to VBS transition, includ-
ing details of our finite-entanglement scaling protocol which
leads to an accurate determination of the critical indices, and
study the variation along the phase boundary. In Sec. IV, we
study the regime where the transition splits into two, with an
intervening phase of coexistence of magnetic and VBS orders.
We conclude in Sec. V with discussion of possible future
directions. We also include three appendices: Appendix A
provides a basic mean-field description of the phase diagram
using pictures of the ground states described by separable
wave functions. Appendix B resolves some questions arising
from the separable-state mean-field picture by representation
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of model ground states for the phases as analytic MPS of
bond dimension two. Finally, Appendix C develops a field
theory description of another phase transition encountered in
this model beyond the LGW symmetry-breaking paradigm.

II. DESCRIPTION OF MODEL

Here we summarize the key results of Ref. [29], which
contains a number of descriptions of the model at hand.
Briefly, a second-order phase transition was proposed at the
phase boundary of an Ising ferromagnet and valence bond
solid (VBS). Because these states break different symmetries,
a continuous phase transition between them falls outside of
the Landau-Ginzburg-Wilson paradigm.

A. General model and symmetries

Our general Hamiltonian is the following spin model, with
nearest- and next-nearest-neighbor terms:

H =
∑

j

( − Jxσ
x
j σ

x
j+1 − Jzσ

z
j σ

z
j+1

+ K2xσ
x
j σ

x
j+2 + K2zσ

z
j σ

z
j+2

)
. (1)

We take Jx, Jz, K2x, and K2z non-negative, that is, with
ferromagnetic nearest-neighbor and antiferromagnetic next-
nearest-neighbor interactions. H respects two Ising-like sym-
metries as well as time reversal:

gx =
∏

j

σ x
j : σ x

j �→ σ x
j , σ

y,z
j �→ −σ

y,z
j ; (2)

gz =
∏

j

σ z
j : σ z

j �→ σ z
j , σ

x,y
j �→ −σ

x,y
j ; (3)

T =
⎛
⎝∏

j

iσ y
j

⎞
⎠K : σα

j �→ −σα
j , i �→ −i . (4)

Here, K is complex conjugation in the σ z basis. The model
also has translation symmetry, T1 : σα

j �→ σα
j+1, as well as

inversion symmetry I : σα
j �→ σα

− j+1, which we take to be
about a bond center.

In the regime where Jz is dominant, the spins order as a
ferromagnet in the σ z direction; we call this phase “zFM.”
For intermediate K2x ∼ K2z, the spins are disordered (all on-
site symmetries are preserved) and instead form dimers on
alternating bonds; we call this phase “VBS-I,” to distinguish
from other specific dimer states which we encounter. A fixed-
point picture of this particular VBS phase is a product state of
dimers on, say, all (2m − 1, 2m) bonds, where each dimer is
an entangled state of two spins of the form

|D(I )
12 〉 = |+ẑ〉1|+ẑ〉2 + |−ẑ〉1|−ẑ〉2√

2

= |+x̂〉1|+x̂〉2 + |−x̂〉1|−x̂〉2√
2

= |+ŷ〉1|−ŷ〉2 + |−ŷ〉1|+ŷ〉2√
2

. (5)

Note that the spins in the dimer have ferromagnetic zz and
xx correlations and antiferromagnetic yy correlations. This

state is expected from the ferromagnetic Jz and Jx couplings.
Most of the time, we will focus on the VBS-I phase and will
frequently refer to it as simply VBS where it does not cause
confusion.

The above fixed-point VBS wave function is an ex-
act ground state at the Majumdar-Ghosh point: Jx = Jz =
J, K2x = K2z = K2, and K2/J = 0.5 [36–39]. Our primary
focus is on the phase transition between the zFM and VBS-I
phases.

B. Summary of field theory for the zFM to VBS transition

The field theory description of the zFM to VBS transition
in Ref. [29] has a Luttinger liquid-like form and is written
in terms of conjugate fields φ̃ and θ̃ , with velocity ṽ and
Luttinger parameter g̃:

S[φ̃, θ̃ ]=
∫

dτ dx

[
i

π
∂τ φ̃∂x θ̃ + ṽ

2π

(
1

g̃
(∂x θ̃ )2 + g̃(∂xφ̃)2

)]

+
∫

dτ dx[λ cos(2θ̃ ) + λ′ cos(4θ̃ ) + κ cos(4φ̃)].

(6)

The notation here matches that in Ref. [29] (see Sec. VII
there); in particular, tildes over the fields signify that they
are not simply related to a naive bosonization of spins in the
xz plane.

As written, the fields have periodicities φ̃ + π ≡ φ̃ and
θ̃ + 2π ≡ θ̃ , which follows from their partonic origin (see
Sec. VII in Ref. [29] for details and also Appendix E there for
another perspective on this theory). The second line shows the
leading symmetry-allowed cosine terms of the fields. Taking
the Luttinger parameter in the range g̃ ∈ (1/2, 2) arranges that
the λ′ and κ terms are irrelevant and the λ term is the only
relevant cosine. The zFM to VBS transition occurs when the
relevant coupling λ changes sign, hence the critical theory is
Gaussian. The correlation length exponent follows from the
scaling dimension of the relevant cosine perturbation and is
given by

ν = 1

2 − g̃
, (7)

which can vary in the range ν ∈ (2/3,∞) for g̃ ∈ (1/2, 2).
The most important observables are the zFM and VBS

order parameters, which are given by

MFM
z ∼ sin(θ̃ ) , �VBS ∼ cos(θ̃ ) . (8)

At the critical point, they have the same scaling dimension

dim
[
MFM

z

] = dim[�VBS] = g̃

4
, (9)

which can vary in the range (1/8, 1/2). The scaling dimen-
sion of an observable O determines the power-law decay of
the critical correlations: if 〈O(x)O(0)〉 ∼ 1/xpO , then pO =
2 dim[O]. General scaling arguments also yield the order
parameter onset exponent β = ν p/2.
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We also mention the next most prominent observables,
namely the xFM and yAFM order parameters

MFM
x ∼ cos(2φ̃) , MAFM

y ∼ sin(2φ̃) , (10)

with scaling dimensions

dim
[
MFM

x

] = dim[MAFM
y ] = 1

g̃
, (11)

which can vary between 2 and 1/2. Note that the dominant
σ x correlations are ferromagnetic while the dominant σ y

correlations are antiferromagnetic. This is tied to the fact that
this theory describes the transition from the zFM phase to the
VBS-I phase with the fixed-point elementary dimer given by
Eq. (5); see also the discussion following that equation.

To summarize, the critical exponents vary continuously
and depend on a single parameter g̃. When g̃ drops below
1/2, the λ′ term becomes relevant and destabilizes the above
picture for the direct transition between the zFM and VBS
phases. Analysis in Ref. [29] suggests that for λ′ > 0, an inter-
mediate phase with coexisting zFM and VBS order parameters
appears between the pure zFM and pure VBS phases. We will
also examine this scenario in our study of the specific model
below.

C. Specific model and expected phase behavior

In order to study the phase transition between the Ising
ferromagnet and VBS phases, we restrict in parameter space
to a two-dimensional slice given by K2 = K2x = K2z and δ =
(Jz − Jx )/(Jz + Jx ); that is, Jz = J (1 + δ) and Jx = J (1 −
δ), where we will take J = 1. The U(1) symmetry of rota-
tions in the xz plane is broken only by the nearest-neighbor
couplings, and is restored for anisotropy δ = 0. The point
δ = K2 = 0 is the XX model, which maps to free fermions
and belongs to the quasi-long-range ordered (QLRO) phase
present on the δ = 0 axis up to some critical K2,KT. Along
this axis at K2,KT, the model undergoes a Kosterlitz-Thouless
transition [40–42] to the VBS phase described earlier. Addi-
tional phases occur at significantly larger K2 and were studied
in Refs. [38,39] but are not considered in the present work.
For any |δ| > 0, at small values of K2 the ground state is an
Ising ferromagnetic state. At intermediate K2 the VBS phase
is stable to introducing spin anisotropy and extends to nonzero
δ. At fixed finite δ, we therefore expect that increasing the K2

term from small values will drive a transition from the Ising
ferromagnet to the VBS phase.

It is sufficient to consider δ � 0, as the Hamiltonian with
parameters {−δ, K2} is equivalent to that with {δ, K2} up to
a local unitary rotation, σ x

j �→ σ z
j , σ

z
j �→ −σ x

j , which takes
the zFM phase to an Ising x ferromagnet (“xFM”), and vice
versa. This transformation leaves the VBS-I dimer of Eq. (5)
invariant, thus the same phase appears for both positive and
negative δ.

We may also restrict our focus to models with δ � 1
due to another relationship—namely, that models having
parameters {δ, K2} and {δ′, K ′

2} = {1/δ, K2/δ} are related by
local unitary

∏
m σ z

2m, taking σ z
2m �→ σ z

2m and σ x
2m �→ −σ x

2m.
Indeed, the primed model has parameter values Jz′ = 1 + δ′ =
(1 + δ)/δ, Jx′ = 1 − δ′ = −(1 − δ)/δ, and the given rotation
relates it to the first model up to an overall energy scale. Note

that under this unitary transformation, the elementary dimer
wave function (5) maps to

∣∣D(II )
12

〉 = |+ẑ〉1|+ẑ〉2 − |−ẑ〉1|−ẑ〉2√
2

= |+x̂〉1|−x̂〉2 + |−x̂〉1|+x̂〉2√
2

= |+ŷ〉1|+ŷ〉2 + |−ŷ〉1|−ŷ〉2√
2

. (12)

Hence, at values δ > 1 one finds another dimer state, which
we denote “VBS-II,” as it is a distinct phase from the pre-
viously described VBS-I provided the on-site symmetries
are not broken [29]. The precise distinction between the
phases is that on a periodic system with an odd number of
dimers, the ground states in VBS-I have quantum numbers
(gx, gy, gz ) = (1,−1, 1), whereas the quantum numbers in
VBS-II are (gx, gy, gz ) = (−1, 1, 1).

Naively, one may expect a phase transition between VBS-I
and VBS-II at δ = 1. As we discuss in Sec. IV B, the actual
situation in this model is somewhat more complicated: in a
particular region of the phase diagram close to the zFM phase,
the spin system also develops zFM order on top of VBS-I or
VBS-II, and this coexisting broken on-site symmetry allows a
continuous connection between the two dimer states. Finally,
for larger K2, another phase—which does not appear in the
field theory—arises in our model intervening between the
two dimer phases. This is the so-called “up-up-down-down”
state in the σ x basis, or “xUUDD.” The ground state of this
phase breaks T1 and gz and has the following fixed-point wave
function:

|xUUDD〉 = ⊗n|+x̂〉4n−3 |+x̂〉4n−2 |−x̂〉4n−1 |−x̂〉4n . (13)

In Appendix A, we give fixed-point pictures and mean-field
energetics for all phases encountered in our window of study,
thus providing some intuition for the observed phase diagram.

III. STUDY OF zFM TO VBS PHASE TRANSITION

We make use of the recently-developed numerical method
“variational uniform matrix product states” (VUMPS), which
is similar to infinite-system DMRG (IDMRG) but has been
demonstrated to achieve superior convergence in some cases
[43]. Like IDMRG, this method optimizes over MPS in the
thermodynamic limit; that is, the ansatz is specified by a finite
set of tensors comprising the unit cell of the wave function,
which contain the variational parameters of the infinite state.
The understanding of VUMPS is geometrical: one searches
within the manifold of uniform MPS of fixed bond dimension
for the point |ψ∗〉 at which the energy residual (H − E )|ψ∗〉
is orthogonal to the manifold. This optimization can be for-
mulated in the “post-MPS” tangent space language [44], but
turns out to be similar to IDMRG.

The uniform MPS ansatz actually provides a dressed mean-
field description of the phase transition [45]. Because the
mean-field treatment in the present case exhibits a first-order
phase transition, one expects the VUMPS method to en-
counter metastability effects near the phase transition arising
from competing orders. We describe our protocol to address
this challenge below; we are in fact able to utilize the
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FIG. 1. The phase diagram in the K2-δ plane includes the zFM,
VBS-I, VBS-II, and xUUDD phases. Inset shows a centered view
of the coexistence region, denoted “C”, appearing between the zFM
and VBS-I or VBS-II phases for δ close to 1. While the distinction
between the VBS-I and VBS-II phases is protected by the on-site
symmetries, the VBS-I +zFM and VBS-II +zFM coexistence phases
are not distinct and there is no transition inside the C region. The cut
indicated at δ = 0.5 will be investigated in detail in Sec. III A as an
example case.

first-order behavior of the finite-bond dimension MPS to make
very accurate determinations of the phase boundary. We first
show in Fig. 1 our result for the phase diagram outlined
in Sec. II C, and in the following sections we provide a
methodological description.

A. Representative study along δ = 0.5 cut

We illustrate our method of studying this phase transition
by discussing in detail a concrete cut through the phase
diagram, namely along the line δ = 0.5 generated by varying
the parameter K2. Afterward, we will generalize to obtain a
full description of the phase boundary by repeating the same
process for multiple slices at constant δ. The line at δ = 0.5 is
generic, having no symmetries additional to those specified in
Sec. II. This slice is indicated in Fig. 1.

1. Broad description of phase transition

One can attain a basic understanding of the phase transition
via simple analysis of the optimized MPS ground states.
Using ansatz trial states originating within each phase, we
tune K2 through the critical point and observe the evolution
of certain properties of the trial state wave function. The
most evident indication of the phase transition is the order
parameter for each phase acquiring a finite expectation value.
Because the numerical method preferentially selects states of
low entanglement, it finds everywhere a representative of the
ground-state manifold with spontaneously broken symmetry.
As both phases break Z2 symmetries (gx in the zFM phase
and T1 in the VBS phase), both ground-state degeneracies
are two and the symmetry breaking manifests as a sign in
the expectation value of the corresponding order parameters.
The order parameter for the zFM phase is〈

MFM
z

〉 = 〈
σ z

0

〉
, (14)
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FIG. 2. Transition between the zFM and VBS phases, as detected
by the corresponding order parameters. This scan is taken at fixed
δ = 0.5 using bond dimension χ = 192. We observe that at fixed χ ,
the MPS ground state shows a first-order transition; the discontinu-
ities in the order parameters decrease towards zero with increasing
χ , as studied in detail in Fig. 7.

where the site label 0 indicates the first tensor in the unit cell,
which in this case has only a single site. For the VBS phase,
the order parameter is

〈�VBS〉 = 〈σ0 · σ1 − σ1 · σ2〉 , (15)

where σ j denotes the Pauli vector acting at site j. The ground
state of this phase has a two-site unit cell. We ignore the sign
in both order parameters, always implicitly taking the absolute
value.

The order parameters are shown in Fig. 2 for a large bond
dimension χ = 192. As suggested by the mean-field analysis,
we do in fact find a discontinuous transition, with sizable
jumps in both order parameters. However, we argue that the
true transition in the χ → ∞ limit is continuous. Moreover,
we use the first-order nature of the finite-χ approximants
to our advantage: in particular, we will understand how the
size of the order parameter discontinuity scales to zero with
increasing χ .

Another fundamental characterization of the phase tran-
sition is the behavior of the correlation length ξ (χ ) of the
minimum-energy state on the manifold of MPS of bond
dimension χ . This quantity is a property of the spectrum of
the MPS transfer matrix T . In the simplest case of a single-site
unit cell, T = ∑

σ A†σ ⊗ Aσ , where σ runs over a basis of
the local Hilbert space. Normalization constrains the largest
eigenvalue to be unity; the MPS correlation length is set by the
second-largest eigenvalue, which dictates the slowest decay
possible in the state. Specifically, if T spans a unit cell of n
sites, then λ2/λ1 = e−n/ξ (χ ), or ξ (χ ) = −n/ ln λ2.

We use ξ without an argument to refer to the correla-
tion length of the ground state and use ξ (χ ) for the MPS
correlation length. At a continuous phase transition, the true
correlation length ξ diverges; however ξ (χ ) remains finite, as
λ2 < λ1 by injectivity. Nevertheless, inside a gapped phase
ξ (χ ) → ξ , and where ξ diverges ξ (χ ) exhibits a cusp with
χ -dependent height. We discuss this relationship further in
Sec. III A 2. The MPS correlation length at the zFM to VBS
phase transition is shown in Fig. 3, and indeed displays a
strong χ -dependent cusp at the critical point. At our largest
χ = 192, ξ (χ ) already exceeds 400 lattice spacings, with
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χ
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χ = 64
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χ = 112

χ = 128

χ = 144

χ = 160
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FIG. 3. The divergence of the correlation length in the exact
ground state at the critical point manifests as a χ -dependent cusp
in the MPS correlation length ξ (χ ); specifically, the height grows as
a power law with χ , as studied in detail in Fig. 6. This feature is
indicative of a continuous phase transition.

consistent growth in χ (see our later study in Fig. 6). This is
the first strong evidence of a second-order transition, despite
the order parameter discontinuity observed at this χ .

As further evidence for a second-order transition, Fig. 4
shows the entanglement entropy in the optimized MPS versus
the logarithm of the MPS correlation length near criticality.
For each χ , we show two data points, measured in both
the ansatz originating in the zFM and VBS phases, each
tuned to a point still in the phase but very close to the MPS
transition at this χ . The relationship is consistent with the
finite-entanglement scaling form [46]

S(χ ) = c

6
ln ξ (χ ) , (16)

where c is the central charge of the critical system. The central
charge estimates from fits to the above form are given in the
figure and are consistent with the expected c = 1 from the
theory of the zFM to VBS transition.

5.0 5.5 6.0
ln ξ[χ; K2c(χ)]

1.0

1.1

1.2

1.3

S
[χ

;K
2
c(

χ
)]

c = 1 (slope 1/6)
zFM ansatz, c = 0.99
VBS ansatz, c = 1.00

FIG. 4. The scaling of the critical entanglement entropy
S[χ ; K2c(χ )] is nearly linear in ln ξ [χ ; K2c(χ )], with the slope in
good agreement with predicted central charge c = 1. Data shown are
taken at parameter δ = 0.5, and the dashed line is provided as a guide
to the eye. The pseudocritical point K2c(χ ) is defined later in the text
and included here only for specificity; it is important insofar as it is
particular to the MPS of bond dimension χ .

2. Precise identification of critical point

In principle, MPS methods are not well suited for describ-
ing ground states of quantum systems tuned to critical points,
as the high degree of entanglement places a strong constraint
on the accuracy of MPS (“classical”) approximations. In
contrast, ground states of gapped phases are well represented
by MPS; however, in practice one can hope only to approach
sufficiently close to a continuous phase transition to observe
its true critical behavior. Beyond some crossover point set by
the bond dimension, the MPS ground state instead flows to
the phase transition described by the mean-field theory of the
model [45].

While MPS are unable to directly access critical states,
it turns out that in the present case we can take advantage
of the fact that the mean-field phase transition is discontinu-
ous, as described in Appendix A, to accurately estimate the
location of the critical point. Until the crossover point the
system exhibits the behavior of the true continuous phase
transition, but in tuning the system through the critical point
one instead observes a level crossing of states connected to
the fixed-point descriptions of each phase. In this regime the
near-degeneracy of these dissimilar states leads to increased
influence of the initial trial wave function in the VUMPS
method, making convergence to the true ground state difficult
when employing random initial states. To circumvent this, we
use an “adiabatic” protocol, first obtaining the MPS ground
state in each phase far from the transition and slowly tuning
the system to criticality in a series of discrete jumps, at each
step allowing the state to converge fully. Due to metastability
effects, hysteresis develops very close to the critical point;
however, we are always able to identify the true ground state
from comparison of the trial state energies. Because for MPS
all energy levels are analytic functions of the Hamiltonian
parameters, performing this scan in both phases allows one
to identify the level crossing with a high degree of accuracy,
in fact with a greater resolution than is used to tune the
Hamiltonian.

This process is illustrated in Fig. 5 for a range of χ ,
where in panel (a) we show the trial energies tracked from
each side and in panel (b) we show the extracted locations
of the level crossings as a function of 1/χ . Note that the
range of K2 values is already very narrow, and the accuracy
in the extrapolated crossings is better than 10−6. Note also
that the differences in the trial energies are enhanced by
subtracting some smooth polynomial background (chosen for
each χ ), and that the vertical scale is very small; the slope
discontinuity in the VUMPS trial energy decreases towards
zero with increasing χ .

The above protocol applies to a uniform MPS having a
fixed bond dimension χ . In fact, for any such ansatz with finite
entanglement, the observed phase transition will occur not at
the true critical point K2c,true but at some pseudocritical point
K2c(χ ). We expect that in the limit χ → ∞ the pseudocritical
points converge to the true value. Pollmann et al. [46] deter-
mined that for a critical system with infinite correlation length
ξ , the correlation length of the minimum-energy MPS at fixed
bond dimension scales as

ξ (χ ) ∼ χκ (17)
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FIG. 5. Illustration of the process of locating the critical point
from finite-entanglement scaling at δ = 0.5. (a) The energies of both
trial wave functions from the zFM and VBS phases (fully optimized
at each K2) follow smooth curves, which determine the level crossing
for a given bond dimension χ to a finer resolution than the scan in
parameter K2 via interpolation. Due to hysteresis, in many cases we
directly observe the crossing using the adiabatic protocol described
in the text. (b) Using the finite-entanglement scaling form Eq. (19),
we extrapolate from the extracted pseudocritical K2c(χ ) to estimate
the location of the critical point at χ → ∞. The scatter in data points
is not noise from the variational algorithm, but rather may be a
consequence of the uneven spacing of the entanglement spectrum.

with exponent

κ = 6

c
(√

12
c + 1

) , (18)

which depends on the central charge of the critical system.
In order to describe the dependence of the pseudocritical

point on bond dimension, we adapt an argument from finite-
size scaling in statistical mechanics, which is commonly used
in Monte Carlo studies. Denote the control parameter driving
the transition as h, with the true critical point at hc,true. In a
system of finite length L the transition is smeared, but one
can often identify a pseudocritical point hc(L) from some
feature in the observables, such as peaks in susceptibilities,

Binder ratio crossings, etc. Finite-size scaling predicts that
the pseudocritical points approach the true critical point as
hc(L) − hc,true ∼ L−1/ν , which follows from comparing the
true correlation length at hc(L) with the length scale L im-
posed by the system size. We conjecture that similar rela-
tion holds for the infinite-system variational MPS study, by
replacing L with the length scale ξ (χ ) imposed by the bond
dimension:

K2c(χ ) − K2c,true ∼ ξ (χ )−1/ν ∼ χ−κ/ν . (19)

One can also imagine using this relation to extract the corre-
lation length exponent ν.1

Unfortunately, one observes in Fig. 5(b) significant scatter
in the values of K2c(χ ) on top of some smooth behavior. This
is not noise or evidence that the trial MPS is not energetically
optimal, but rather a reproducible feature of the finite-χ
results, which we conjecture arises from the nonuniformity
of the gaps in the entanglement spectrum of the state. The
plotted curve and value of K2c(χ → ∞) was fitted by fixing
the value of the correlation length exponent to ν ≈ 0.914
extracted from later analysis, and is presented primarily as a
consistency check. In any case, the K2c(χ ) vary over a very
small range, and as our scaling analysis below involves only
the pseudocritical points K2c(χ ), the uncertainty in K2c(χ →
∞) is irrelevant for our subsequent characterizations of the
critical point.

3. Correlation length and order parameter onset exponents

Using the precise estimates of the finite-entanglement
pseudocritical points from Sec. III A 2, we are able to deter-
mine critical scaling exponents of the transition. Specifically,
we consider the correlation length exponent ν and the order
parameter exponents for both phases βzFM and βVBS. The most
straightforward way to determine ν is through its definition:
ξ ∼ |K2 − K2c|−ν . In Fig. 6 we show ξ (χ ) as a function of
K2 − K2c(χ ). Sufficiently far from the critical point, ξ (χ )
rapidly converges to ξ with increasing χ . In this regime, the
MPS correlation length is independent of χ , and the power-
law behavior of this quantity is indicative of the true critical
exponent. By comparing data for different χ , we can visually
determine where ξ (χ ) is already sufficiently converged to
the infinite-χ limit, and use only this region. The extracted
correlation length exponents on both sides of the transition are
given in Fig. 6. Note that the convergence of the correlation
length with bond dimension is relatively gradual, thus we
find a somewhat limited dynamical range of converged data
ξ (χ → ∞), presumably causing the differing values of ν on
the two sides of the transition. In addition, it is particularly
evident on the VBS side that the correlation length is affected
by proximity to the second-order transition to the xUUDD
phase. For this reason we will not use the values of ν extracted

1In the 1d quantum Ising model studied in Ref. [45], the infinite-
system MPS at fixed χ has a continuous mean-field transition, and
(19) provides a fairly accurate description of the approach of the
corresponding pseudocritical points to the true critical point, with
central charge c = 1/2 and correlation length exponent ν = 1 for the
Ising transition.
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FIG. 6. The MPS correlation length ξ (χ ) exhibits power-law
behavior in an intermediate region around K2c(χ ), here shown in the
zFM phase in the top panel and VBS in the bottom. Close to the
pseudocritical point, the correlation length saturates to a maximum
value dependent on the bond dimension, whereas farther away it
approaches a constant in the gapped phase. In the case of the VBS
phase, a nearby critical point (the transition to the xUUDD phase)
affects the behavior of ξ (χ ). In the insets, we show the dependence
of the maximum correlation length ξ [χ ; K2c(χ )] extrapolated to the
pseudocritical point K2c(χ ) as a function of χ . A fit to the scaling
form Eq. (17) is shown (note that the axes are logarithmic), along
with extracted values of κ .

from this method in the following discussion, but rather rely
on another way of determining the exponent, described below
and in Fig. 7.

At fixed χ , the MPS correlation length ξ (χ ) saturates near
the pseudocritical point K2c(χ ). The extrapolated values from
either side of the transition, denoted ξ [χ ; K2c(χ )], are plotted
versus χ in the insets in the corresponding panels. Fitting to
(17) gives similar estimates of κ from both sides which are in
rough agreement with κ ≈ 1.344 expected for c = 1.

Considering now the order parameters, in Fig. 7 we show
〈MFM

z 〉 (top panel) and 〈�VBS〉 (bottom panel) as a function
of |K2 − K2c(χ )|, each within its ordered phase. In the main
plot in each, we extract the corresponding order parameter
exponent over the range where we see convergence to the
χ → ∞ limit. We appear to have wider dynamical ranges for
the power-law fitting here compared to the correlation length
data in Fig. 3. The extracted order parameter exponents are
roughly equal for the two order parameters, supporting one of
the key predictions of the theory of the 1d DQCP.
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FIG. 7. Expectation values of the zFM and VBS order parame-
ters on the slice δ = 0.5 show a region of power-law dependence in
an intermediate range near the critical point which extends closer to
the transition with increasing bond dimension. Far from the critical
point, the order parameters approach their maximal values, whereas
very close to K2c(χ ) at fixed χ , they saturate due to the discontinuous
mean-field description of the transition. The top panel shows K2 in
the zFM phase, and the bottom panel K2 in the VBS phase; in both
panels, we give K2 relative to the pseudocritical K2c(χ ) determined
for each bond dimension as in Fig. 5. The dashed line in each panel
shows the fitted power-law onset form with exponent βzFM or βVBS

in this intermediate range, using the largest bond dimension data,
which is essentially already converged to the infinite-χ values. Insets
show the limiting values of the corresponding order parameters at
K2c(χ ) as a function of the limiting ξ [χ, K2c(χ )], and a power-law
fit to Eq. (20). Note that inset axes use logarithmic scaling.

As the order parameter scaling behavior appears to be
relatively more robust compared to that of the MPS correla-
tion length, we can try to determine the critical exponent ν

via the finite-entanglement scaling of the order parameters.
Specifically, we again appeal to analogy to finite-size scaling
in statistical mechanics, where in a system of length L an order
parameter m remains finite at a critical (or pseudocritical)
point and scales to zero as L−β/ν . We conjecture that in our
infinite-system MPS setup, where the bond dimension sets the
cutoff length ξ (χ ), the discontinuity in the order parameters
at the pseudocritical point scales as

mjump ∼ ξ (χ )−β/ν ∼ χ−κβ/ν . (20)

The last expression gives the predicted scaling with bond
dimension, but we will focus on mjump versus ξ (χ ) which
is independent of exponent κ . For both the zFM and VBS
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order parameters, the value in the optimized MPS is strictly
zero on one side and non-zero on the other side of the
pseudocritical point K2c(χ ). Hence we obtain mjump by fitting
and extrapolation of the corresponding order parameter curves
〈MFM

z 〉[χ ; K2] or 〈�VBS〉[χ ; K2] from their respective ordered
sides to the pseudocritical point determined earlier. Insets in
both panels in Fig. 7 show the corresponding mjump versus
similarly obtained limiting correlation lengths at the pseud-
ocritical points for the values of χ used in the main panels,
and also show fits to the scaling form Eq. (20).

The extracted values of β/ν are fairly close for both order
parameters, in agreement with the DQCP theory prediction
that βzFM = βVBS. These are also roughly consistent with the
estimates of β in the main panels in Fig. 7 and ν in Fig. 6
made from regions where the data are converged nearest to the
χ → ∞ limit, although as discussed earlier, these estimates of
ν are not very accurate. Since the extracted values of β from
the order parameter scaling appear to be more accurate than
the extracted values of ν from the correlation length scaling,
we can use the estimates of β and β/ν to provide a more
accurate estimate of ν ≈ 0.914 ± 0.035.

4. Power-law decay of correlations

We also measure correlation functions in our MPS in order
to establish bounds on the critical decay of the important
correlators in the theory introduced in Sec. II B. These are
pzFM for 〈MFM

z MFM
z 〉 and pVBS for 〈�VBS�VBS〉, in addition to

exponents pxFM and pyAFM for 〈MFM
x MFM

x 〉 and 〈MAFM
y MAFM

y 〉.
Note that the latter two correlators decay exponentially both
in the zFM and VBS phases and only at the critical point
show slower power-law decay. Examples of the correlation
functions at criticality for our representative cut at δ = 0.5 and
the resulting bounds on the exponents are given in Fig. 8.

The top panel shows the correlations at the pseudocritical
point K2c(χ ), measured in the zFM ansatz using our largest
bond dimension χ = 192. More precisely, we measure the
correlations by using the adiabatic process described previ-
ously, beginning with a state well within each phase and
tuning the Hamiltonian up to a very small distance � 10−6

away from the estimated K2c(χ ). In this case, the MFM
z cor-

relations eventually saturate to a finite value while the �VBS

correlations eventually decay exponentially (the latter is also
true of the MFM

x and MAFM
y correlators). The bottom panel

shows similar measurements coming from the VBS side,
where it is now the MFM

z correlations that eventually decay
exponentially while the �VBS correlations eventually saturate.
However, in both panels, there is a large window r < ξ (χ )
where all correlators show power-law decay, and we list the
extracted power-law exponents in each case.

Notably, we can tell even visually that the critical MFM
z

correlations and �VBS correlations have very similar power
laws, and the extracted numerical values of the exponents
confirm this. For these correlators, it is natural to take the
values of the exponents extracted from the two sides as bounds
on the true critical exponent; these are already fairly close, and
thus provide informative bounds. We also note that we can tell
visually that the critical MFM

x and MAFM
y correlations have very

close power laws; for each quantity, the extracted exponents

10−5

10−4
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100
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pzFM = 0.463
pVBS = 0.467
pxFM = 2.114
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pxFM = 2.184
pyAFM = 2.182

FIG. 8. Top panel shows measurements of important correlation
functions (for example, 〈MFM

z MFM
z 〉 ∼ 〈σ z

0 σ z
r 〉) in the zFM ansatz

state tuned to the pseudocritical point K2c(χ = 192). These data are
taken at δ = 0.5. All correlators show a region of critical power-law
behavior before reaching a constant or decaying exponentially, as
they eventually must in a finitely entangled state. The correlation
length in this state is ∼425. The bottom plot shows the same
correlation functions, but measured in the VBS ansatz MPS tuned
to the pseudocritical point.

from both sides are very close, and are also close between the
two observables.

B. Continuously varying critical exponents

We repeat the analysis presented above in Sec. III A for
multiple cuts along fixed δ which exhibit a direct zFM to VBS
phase transition. We conclude that this transition exists for
all δ � 0.7, with a tricritical point lying within δ = (0.7, 0.8)
where the transition branches, allowing an intervening phase.
We discuss this region in Sec. IV.

Our findings for all critical exponents are summarized in
Table I. We first observe that they vary continuously with δ, a
general trend which is in agreement with the description of the
field theory in Sec. II B. Additionally, we have several specific
predictions of nontrivial relationships between critical expo-
nents which apply to any point on the phase boundary. We
test these on our cuts of constant δ, finding good agreement in
all cases between the predictions and observations.
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TABLE I. Extracted critical points and exponents on slices of fixed δ exhibiting a direct phase transition between zFM and VBS. Quoted
values for β are extracted from near-critical scaling of the χ → ∞ converged order parameters, while values for β/ν are obtained from the
finite-entanglement scaling of the order parameters at the precise pseudocritical points, measuring in both zFM and VBS ansatz states; from
these, we obtain the quoted bounds on ν. Similarly, the bounds on pzFM and pVBS are determined from measurements made in each ansatz state
tuned to the pseudocritical point.

δ K2c βzFM βzFM/ν βVBS βVBS/ν ν pzFM pVBS pxFM pyAFM

0.1 0.36674 0.653 0.391 0.773 0.388 1.831 ± 0.161 0.759 0.777–0.779 1.290 1.289
0.2 0.41087 0.452 0.279 0.501 0.361 1.503 ± 0.115 0.669–0.674 0.676–0.680 1.485 1.485
0.3 0.45630 0.345 0.295 0.374 0.301 1.205 ± 0.035 0.598–0.605 0.593–0.602 1.70 1.71
0.4 0.502630 0.269 0.265 0.282 0.263 1.045 ± 0.029 0.531–0.540 0.519–0.533 1.87 1.89
0.5 0.549729 0.206 0.234 0.219 0.230 0.916 ± 0.034 0.463–0.482 0.443–0.467 2.15 2.17
0.6 0.597341 0.156 0.200 0.167 0.200 0.808 ± 0.027 0.389–0.422 0.364–0.403 2.44 2.54
0.7 0.644979 0.113 0.163 0.126 0.163 0.733 ± 0.040 0.305–0.369 0.287–0.347 3.08 3.15

Because the critical exponents in the field theory are func-
tions of a single variable—the Luttinger parameter g̃, which
varies along the critical line—they can be readily manipulated
to obtain relationships between measurable quantities. For
example, we have the basic predictions that pzFM = pVBS and
pxFM = pyAFM, as well as the relationship

pzFM pxFM = pzFM pyAFM = 1 . (21)

We find that the data are generally in good agreement with
these conditions, as shown in Fig. 9, with some deviations
for the largest δ. In this regime, the correlations feel the
influence of the many other nearby critical lines, including
the transitions described below which continue after the zFM
to VBS critical line terminates. From the power-law decay
exponents, we can also easily read off the Luttinger parameter:
in particular, p = g̃/2 for the (dominant) correlations of the
order parameters. From this, we see that g̃ varies inside the
expected range (1/2, 2).

From general scaling behavior we have the relationship
β/ν = p/2 for the zFM and VBS order parameters. We mea-
sure both β/ν and p directly in our MPS wave functions, and
referring to Table I one observes that this relationship indeed
holds fairly accurately. We also have the following nontrivial

0.1 0.2 0.3 0.4 0.5 0.6 0.7
δ

0

1

2

3
pzFM

pVBS

pxFM

pyAFM

pxFMpzFM

pyAFMpzFM

FIG. 9. The measured power-law decay exponents are in good
agreement with the predicted behavior pzFM = pVBS and pxFM =
pyAFM, as well as with Eq. (21). At the larger values of δ, the state
begins to feel the tricritical point, which affects the more quickly
decaying MFM

x and MAFM
y correlation functions.

prediction from the field theory:

2ν(1 − p) = 2ν(1 − 2β/ν) = 1 , (22)

where β and p apply to the zFM or VBS order parameters.
We examine this prediction in Fig. 10, finding good agree-
ment of the measurements with the predicted value for large
δ > 0.3. However, the data at low δ exhibit some deviations
from the expected behavior. This arises from inaccuracy
in our estimates of the critical exponents ν and β, which
rely on convergence to the infinite-χ limit in a region near
enough to the critical point to find a power-law exponent.
For low δ, the state is near the quasi-long-range ordered
phase at δ = 0 and contains a high degree of entanglement;
hence, our finite-entanglement scaling is comparatively less
accurate.

Despite the influence of various other nearby phases and
phase transitions on our results, we have observed several
nontrivial predictions from the field theory in our measure-
ments of the continuously varying critical exponents along the
zFM to VBS phase boundary. This constitutes further strong
evidence that this critical line is indeed an example of the
DQCP described in Sec. II B.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
δ
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2ν(1 − pzFM)

2ν(1 − 2βzFM/ν)

2ν(1 − pVBS)

2ν(1 − 2βVBS/ν)

FIG. 10. We find good agreement with Eq. (22), particularly for
the larger values of δ on the critical line. The states at small δ are near
to the δ = 0 QLRO phase and thus are relatively highly entangled,
which makes it difficult to reach the limit χ → ∞ near enough to
the critical point to extract the ν and β critical exponents.
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FIG. 11. The slice at δ = 0.9 clearly exhibits a region of co-
existence of order parameters (measurements shown use the bond
dimension χ = 144 MPS), and the correlation length displays
χ -dependent cusps at both boundaries. However, we do not have
good χ -converged properties inside of this phase, as the correlation
length does not saturate for the bond dimensions shown here.

IV. STUDY OF ORDER PARAMETER COEXISTENCE

A. Evidence for coexistence regime

Returning to the action functional in Eq. (6), one expects
the destabilization of the zFM to VBS transition due to the
emergence of a second relevant cosine at a critical value
of the Luttinger parameter g̃∗ = 1/2. Here the phase tran-
sition is predicted to branch into two distinct critical lines,
introducing an intermediate region where both gx and T1 are
broken, leading to coexistence of both order parameters. It is
not easy to relate g̃ to the microscopic parameters, but we
can read off the values of the critical exponents very close
to this tricritical point, finding ν∗ = 2/3, p∗

zFM = p∗
VBS =

1/4, β∗
zFM = β∗

VBS = 1/12, and p∗
xFM = p∗

yAFM = 4.
We observe the branching of the phase transition at some

value δ ∈ (0.7, 0.8), which is consistent with the description
of the critical exponents given above. The appearance of the
intermediate phase is illustrated in Fig. 11 for the slice δ =
0.9, where the state acquires VBS order on top of the zFM
order at K2c,VBS(χ = 144) = 0.73691 and the zFM order van-
ishes at K2c,zFM(χ = 144) = 0.73738. These phase transitions
are not described by the DQCP theory; rather, because in each
case a single Z2 symmetry is broken, we expect the critical
points to be in the Ising universality. We explore mean-field
pictures of the phases in Appendixes A 2 and B 1, finding
support for this expectation.

The analysis of the boundary of the coexistence region
does not follow straightforwardly from the protocol used in
Sec. III A. Because the mean-field theory of these transitions
is not discontinuous, we cannot exploit the level crossings
of MPS trial states to accurately determine the locations of
the critical points. Similarly, we are unable to use the finite
values of the order parameters at the pseudocritical points to
determine critical exponents, as we do for the direct zFM to
VBS phase transition. In addition, as the coexistence region is
very narrow and located fairly close to the xUUDD phase, we
do not have access to a very large dynamical range. Instead,
we identify the pseudocritical points by using a power-law fit
to the vanishing of the order parameters. Also, we are able to
obtain only rough estimates of the critical exponents.
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FIG. 12. Illustration of the process of locating the critical point
for each order parameter from finite-entanglement scaling in the
coexistence regime at δ = 0.9. Here the data points are found via
fits to the power-law onset behavior shown in Fig. 11. Again, using
the finite-entanglement scaling form Eq. (19), we extrapolate from
pseudocritical K2c,VBS(χ ) and K2c,zFM(χ ) to estimate the width of the
coexistence region in the limit χ → ∞.

We list our estimates of the transition points for δ =
0.8, . . . , 1.0 in Table II. Note that the δ > 1 regime can be
related to δ < 1 by the map described in Sec. II C (which
related the VBS-I and VBS-II phases), so numerical studies
are required only for δ � 1. Also, while for δ �= 1 the zFM-
ordering transition K2c,zFM involves a strictly VBS ordered
phase, for δ = 1 the situation is more complex and the coex-
istence phase actually transitions to the xUUDD phase. (See
the inset in Fig. 1 for an image of the coexistence region.) We
first focus on δ < 1 and consider the δ = 1 case later.

Figure 11 shows the correlation length and expectation
values of the order parameters in the coexistence region. We
observe cusps in the correlation length at both transitions,
with height which increases with increasing χ . However, our
data are not of sufficient granularity to perform definitive

TABLE II. Critical properties at the VBS ordering transition
K2c,VBS between the zFM and coexistence phases, and at the zFM
ordering transition K2c,zFM, between the VBS and coexistence phases.
All data are measured within the coexistence region, in order to
reduce the effects of other nearby criticalities. The transition is too
narrow for δ < 0.9 to allow for the determination of the correlation
length and order parameter onset critical exponents.

δ K2c,VBS νVBS βVBS pVBS K2c,zFM νzFM βzFM pzFM

0.8 0.691922 · · 0.29 0.691927 · · 0.30
0.85 0.71481 · · 0.30 0.71486 · · 0.28
0.9 0.73693 0.54 0.20 0.33 0.73735 0.65 0.21 0.26
0.95 0.75798 0.63 0.19 0.40 0.75936 0.68 0.20 0.28
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FIG. 13. Our study of the VBS ordering transition in the coexis-
tence region is impeded by the narrow width of the phase, here shown
at δ = 0.9. The top panel shows correlation length along with our
best fit, though the MPS results are not reflective of the χ → ∞ limit
and the exponent is far from the Ising ν = 1. The feature seen near
3 × 10−4 on the x axis is the zFM order transition on the boundary
of the coexistence region with the VBS-I phase (this transition is
studied in Fig. 14). Further from the critical point, one sees the
effect of the transition to the xUUDD phase. The bottom panel shows
the onset of the VBS order parameter, which is roughly consistent
with a continuous phase transition but does not agree with the Ising
β = 1/8. Data here do not use the adiabatic protocol; every point is
independent.

finite-entanglement scaling at these critical points, and we do
not have sufficient dynamical range between the two critical
points to extract the correlation length exponent at either
transition. On the VBS side, we are also close to the xUUDD
phase boundary. We can attempt to find ν looking at the
pure zFM side; however, the width of the crossover region
where the correlation length saturates in χ is significantly
wider than the distance between K2c,VBS and K2c,zFM. (The
finite-entanglement scaling of the pseudocritical points is
shown in Fig. 12.) In this case, the extracted ν likely does not
cleanly correspond to just one transition but instead combines
information about all nearby phase transitions and even the
tricritical point. Thus, in the top panels of Figs. 13 and 14,
we focus only on the data from the coexistence region, with
the understanding that they will hardly be conclusive. The
extracted values of κ are quite far from the expectation for
this c = 1/2 critical point. In the bottom panels of these
figures, we have attempted to extract the order parameter
onset exponents at each critical point. By the same argument,
we clearly should restrict attempts at fitting power-law onset
forms to be within the coexistence region. However, we see
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FIG. 14. Similarly to Fig. 13, we provide only a rough study of
the zFM ordering transition in the coexistence region, here shown at
δ = 0.9. The top panel shows correlation length along with our best
fit, though the MPS results are not reflective of the χ → ∞ limit
and the exponent is far from the Ising ν = 1. The feature seen near
3 × 10−4 on the x axis is the VBS order transition on the boundary
of the coexistence region with the zFM phase (this transition is
studied in Fig. 13). The bottom panel shows the onset of the zFM
order parameter, which is roughly consistent with a continuous phase
transition but does not agree with the Ising β = 1/8. Data here do not
use the adiabatic protocol; every point is independent.

that the apparent slopes continue to vary visibly for our range
of bond dimensions χ . In particular, these measurements are
likely to be influenced by some mixture of the actual Ising
criticality as well as the mean-field phase transition in the
MPS at the pseudocritical point, and indeed we find values
for the critical exponents that lie between these two.

Table II summarizes our estimates of the critical indices for
the transitions on the slices δ = 0.9 and 0.95. These are rather
inaccurate, as explained above, and are shown to emphasize
our limitations when studying the transitions involving the
coexistence phase. We also quote estimates of the power-law
correlation decay exponents extracted from fits at the corre-
sponding pseudocritical points for our largest χ = 144. These
estimates also differ somewhat from the exponent p = 1/4
expected at each Ising transition, but the accuracy may be a
bit better than for the extracted ν and β values.

B. Higher-symmetry line at δ = 1

The line δ = 1 admits an additional symmetry of the
Hamiltonian:

gz,even =
∏

m

σ z
2m : σ z

2m �→ σ z
2m, σ

x,y
2m �→ −σ

x,y
2m . (23)
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FIG. 15. Illustration of determining the critical point between
zFM + VBS coexistence and xUUDD from finite-entanglement scal-
ing at δ = 1, performed using the same procedure used in Fig. 5.
(a) The energies of both the coexistence and xUUDD phases follow
smooth curves which determine the level crossing, but here happen
to not display hysteresis. This does not present a problem, as the
smoothness of the evolution of the trial state energies permits ex-
trapolation. (b) Using a fit to the finite-entanglement scaling form
Eq. (19), we extrapolate the pseudocritical K2c,zFM(χ ) to estimate
the location of the critical point at χ → ∞. As was the case for
the DQCP, the scatter in data points is again not noise from the
variational algorithm, but a reproducible feature of the ground state
at each bond dimension.

This is the same symmetry which takes VBS-I to VBS-II and
vice versa. As we stated previously, one possibility for these
two phases along this cut is a first-order transition, but this
turns out not to be the case in our model. Instead, inside of the
coexistence region where gx is broken the VBS-I and VBS-II
orders are in fact the same. This was pointed out in Ref. [29],
and we provide a demonstration in Appendixes A 2 and B 1
by writing fixed-point wave functions for the coexistence
which smoothly interpolate between VBS-I and VBS-II in
the presence of gx symmetry breaking. The onset of the
VBS order—the boundary between the zFM and coexistence
phases—is thus no different from the case for other δ.

On the other hand, at the zFM ordering transition (that
is, the transition out of the coexistence phase at which the
zFM order disappears), the gx symmetry is restored. Here we
find a transition not to a state with pure VBS character, but
rather to the xUUDD phase. Because the phases on either side
break different Z2 symmetries yet we observe a direct phase
transition, this criticality in fact bears a resemblance to the
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FIG. 16. Analysis of the phase transition from the zFM + VBS
coexistence phase to the xUUDD phase along the cut δ = 1, using the
discontinuous VUMPS (generalized mean field) procedure. Because
we cannot make an accurate determination of βzFM using measure-
ments arising from inside the coexistence phase, we consider only
measurements of MUUDD

x , within the xUUDD phase. However we can
perform finite-entanglement scaling analysis of MFM

z extrapolated to
the pseudocritical points. Doing so, we find a value βzFM/ν = 0.167
which is quite similar to βxUUDD/ν shown in the inset.

zFM to VBS DQCP studied in the preceding sections. (Here
the direct transition between the coexistence and xUUDD
phases is enforced by the additional Z2 symmetry gz,even

which apparently remains unbroken in our model.) In fact,
in Appendix C, we develop a theory of this transition which
turns out to be similar to the critical line at δ = 0 separating
the zFM and xFM phases but placed on top of a translation
symmetry-breaking background.

We are able to study this transition, shown in Fig. 15,
using the methods of Sec. III, where now instead of the VBS
order parameter �VBS (which remains ordered throughout the
transition) we measure〈

MUUDD
x

〉 = 〈
σ x

0

〉
, (24)

where, as was the case for the previous order parameters, there
is a sign ambiguity which we ignore. In a more precise sense,
the order parameter in the xUUDD phase has two Ising-like
components, (

∑
j (−1) j( j−1)/2σ x

j ,
∑

j (−1) j( j+1)/2σ x
j ), where

in each case j runs over the unit cell. However, because
the MPS ground state always has spontaneously broken
symmetry—that is, the “UUDD” pattern or its partners related
by translation—it suffices to confirm this pattern and measure
just 〈σ x

0 〉. Because of the relatively slow convergence in ξ

exhibited by the correlation length in Sec. III A 3 as well as
the limited dynamical range within the coexistence region,
we focus only on measurements of the order parameter in
the xUUDD phase to characterize this transition. This study
is shown in Fig. 16, where we find that βxUUDD = 0.117 and
ν = 0.69. We also find from measurement of the power-law
decaying correlation functions that pxFM ≈ 0.39 and pzFM ≈
0.37. These values provide some point of reference relative
to the other phase transitions studied in this work but are
not significant by themselves, as this critical point lies on a
line exhibiting continuously varying exponents. Because this
line crosses our phase diagram plane only at one point, in
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the present study we cannot observe continuously varying
exponents but we do check that the expected relationships are
approximately satisfied: pxFM ≈ pzFM and 2ν(1 − pxFM) ≈
0.86 (compared to the expected value 1).

V. CONCLUSION

We performed a detailed numerical study of the ferro-
magnet to VBS transition in a spin-1/2 chain with Z2 × Z2

symmetry and confirmed key predictions of the 1d DQCP
theory of Ref. [29]. Namely, the zFM and VBS order param-
eters have equal scaling dimensions, and the xFM and yAFM
correlations of secondary importance also have equal power-
law exponents at the zFM to VBS-I transition (the fact that
the next-most important observables are the ferromagnetic
component of σ x and the antiferromagnetic component of σ y

is related to the crystalline SPT-like property of the VBS-I
phase that distinguishes it from the VBS-II phase, which is
also realized in our model). All exponents vary continuously
along the phase boundary but are controlled by a single param-
eter; this implies relationships among the various exponents,
which we confirmed in our numerics. The observed range
of the variation of the critical indices is consistent with the
regime of validity of the proposed field theory, and we also
found the predicted splitting of the transition and appearance
of the VBS +zFM coexistence phase at one end of this range.
Interestingly, we also found an instance of a new Landau
forbidden transition between the VBS +zFM and xUUDD
phases along the line δ = 1 with the additional Z2 symmetry
gz,even.

In our study of the 1d DQCP, we found that VUMPS at
fixed bond dimension shows a discontinuous transition at a
χ -dependent pseudocritical point, and argued that this is
related to the non-Landau nature of the transition which
gives first-order behavior in the mean field. We used this
discontinuous nature to our advantage to find the pseudo-
critical points very accurately and for subsequent “finite-
entanglement” scaling. We propose that this protocol can
be very useful at all transitions described by DQCP, and
indeed we have already used it at the new direct continuous
VBS +zFM to xUUDD transition enforced by the additional
gz,even symmetry. To accurately locate pseudocritical points is
more difficult at conventional continuous transitions where the
mean field is also continuous [45], but it can be a powerful
systematic approach in such cases as well.

In this work, we focused on static (i.e., equal time) prop-
erties at the transition. It would be interesting to also study
dynamical properties at the transition, both numerically and
analytically, to see if they reveal more signatures of frac-
tionalized excitations at this DQCP, in the spirit of the 2d
study in Ref. [47]. Analytically, we can calculate dynamical
structure factors at low frequencies using the effective field
theory description, but we can also try to capture properties at
high frequencies and high momenta using one of the micro-
scopic parton descriptions in Ref. [29], for example using the
fermionic parton mean field.

Finally, it would also be interesting to search for other
instances of DQCP in 1d, in particular with more complex
symmetries that can occur for higher spin or ZN clock degrees
of freedom. Both numerical and analytical studies are needed,

and one guide here is to look for systems with an LSM-type
theorem.

Note added. We would like to draw the reader’s attention
to a related parallel work by Rui-Zhen Huang, Da-Chuan Lu,
Yi-Zhuang You, Zi Yang Meng, and Tao Xiang, to appear
in the same arXiv posting. In addition, a closely related spin
model to the one we study here was considered very recently
in Ref. [48], also in parallel to our work.
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APPENDIX A: MEAN-FIELD STUDY OF PHASE DIAGRAM
WITH SEPARABLE STATES

In this Appendix, we present caricature (“fixed-point”)
wave functions for the phases of interest in our model and use
these as simple trial states to find a mean-field phase diagram
of the model. Besides developing basic intuition about the
phases and their competing energetics, we demonstrate that
in the mean-field treatment the zFM to VBS transition is
first-order, while the VBS to zFM + VBS and also the VBS
to xUUDD transitions are second-order. This provides some
understanding of the observed “pseudocritical” behavior of
VUMPS at fixed bond dimension χ , i.e., behavior very close
to K2c(χ ).

1. Trial states without variational parameters

The zFM fixed-point state is simply

|zFM〉 = ⊗ j |↑〉 j (A1)

or its counterpart gx|zFM〉, with average energy per site

εzFM = −Jz + K2z = −(1 + δ) + K2 . (A2)

In the right-hand side above, as well as in other trial energy
expressions below, we specialize to the slice in the parameter
space used in the main text, namely, Jz = 1 + δ, Jx = 1 −
δ, K2z = K2x = K2. Note that this wave function is an exact
ground state at δ = 1, K2 = 0.

The VBS-I fixed-point state is

|VBS-I〉 = ⊗m

∣∣D(I )
2m−1,2m

〉
(A3)

or its counterpart T1|VBS-I〉, where the elementary dimer state
of two spins is given in Eq. (5). The average energy per site is

εVBS-I = −(Jz + Jx )/2 = −1 . (A4)

This wave function is an exact ground state at the Majumdar-
Ghosh point δ = 0, K2 = 0.5 [36–39].

The VBS-II fixed point state is

|VBS-II〉 = ⊗m

∣∣D(II )
2m−1,2m

〉
(A5)

or its counterpart T1|VBS-II〉, where the corresponding dimer
state of two spins is given in Eq. (12). The average energy per
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FIG. 17. Comparing the energies of the separable trial wave
functions of Appendix A 1 results in a phase diagram which is
broadly similar to the actual behavior of the model, but renders all
phase transitions as first-order.

site is

εVBS-II = −(Jz − Jx )/2 = −δ . (A6)

This wave function becomes an exact ground state for δ →
∞, K2/δ = 0.5.

The xUUDD fixed-point state is

|xUUDD〉 = ⊗n|+x̂〉4n−3 |+x̂〉4n−2 |−x̂〉4n−1 |−x̂〉4n (A7)

along with its symmetry counterparts T1|xUUDD〉, (T1)2

|xUUDD〉 = gz|xUUDD〉, (T1)3|xUUDD〉. The average
energy per site is

εxUUDD = −K2x = −K2 . (A8)

This wave function is an exact ground state for the general
model at Jz = 0, K2z = 0, K2x > Jx/2, while it does not occur
as a ground state on our slice through the parameter space
with K2z = K2x. Note that our definition of this phase is
that it breaks the gz and T1 symmetries but preserves gx

and gz(T1)2; hence, the ground-state degeneracy is four. The
above wave function is the only product state that satisfies
these symmetries. The above ground-state manifold has an
additional symmetry T1gz,even, which is not a symmetry of
the Hamiltonian and is hence spurious, except at δ = 1; in
Appendix A 3 below, we write improved variational wave
functions without this spurious symmetry.

Comparing the trial energies εzFM, εVBS-I, εVBS-II, and
εxUUDD, we obtain the mean-field phase diagram in Fig. 17.
All solid lines in this figure represent “level crossings” and
are first-order phase boundaries. The positioning of the phases
is roughly similar to the actual phase diagram in the main
text, but, of course, this simple mean field is not quantitatively
accurate and fails qualitatively about the nature of the zFM to
VBS transition.

2. Dimer product states for the zFM and VBS coexistence

We can also allow for coexistence between the zFM and
VBS order parameters, for example, by using a trial state of

0 1 2 3
K2

0

1

2

3

δ VBS+zFM

xUUDD′

xUUDD′′

VBS-I

VBS-II

FIG. 18. The phase diagram of the improved mean-field trial
states described in Appendixes A 2 and A 3 provides a somewhat
more realistic picture, in particular with continuous phase transi-
tions for all boundaries of the VBS-I and VBS-II phases. There
is an extended boundary between the coexistence and xUUDD
phases, which is first-order, as well as a first-order transition be-
tween xUUDD′ and xUUDD′′. Along the dotted line at δ = 1 the
VBS +zFM ansatz coincides with the simple product zFM state from
Appendix A 1; however, the wider zFM phase is not represented, as
away from this special line the simple zFM wave function is always
energetically unfavorable. In Appendix B, we show how some of
the unphysical features can be fixed using more entangled wave
functions.

the form

|VBS +zFM〉 = ⊗m

[
cos

α

2
|↑↑〉 + sin

α

2
|↓↓〉

]
2m−1,2m

.

(A9)

Clearly, at α = π/2 and −π/2 the wave function reduces to
|VBS-I〉 and |VBS-II〉 respectively, and α = 0 gives |zFM〉;
for generic α the state has both VBS and zFM order. The trial
energy per site is

εVBS +zFM = −Jz(1 + cos2 α) − Jx sin α

2
+ K2z cos2 α

= −Jz + K2z − Jx

2
t +

(
Jz

2
− K2z

)
t2 , (A10)

where t ≡ sin α, |t | � 1. For K2z > Jz/2 − |Jx|/4, the lowest
energy is achieved at t = sign(Jx ), which corresponds to pure
VBS-I or VBS-II order. Thus large K2 prefers the pure dimer
states.

Conversely, for K2z < Jz/2 − |Jx|/4, this mean field finds
it favorable to have coexistence of the VBS and zFM or-
ders, with the optimal t = Jx/[2(Jz − 2K2z )] and the trial
energy εVBS +zFM = −Jz + K2z − J2

x /[8(Jz − 2K2z )] that is al-
ways lower than the product state zFM trial energy Eq. (A2)
except at Jx = 0. (See Fig. 18, which also includes competi-
tion with improved xUUDD states.) We know that this feature
is not found in our model beyond mean field, where in fact it
is the pure zFM phase that wins over the coexistence phase
for small K2. This artifact arises from the fact that for the
pure zFM phase we used a trial state with zero entanglement,
whereas for the coexistence phase we allowed entanglement
on alternating bonds, which apparently always lowers the
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energy. This lowering of the energy while simultaneously
breaking the translation symmetry is undesirable in the true
ground state for small K2: For example, for K2 = 0 and small
Jx the second-order perturbation theory on top of the fixed-
point zFM state lowers the energy by −J2

x /(4Jz ) per site—
which is better than εVBS +zFM—but to capture this lowering
one needs to allow entanglement on all bonds.

On the large K2 side, the mean-field transition between
either of the VBS phases and VBS +zFM is continuous. We
thus expect that numerics at fixed bond dimension χ will show
a continuous mean-field-like transition at the pseudocritical
point K2c,zFM(χ ), which is indeed what we observe and use
to locate K2c,zFM(χ ) and extrapolate to the true K2c,zFM(χ →
∞). Of course, the true VBS to VBS +zFM transition is
characterized by the onset of the zFM order on top of “in-
ert” background VBS order and is expected to be in the
Ising universality class. We also expect that the true zFM to
VBS +zFM transition is in the Ising universality. While our
primitive mean field does not realize this transition, we expect
that VUMPS using fixed χ will have a continuous mean-
field-like zFM to VBS +zFM transition at the corresponding
pseudocritical K2c,VBS(χ ), which is again borne out in the
numerics.

Finally, we note that the trial state (A9) can interpolate
between the VBS-I +zFM and VBS-II +zFM coexistence
phase regimes occurring near the corresponding pure dimer
phases. However, during this interpolation it passes through

the pure zFM state, which is formally a different phase. Based
on general arguments, we expect that the VBS-I +zFM and
VBS-II +zFM should be in the same phase; that is, there
should be a connection between the two regimes without clos-
ing the gap, and in particular with the translation symmetry
broken throughout. In Appendix B 1, we will show that this is
indeed possible, but we need to go beyond separable states and
consider wave functions with entanglement across all cuts,
which is achieved using an analytic MPS.

3. Improved mean-field states for the xUUDD phase

Our study in Appendix A 1 simply compares trial energies
of states with no variational parameters that cannot connect to
each other, and in this setting the VBS to xUUDD transition
is first order. A careful consideration of symmetries reveals
that the true transition between either of the VBS phases and
the xUUDD phase should be Ising-like: both VBS phases
preserve gx, gz, and T 2

1 (or, equivalently, gzT 2
1 ), while the

xUUDD phase preserves gx and gzT 2
1 . The two phases thus

differ only by a broken Z2 symmetry, and we expect an
Ising-like transition.

We can better reflect this in the mean-field treatment by
replacing the site-product state in Eq. (A7) by dimer-product
states connected to the VBS wave functions. Specifically,
starting from the VBS-I state, we can construct the following
period-4 trial state, which is invariant under gx and gzT 2

1 :

|xUUDD′〉 =
⊗

n

[
cos

β

2
|+x̂,+x̂〉 + sin

β

2
|−x̂,−x̂〉

]
4n−3,4n−2

⊗
[

cos
β

2
|−x̂,−x̂〉 + sin

β

2
|+x̂,+x̂〉

]
4n−1,4n

. (A11)

One observes that β = π/2 gives the pure VBS-I state, while β = 0 gives the xUUDD product state from Eq. (A7). The
ground-state manifold in the xUUDD phase is four-dimensional and is spanned by the above state with generic β and its
counterparts T1|xUUDD′〉, T 2

1 |xUUDD′〉 = gz|xUUDD′〉, and T 3
1 |xUUDD′〉. The trial energy per site is

εxUUDD′ = −K2x +
(

K2x − Jx

2

)
sin2 β − Jz

2
sin β . (A12)

For K2x < Jx/2 + |Jz|/4, the optimal sin β = sign(Jz ), and assuming Jz > 0 the state reduces to the pure VBS-I state. For K2x >

Jx/2 + |Jz|/4, the energy is minimized by sin β = Jz/(2(2K2x − Jx )) and is given by εxUUDD′ = −K2x − J2
z /(8(2K2x − Jx )); this

describes a generic xUUDD phase near the VBS-I phase. The mean-field transition between the two phases is continuous, which
explains our observation of continuous pseudocritical behavior in VUMPS at the VBS-I to xUUDD transition. However, we do
not report any details of this study since it is outside our main interest.

We can also start from the VBS-II state and construct another period-4 trial state for the xUUDD phase that is invariant under
gx and gzT 2

1 :

|xUUDD′′〉 =
⊗

n

[
cos

γ

2
|+x̂,−x̂〉 + sin

γ

2
|−x̂,+x̂〉

]
4n−3,4n−2

⊗
[
cos

γ

2
|−x̂,+x̂〉 + sin

γ

2
|+x̂,−x̂〉

]
4n−1,4n

. (A13)

Clearly, γ = π/2 gives the pure VBS-II state, while γ = 0 gives the primitive xUUDD state in Eq. (A7). The trial energy per
site is

εxUUDD′′ = −K2x +
(

K2x + Jx

2

)
sin2 γ − Jz

2
sin γ . (A14)

Comparing with Eq. (A12), we see that εxUUDD′′ has the
same form as εxUUDD′ except for the sign of the Jx

term. Hence, the variational energy minimization and mean-
field transition between the VBS-II and xUUDD′′ state is

similar to that between the VBS-I and xUUDD′ state dis-
cussed above.

We also see that for Jx > 0 we have εxUUDD′ < εxUUDD′′ ,
and the opposite for Jx < 0. As we vary Jx across Jx = 0,
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since the optimal sin β = sin γ = Jz/(4K2x ) �= 0, the two trial
energies cross with opposite non-zero slopes; that is, we find
a first-order transition between the xUUDD′ and xUUDD′′

states, which are different at the transition. One exception
is the limit K2x → ∞ where β = γ = 0 and both states re-
duce to the site-product xUUDD state in Eq. (A7) (up to a
translation).

Figure 18 shows our final mean-field phase diagram comb-
ing results in this section and in Sec. A 2. It includes com-
petition between the VBS +zFM and xUUDD phases, which
have incompatible symmetries and hence are separated by
first-order transitions.

Regarding the first-order transition between the xUUDD′

and xUUDD′′ states found in this mean field, we believe that
these states are representatives of the same phase coming from
different regimes, one near the VBS-I phase and the other
near VBS-II. That is, while the VBS-I and VBS-II phases
are distinct phases protected by the gx and gz symmetries,
xUUDD′ and xUUDD′′ break gz and are not distinct phases.
One can still have a first-order transition between xUUDD′

and xUUDD′′ states originating from the respective different
regimes, as happens in the above mean field and is akin to a
liquid-gas first-order transition. While this may be realized in
some Hamiltonians, this does not happen in the true ground
states of the model studied in this paper. Instead, we find a
smooth evolution across the δ = 1 line where Jx = 0.

As described in the main text, the δ = 1 line has an addi-
tional symmetry gz,even. The generic xUUDD′ and xUUDD′′

states considered away from this line of course do not have
this symmetry but are in fact related by the action of gz,even.
The above mean field where the two states meet discontinu-
ously at δ = 1 would correspond to spontaneously breaking
the additional Z2 symmetry and hence would imply eightfold
ground-state degeneracy. In our Hamiltonian, instead it ap-
pears that the system on the δ = 1 line preserves the additional
Z2 symmetry, and the ground-state degeneracy is four every-
where in the xUUDD phase. As we show in Appendix B 2,
this scenario can be also realized at the level of improved
wave functions connected to the above xUUDD′ and xUUDD′′

states but requires allowing entanglement between all sites.

APPENDIX B: SIMPLE ENTANGLED
STATES FOR PHASES

In this Appendix, we add on to our mean-field treatment to
address inconsistencies between the study in the main text and
the mean-field phase diagram obtained using only separable
wave functions. Specifically, in Appendix B 1, we write an
MPS of bond dimension 2 describing the coexistence region
VBS +zFM and matching the symmetries observed in the
numerical study, which in particular can connect smoothly
across the δ = 1 line with the additional symmetry gz,even. In
Appendix B 2, we write another MPS of bond dimension 2
which interpolates smoothly between the improved states for
the xUUDD phase given in Eqs. (A11) and (A13) without
a phase transition, maintaining the observed ground-state
degeneracy of 4 throughout.

1. χ = 2 MPS wave function for coexistence phase

In order to write a wave function for the VBS and zFM
coexistence phase, we require invariance under gz, (T1)2, and

inversion I about a bond center, and allow breaking of gx

and T1. At special values of the internal parameters, our
wave function will also be invariant under T1gz,even, which
is an additional symmetry present in our model at δ = 1 as
described in Sec. IV B. We use an MPS of bond dimension 2
with a two-site unit cell, having the following form:

|MPSVBS +zFM〉 =
∑
{σ }

Tr[· · · Aσ2m−1 Bσ2m · · · ]|{σ }〉 . (B1)

The choice of the unit cell enforces (T1)2 symmetry, and we
can impose invariance under gz and I as follows. A symmetry
O induces on the MPS matrices an action MO : (A|σ 〉, B|σ 〉) �→
(A|σ 〉

O , B|σ 〉
O ). Choosing a particular representation of the pro-

jective symmetry group on the virtual indices, we can guar-
antee invariance of the state under O by specifying invert-
ible matrices XO and YO such that A|σ 〉

O = XOA|σ 〉Y −1
O , B|σ 〉

O =
YOB|σ 〉X −1

O .
Now, gz is expressed as an action on the matrices by

A|σ 〉
gz

= σA|σ 〉 , B|σ 〉
gz

= σB|σ 〉 , (B2)

while for bond inversion I ,

A|σ 〉
I = (B|σ 〉)T , B|σ 〉

I = (A|σ 〉)T . (B3)

As we will show, the specific choice of matrices (Xgz ,Ygz ) =
(σ z, σ z ) and (XI ,YI ) = (σ z, 1) allows us to connect the MPS
state to the product VBS +zFM state (A9) considered earlier.
Using this choice, we find that the most general form of the
MPS matrices is given by

rlrlA|↑〉 =
[

a 0
0 b

]
, A|↓〉 =

[
0 c
d 0

]
,

B|↑〉 =
[

a 0
0 −b

]
, B|↓〉 =

[
0 −d
c 0

]
. (B4)

Of the four parameters a, b, c, d , only three are indepen-
dent, as the overall scale only affects the wave function
normalization.

For parameters b = d = 0, we have A|↑〉B|↑〉 =
diag(a2, 0), A|↓〉B|↓〉 = diag(c2, 0) and A|↑〉B|↓〉 = A|↓〉B|↑〉 =
0. Then it is easy to see that the MPS wave function
reduces to a form matching the separable VBS +zFM wave
function (A9) with dimers on the (2m − 1, 2m) bonds.
This state is natural near the VBS-I phase (if c2 �= a2, it
clearly breaks the gx symmetry, and approaches the VBS-I
phase as c2 → a2). On the other hand, for b = c = 0 we
have B|↑〉A|↑〉 = diag(a2, 0), B|↓〉A|↓〉 = diag(−d2, 0) and
B|↑〉A|↓〉 = B|↓〉A|↑〉 = 0. In this case, the wave function
reduces to a form matching the separable VBS +zFM wave
function with dimers on the (2m, 2m + 1) bonds. This state is
natural near the VBS-II phase.

Furthermore, we can connect the two regimes while stay-
ing within the same VBS +zFM phase. For example, we
can fix a = 1, b = 0, and vary between the two regimes on
a path (c, d ) = (γ (1 − �), γ �), � ∈ [0, 1], with fixed γ < 1.
One can check that both gx and T1 remain broken everywhere
on this path. By straightforward diagonalization of the transfer
matrix one also sees that the MPS remains injective through-
out the range � ∈ [0, 1]. We thus conclude that the VBS-I and
VBS-II orders are not distinguished in the presence of zFM
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order, where gx is broken; that is, there is only one VBS +zFM
phase.

Finally, if c = d with arbitrary a, b, the MPS wave func-
tion is invariant under S = T1gz,even, which is the additional
symmetry present in our model on the δ = 1 line. Indeed, the
action of S on the above MPS induces the following action on
the matrices

A|σ 〉
S = σB|σ 〉 , B|σ 〉

S = A|σ 〉 . (B5)

The new matrices are gauge-equivalent to the originals under
(XS,YS ) = (σ z, 1). On the path discussed above interpolating
between the VBS-I +zFM and VBS-II +zFM regimes, the
midpoint � = 1/2 gives c = d and has this symmetry. Thus,
we have also constructed candidate wave functions for the
VBS +zFM coexistence phase on the δ = 1 line that respect
the additional symmetry present in our Hamiltonian on this
line, and that appear to capture qualitative features of the true
ground states of our Hamiltonian.

2. χ = 2 MPS for the xUUDD phase

We can write down the desired wave function interpolating
smoothly between the separable mean-field states |xUUDD′〉
of Eq. (A11) and |xUUDD′′〉 of Eq. (A13) as a period-4 MPS
with bond dimension 2 as follows:

|MPSxUUDD〉 =
∑
{σ }

Tr[· · · Aσ4n−3 Bσ4n−2Cσ4n−1 Dσ4n · · · ]|{σ }〉 .

(B6)
Here we use the σ x eigenbasis, and the MPS matrices are

A|+x̂〉 =
[

r 0
0 s

]
, A|−x̂〉 =

[
0 u
v 0

]
;

B|σ 〉 = (A|σ 〉)T ; C|σ 〉 = A|−σ 〉; D|σ 〉 = B|−σ 〉.

By construction, the state is invariant under inversion in the
bond center between sites 4n − 3 and 4n − 2, and also under
gzT 2

1 . Furthermore, the state is invariant under gx. As an action
on the matrices, we have

M |σ 〉
gx

= σM |σ 〉 , (B7)

and the new matrices are gauge-equivalent to the old matrices
by noting that M |σ 〉

gx
= ±σ zM |σ 〉σ z, where the plus sign is for

M = A, B and the minus sign is for M = C, D. Thus the state
has the desired symmetry properties for a ground state in the
generic xUUDD phase.

It is easy to check that when s = 0 and v = 0, the state re-
duces to the dimer-product state |xUUDD′〉 in Eq. (A11). Sim-
ilarly, when s = 0 and u = 0, the state reduces to |xUUDD′′〉
in Eq. (A13) (more precisely, the MPS yields T1|xUUDD′′〉).

It is also easy to check that T1gz,even acts on this MPS wave
function by interchanging u and v. Hence, when u = v, the
state is invariant under T1gz,even and is a candidate ground state
for the xUUDD phase along the δ = 1 slice that does not break
the additional Z2 symmetry present on this line.

APPENDIX C: DIRECT PHASE TRANSITION AT δ = 1

In this Appendix, we propose a field theory description
which allows direct phase transition between the VBS +zFM
coexistence phase and the xUUDD phase on the δ = 1 line.

As we pointed out in the main text, δ = 1 line admits an
additional symmetry gz,even = ∏

m σ z
2m. This additional sym-

metry plays an essential role for the direct phase transition
between these two phases at δ = 1. For δ �= 1 where we do
not have the gz,even symmetry, these two phases are either con-
nected by a first order phase transition or by an intermediate
VBS phase.

To see this, we first analyze the symmetry properties of
these two phases at δ = 1. The total symmetry group at
δ = 1 is generated by {gz, gx, gz,even, T1, I, T }. For our pur-
poses here, it is enough to focus on the symmetry group
generated by {gz, gx, gz,even, T1}. We notice that both phases
break gz,even and T1 but preserve the combination T1gz,even.2

The VBS +zFM coexistence phase additionally breaks gx, and
the remaining symmetry group is generated by {gz, T1gz,even},
whereas the xUUDD phase breaks gz, with the remaining
symmetry group generated by {gx, T1gz,even}. The ground-state
degeneracy is four for either of these two phases.

Since the remaining symmetry groups of these two
phases are not subgroups of each other, if there is a direct
phase transition, this transition must be beyond the Landau-
Ginzburg symmetry-breaking paradigm. To develop a the-
ory for this transition, we start from a background config-
uration that breaks gz,even and T1, but preserves T1gz,even.
For a concrete example of such a background-locking term,
we can consider adding to the Hamiltonian a term �H =
Jx, stagg

∑
j (−1) jSx

j S
x
j+1. In this background configuration, the

VBS +zFM coexistence phase breaks gx, and thus can be
viewed as a “z-ordered” phase on the background. Similarly,
the xUUDD breaks gz, and can be viewed as an “x-ordered”
phase. Hence, the phase transition can be viewed as the
transition between the z-ordered and x-ordered phases on this
background configuration.

Motivated by the above discussion, we can now present a
hydrodynamic description for this transition. We first define a
new set of spin variables as

S′ x/y
4n−3 = Sx/y

4n−3 , S′ x/y
4n−2 = Sx/y

4n−2 ,

S′ x/y
4n−1 = −Sx/y

4n−1 , S′ x/y
4n = −Sx/y

4n ;

S′ z
j = Sz

j . (C1)

T1gz,even acts as a conventional translation symmetry on
the new spin variables. (For example, the specified con-
crete background-locking term becomes simply �H =
−Jx, stagg

∑
j S′ x

j S′ x
j+1.) We then apply standard bosonization

techniques on the new spins:

S′ z
j ∼ cos φ′

j , S′ x
j ∼ sin φ′

j ,

S′ y
j ∼ θ ′

j+1/2 − θ ′
j−1/2

π
, (C2)

where φ′ ∈ [0, 2π ) and θ ′ ∈ [0, π ) are conjugate phase and
phonon variables.

2More precisely, both the VBS +zFM and xUUDD phases have
ground-state degeneracy equal to four. In the VBS +zFM phase, all
four ground states are invariant under T1gz,even. On the other hand, in
the xUUDD phase, two of the ground states preserve T1gz,even while
the other two preserve T1gz,odd.
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The symmetry transformations of φ′ and θ ′ read

gx : φ′ → π − φ′ , θ ′ → −θ ′ ; (C3)

gz : φ′ → −φ′ , θ ′ → −θ ′ ; (C4)

T1gz,even : φ′ → φ′ , θ ′ → θ ′ + π

2
. (C5)

Thus the symmetry-allowed scattering (i.e., cosine) terms are
cos(2mφ′) and cos(4nθ ′).

The action for the field theory is

S =
∫

dτ dx

[
i

π
∂τφ

′∂xθ
′ + v′

2π

(
1

g′ (∂xθ
′)2 + g′(∂xφ

′)2

)]

+
∫

dτ dx[λ2 cos(2φ′)+λ4 cos(4φ′)+κ4 cos(4θ ′)+ · · · ],

where the Luttinger parameter g′ and velocity v′ depend
on microscopic details, and · · · denotes higher-order scat-
tering terms. The scaling dimensions for the scattering

terms read

dim[cos(2mφ′)] = m2

g′ , dim[cos(4nθ ′)] = 4n2g′.

In particular, when 1/2 < g′ < 2, there is only one relevant
cosine operator, which is cos(2φ′).

For λ2 > 0, φ′ gets pinned at π/2 or 3π/2, and thus
〈S′ x〉 ∼ 〈sin φ′〉 �= 0, which gives the xUUDD phase. On the
other hand, for λ2 < 0, φ′ gets pinned at 0 or π , and thus
〈S′ z〉 ∼ 〈cos φ′〉 �= 0, which gives the VBS +zFM coexistence
phase. (Recall that we are working on top of a background that
breaks T1, which is why the ground-state degeneracy is two
in each case here.) The continuous phase transition happens
when λ2 = 0, which is described by a free Luttinger liquid
theory with c = 1 and varying critical exponents depending
on g′.

Finally, we mention that in the absence of
T1gz,even, cos(2θ ′) is allowed by symmetry, which becomes
relevant when g′ < 2. It is easy to check that there are always
multiple relevant or marginal operators for any g′. Thus
the above field theory loses applicability for the transition
between the VBS +zFM and xUUDD phases.
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