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Topological phases of nonsymmorphic crystals: Shastry-Sutherland lattice at integer filling
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Motivated by intertwined crystal symmetries and topological phases, we study the possible realization of
topological insulators in nonsymmorphic crystals at integer fillings. In particular, we consider spin-orbit-coupled
electronic systems of two-dimensional crystal Shastry-Sutherland lattices at integer filling where the gapless line
degeneracy is protected by glide reflection symmetry. Based on a simple tight-binding model, we investigate how
the topological insulating phase is stabilized by breaking nonsymmorphic symmetries but in the presence of time
reversal symmetry and inversion symmetry. In addition, we also discuss the regime where Dirac semimetal is
stabilized, having nontrivial Z2 invariants even without spin-orbit coupling. Our study can be extended to more
general cases where all lattice symmetries are broken and we also discuss possible application to topological
Kondo insulators in nonsymmorphic crystals where crystal symmetries can be spontaneously broken as a
function of the Kondo coupling.
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I. INTRODUCTION

In the thermodynamic limit, the gapped or gapless nature
of phases is an important characteristic for classification of
low-energy excitations and their physical properties. For non-
interacting systems, one can predict a so-called band insulator
where the filling is an integer, i.e., the unit cell must contain
an integer number of electrons per unit cell and spin, thus the
band can be completely filled below the Fermi energy [1]. On
the other hand, the Mott insulator is a counter example of a
band insulator where the insulating phase with all symmetries
conserved is realized even at fractional filling [2,3]. For this
case, the celebrated Hastings-Oshikawa-Lieb-Schultz-Mattis
(HOLSM) theorem gives strong guiding principles for any
fractional filling no matter what types of particles and inter-
action strengths are used; if the system at fractional filling
does preserve all the symmetries, it must be either gapless
or gapped with degenerate ground states that accompany
fractional low-energy excitations [4–8].

In crystals, it turns out that discrete lattice symmetries
can give similar constraints even at integer fillings [9–13]. In
particular, it holds for nonsymmorphic crystals whose space-
group symmetries are not represented by a direct product
of translation and point group symmetry, thus they always
contain glide reflections or screw rotations. These symmetries
accompany fractional (say 1/S) translation followed by either
reflection or rotational symmetries. Attributed to such frac-
tional translation, the filling ν to be a trivial insulator is typi-
cally a multiple of the specific integer S , i.e., ν = nS , n ∈ Z .
Here, we emphasize that the filling ν is defined as the average
number of electrons in a unit cell for each spin polarization.
For any other integer fillings (ν �∈ nS), one can still apply
HOLSM theorem and the system with preservation of all the
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symmetries must be categorized into two cases: (i) gapless
and (ii) gapped with fractional low-energy excitations [14].
This strong argument indicates that if we ignore the exotic
scenario of Mott insulating phases with fractional low-energy
excitations, then the gaplessness of the system is protected by
nonsymmorphic crystal symmetries at certain integer fillings
ν �∈ nS [15–18].

One intriguing question is then how the system drives into
the transition from gapless semimetal to gapped insulating
phase by breaking nonsymmorphic crystal symmetries. In
particular, when the electronic system is described by heavy
ions, the spin-orbit coupling (SOC) effect plays an important
role and it is natural to consider the interplay of nonsymmor-
phic symmetry breaking and SOC results in unique topolog-
ical insulating phases [19,20]. Such a gapped phase can be
generally favored to reduce the kinetic energy of electrons,
thus it gives rise to instability of the gapless semimetallic
phase protected by either glide reflection symmetry or screw
rotation symmetry at integer filling. Therefore, it can drive the
system into an insulating phase with spontaneous breaking of
nonsymmorphic crystal symmetries, accompanied by lattice
distortion and formation of charge (spin) ordering [21]. Fur-
thermore, one can also expect our scenario to be applicable to
the Kondo lattice system in nonsymmorphic crystals [22,23].
When localized magnetic moments and itinerant electrons
are both present, control of the Kondo coupling strength can
derive multiple phase transitions. At particular integer fillings
of itinerant electrons, an intermediate Kondo coupling leads
to partial Kondo screening in such a way that all lattice
symmetries are broken. Then the system can be driven into
a topological Kondo insulator with spontaneously broken
nonsymmorphicity, which is a natural extension of work done
in Ref. [24].

In this paper, we investigate the possible phase transi-
tion from a gapless semimetal protected by nonsymmorphic
crystal symmetry to a topological insulator where the crys-
tal symmetries are broken but edge states are protected by
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(a) (b)

FIG. 1. (a) Shastry-Sutherland lattice with nearest-neighbor hop-
ping parameters ti j and ui. The arrow on each link indicates the
direction of symmetry-allowed SOC. Inset: Bulk dispersion when
all parameters are equal to 1. Along the line X1-M, the first and
second bands (third and fourth bands) are degenerate and these
degeneracies are protected by glide reflection symmetry. (b) In the
Shastry-Sutherland lattice, solid, dashed, dash-dotted, and double
lines indicate distinct electron hopping configurations which break
all lattice symmetries. Inset: Bulk dispersion with all distinct hop-
pings represented by different line styles. The line degeneracy along
X1-M is absent but the degeneracy at point M is still present.

time-reversal symmetry [25–27]. We exemplify our scenario
by a spin-orbit-coupled electronic system in a specific two-
dimensional crystal, the Shastry-Sutherland lattice (SSL) [28].
Especially, we focus on the filling ν = 1 per unit cell and spin
where the gapless electronic structure at the Fermi level is
protected by glide reflection symmetry. Considering two ways
of breaking the glide reflection symmetry, the stabilities of
the trivial insulator and topological insulator are addressed as
functions of the electron hopping and strength of SOC [15,29].
Based on the calculation of Z2 invariants [30,31], we show a
large parameter space where the topological insulating phase
is indeed stabilized. Furthermore, we discuss the parameter
space where an odd number of gapless Dirac points must be
present in the absence of SOC. We note that a similar argu-
ment can be easily extended to other nonsymmorphic crys-
tals including both two-dimensional and three-dimensional
lattices.

II. BAND PROPERTIES IN NONSYMMORPHIC SSL

Focusing on the electronic band structure of nonsym-
morphic crystals, we explore how nosymmorphic symmetry
breaking leads to nontrivial topological insulating phases.
In particular, we employ the simple tight-binding model on
the SSL (space group p4g) with nearest-neighbor hoppings
including the horizontal (−), vertical (|), and diagonal (�)
directions,

H0 =
∑

σ,〈i, j〉∈|,−
ti jc

†
iσ c jσ +

∑
σ,〈i, j〉∈�

ui jc
†
iσ c jσ , (1)

where c(†)
i,σ indicates the (creation) annihilation operator at site

i and spin σ . Each hopping parameter ti j and ui j is depicted in
Fig. 1(a). For simplicity, all ti j and ui j are chosen to be positive
and spin independent. Henceforth, we particularly focus on

the filling ν = 1 per unit cell and spin, but without losing
generality a similar argument can be made for another case,
ν = 3.

First, let us consider the spinless system with each unit cell
containing one electron on average, thus filling ν = 1. The
unit cell of the SSL contains four sites and lattice symmetries
such as inversion P, C4 rotation, and mirror symmetries Mx̂+ŷ

and M−x̂+ŷ are present when the hopping parameters ti j are
all the same and u1 = u2 [see Fig. 1(a)] [28,32]. In addition,
the glide reflection symmetries Gx and Gy defined by half-
translations along the x, y direction, followed by the mirror
reflections Mŷ and Mx̂, are present. The inset in Fig. 1(a)
shows a band structure along the lines with high symmetry
points �(0, 0), X1(π, 0) [X2(0, π )], and M(π, π ). At ν = 2,
the system is gapless at � and becomes a semimetal [33].
For ν = 1 and 3, one can see that the first and second bands
(third and fourth bands) are degenerate along lines X1-M
and X2-M. These line degeneracies are protected by glide
reflection symmetries Gx and Gy, respectively. In the absence
of spins, G2

x = eikx = −1 along the Brillouin zone boundary
kx = π . Then there exists additional degeneracy related by
[h0(π, ky), Gx�] = 0 and (Gx�)2 = −1, where h0(kx, ky) is
the Hamiltonian matrix for Eq. (1) at momentum (kx, ky )
and � = K is the complex-conjugate operator. Similarly, the
invariant line ky = π has a line degeneracy protected by Gy�.
Our argument is carried out within band theory, however, the
validity of line degeneracy holds in the presence of interac-
tions as long as the symmetry is preserved [15,34].

The insulating phases at ν = 1 and 3 thus always require
breaking of Gx and Gy symmetries, but interestingly, within
the simple tight-binding model, the inverse is not always
true. Suppose a system in which electrons with s orbitals
sit on an SSL at integer filling. The spin degrees of free-
dom is not considered yet. The Hamiltonian in momentum
space can be rewritten as H0 = �kψ

†
kh0(k)ψk, where ψk =

(ck,A, ck,B, ck,C, ck,D)T and c(†)
k,α is the annihilation (creation)

operator at momentum k on sublattice α. When the ti j

values are all equivalent and u1 = u2, the Hamiltonian at
point M can be readily analyzed. The eigenspace at point
M is spanned by |
1±〉 = 1√

2
(c†

M,A ± c†
M,D)|0〉 and |
2±〉 =

1√
2
(c†

M,B ± c†
M,C )|0〉, with eigenvalues ±u1 for occupied (−)

and unoccupied (+) eigenspaces, respectively. In order to
open a gap, these states need to be coupled through the Hamil-
tonian, e.g., 〈
2a|h0(M )|
1a〉 �= 0. One may think that break-
ing the lattice symmetries by varying the hopping parameters
ti j and ui leads to finite couplings between |
1a〉 and |
2a〉
and, thus, to opening a gap in the system. However, there
exists the case where, with breaking of all lattice symmetries,
their coupling is still 0. In Fig. 1(b), the links sketched in the
same style indicate the identical hopping parameters along
the links, i.e., t10 = t11, t20 = t21, t30 = t31, t40 = t41. This
configuration breaks all lattice symmetries but the degeneracy
at point M is preserved. [See the band structure in the inset in
Fig. 1(b).] The reason is as follows. In k space, the electron
hoppings between sublattices are performed by consuming a
phase of the wave packet. At point M, the phases from one
site to another on sublattices along the x, y directions are
cooperatively canceled, thus their off-diagonal components of
h0(M ) vanish, resulting in degenerate bands at point M. Of
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course, the different hopping parameters between the x̂/2 and
the −x̂/2 directions (similarly for the ŷ direction) will lead the
system to be gapped; this is discussed below.

Now let us consider the spinful electronic system. Includ-
ing spin degeneracy, there exist eight bands in total and each
two bands are degenerate since Kramers doublet (P�)2 =
−1. Thus, at fillings ν = 1 and ν = 3 (per unit cell and spin),
four bands are degenerate along X1-M and X2-M as shown
in Fig. 1(a) (two from Kramers doublet and two from glide
reflection symmetries). The intrinsic SOC can be included as
an imaginary hopping term,

HSO =
∑

〈i, j〉,σ
iσzdi jc

†
iσ c jσ , (2)

where di j = ±λ indicates the SOC strength, having relative
signs depicted in Fig. 1(a). (The arrow toward i from j defines
di j = +λ.) In the presence of intrinsic SOC, the total spin Sz

is still conserved so one can consider the system for each spin
independently. For each spin sector, this imaginary hopping
can be considered as an effective magnetic flux resulting in
nontrivial insulating phases [29,35,36]. This SOC term opens
a gap at half-filling ν = 2 and leads to a topological insulating
phase, in the same manner as discussed in graphene at half-
filling [29,36]. In this case, the filling is a multiple integer
of the fractional translation S = 2, thus the HOLSM theorem
is silent and the system can be either gapless or gapped
depending on the controlling parameters [9,37]. Indeed, the
presence or absence of SOC makes the system either gapless
or gapped at this filling.

III. BROKEN GLIDE REFLECTION SYMMETRIES AND
TOPOLOGICAL PHASES

At fillings ν = 1 and 3, the band degeneracies along X1-
M and X2-M are protected by glide reflection symmetry
[15]. To explore how band degeneracies split and the system
goes into an insulating phase, we can consider two partic-
ular cases that break glide reflection symmetries illustrated
in Fig. 2:

(i) Fig. 2(a): t̃1 ≡ t10 = t20 = t31 = t41,

t̃2 ≡ t11 = t21 = t30 = t40.

(ii) Fig. 2(b): t̃3 ≡ t10 = t20 = t30 = t40,

t̃4 ≡ t11 = t21 = t31 = t41, ũ≡u1 =u2. (3)

For Eq. (3), case (i), the system preserves two mirror reflec-
tions Mx̂±ŷ but breaks all other symmetries, Gx, Gy, and C4,
whereas in case (ii), the system preserves C4 but breaks Gx,
Gy, and Mx̂±ŷ. In both cases, glide symmetries are broken. The
SOC strength di j is also modified based on the broken spatial
symmetries in each case, (i) and (ii). As depicted in Figs. 2(a)
and 2(b), the deviation of SOC is represented as the ratio of
two adjacent strengths δ. When δ = 1, the SOC term recovers
the full lattice symmetries of the original Shastry-Sutherland
lattice.

For given parameters, we evaluate the topological invari-
ant, which is the product of the parities of the occupied
eigenstates at four different time-reversal-invariant momen-
tum (TRIM) points in the Brillouin zone [30]. In two di-
mensions, the negative sign indicates a topological phase and

(a) (b)

FIG. 2. Distorted Shastry-Sutherland lattice with broken glide
reflection symmetries but preservation of mirror or rotation symme-
tries: (a) preservation of mirror symmetries with hopping parameters
defined as in Eq. (3), case (i); (b) preservation of C4 rotation symme-
try with hopping parameters defined as in Eq. (3), case (ii). Dashed
boxes indicate the unit cell, which includes four sublattices: A, B, C,
and D. δ measures the relative distortion in SOC. By parametrizing t̃i,
λ, and δ, Fig. 3 shows the region where topological insulating phases
are stabilized. See the text for more details.

the positive sign indicates a trivial phase. In both cases in
Eq. (3) (see also Fig. 2), the products of parities at X1 and
X2 are related to each other. For case (i) in Eq. (3), it satisfies
M†

±x̂+ŷPM±x̂+ŷ = P, thus the parities at X1 and X2 are the

same. For case (ii), however, C†
4 PC4 = e−i(kx+ky )P = −P and

the parities at X1 and X2 are opposite. Thus, one only needs
to examine whether or not the parities at points � and M
are the same. As a result, the system at filling ν = 1 becomes
a topological phase under the conditions

(i)
√

t̃2−+u2−−
√

λ̃2−+u2− <2u+ <

√
t̃2++u2−−

√
λ̃2++u2−,

(ii) ũ> t̃3+t̃4−|λ̃+/4| and ũ>−|t̃3−t̃4|+|λ̃−/4|, (4)

where t̃± = 4(t̃1 ± t̃2), u± = u1± u2, and λ̃± = 4λ(1 ± δ).
The conditions are also satisfied when the signs of inequality
are all reversed in Eq. (4).

Based on the conditions in Eq. (4), possible parameter
space for topological and trivial phases is shown in Fig. 3.
Figures 3(a) and 3(b) show the phase diagrams for case (i)
[see also Fig. 2(a)] as functions of λ/t̃1 and t̃2/t̃1 with u1 = 2,
u2 = 4; there are two parameter sets, for δ = −2 [Fig. 3(a)]
and for δ = 2 [Fig. 3(b)]. Figures 3(c) and 3(d) represent the
phase diagrams for case (ii) [see also Fig. 2(b)] as functions
of λ/t̃3 and t̃4/t̃3 with u1 = u2 = 1, for δ = −2 [Fig. 3(c)]
and for δ = 2 [Fig. 3(d)]. In Figs. 3(a)–3(d), blue and white
regions indicate where topological insulating phases and triv-
ial insulating phases are stabilized if the system is gapped.
At the phase boundaries separating the two distinct phases,
the gap should be closed at least one momentum point to
exchange the parities with the unoccupied bands. As shown
in Fig. 3, there exists a large parameter regime for small SOC
where topological insulating phases are stabilized with glide
reflection symmetry breaking.

Figure 4 shows the one-dimensional band structure in a
strip geometry for three distinct cases [29,38–41]. Figures 4(a)
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(a) Fig. 2(a) – u1 =2, u2 =4, δ=−2 (b) Fig. 2(a) – u1 =2, u2 =4, δ=2

(c) Fig. 2(b) – ũ=1, δ=−2 (d) Fig. 2(b) – ũ1, δ=2

FIG. 3. Phase diagrams of trivial and topological insulators for
gapped systems, as functions of t̃2/t̃1 and λ/t̃1(3): (a, b) for the
distorted lattice structure illustrated in Fig. 2(a); (c, d) for the cases
illustrated in Fig. 2(b). Blue and white regions represent where the
topological insulator and trivial insulator are stabilized, respectively.
In the green region at λ = 0 is the Z2 invariant is −1 and Dirac points
or Fermi arcs enclosing Dirac points are stabilized.

and 4(b) show the edge spectra at parameters represented
by open and filled circles in Fig. 3(a), respectively. One can
easily see the absence or presence of edge modes for the
trivial insulator or topological insulator. Figure 4(c) is the
edge spectrum for a topological insulator with parameters
deviating from the case for Fig. 4(b), in such a way that
the system additionally breaks the inversion symmetry. More
explicitly, we keep all the same parameters except t̃2 defined
in Eq. (3) but take t11 = t40 = 1.3, t21 = 2.5, and t30 = 3

FIG. 4. Edge spectra for trivial and topological insulating phases.
(a) Trivial insulator with parameters at the open circle shown in
Fig. 3(a). (b) Topological insulator with parameters at the filled circle
shown in Fig. 3(a). (c) Topological phase with parameters which
additionally break inversion symmetry from (b). See the text for more
details.

to break the inversion symmetry. It is noteworthy that this
topological phase is protected by time-reversal symmetry, not
by inversion symmetry. These edge states are stable under
any small perturbation as long as the perturbation respects
time-reversal symmetry. Although the simple analysis of the
Z2 invariant at TRIM points no longer works, the topological
phase survives even when the inversion symmetry is explicitly
broken as shown in Fig. 4(c).

Our analysis so far can be extended beyond the nearest-
neighbor tight-binding model and one can still use the in-
dicator Eq. (4) to explore the parameter regime where the
topological insulator is stabilized. We note that several types
of long-range electron hoppings simply enhance the nearest-
neighbor hopping parameters in each case discussed for
Eq. (4). In order to see this, let us consider the long-range
electron hopping between sublattice α and sublattice β with
magnitude δt across the relative distance (m, n) in units of the
unit cell (ax, ay). Then the Hamiltonian matrix component in
momentum space has the additional term δtei(kxm+kyn). In both
case (i) and case (ii) in Eq. (3) (see Fig. 2), any long-range
hopping connecting sublattices A and B and their symmetry-
related hopping results in t̃1,3 → t̃1,3 + δ if m + n is even and
t̃2,4 → t̃2,4 + δ if m + n is odd. Here, evenness and oddness
have nothing to do with symmetries but are related to the
choice of unit cell shown in Fig. 2. A similar analysis can
be also done for other parameters, u1, u2, and ũ.

We address another important aspect in our analysis.
Through the entire derivation, we have assumed that if the
system is gapped, the topological phases are stabilized with
a given parameter regime as shown in Eq. (4) and Fig. 3.
However, analyzing the Z2 invariants at the TRIM points
does not always guarantee an insulating phase. Rather, if the
system is an insulating phase, it diagnoses whether the trivial
insulator or topological insulator is stabilized. Thus, there
may be accidental gapless points away from the TRIM points
in the Brillouin zone. Therefore, it is possible to obtain a
negative sign of Z2 invariants even in the absence of SOC
and this originates from the odd number of Dirac cones which
are not necessarily at the TRIM points and lead to π Berry
phases [30,33]. As shown in Fig. 3, there exists a wide range
of parameter space, represented by the horizontal green line,
where the Z2 invariant is negative in the absence of SOC. In
this regime, the system must contain an odd number of Dirac
cones. For case (i) in Eq. (3), mirror symmetries guarantee
an odd number of gapless Dirac points to be along the line
between � and M. In case (ii) in Eq. (3), the fourfold rotational
symmetry enforces that the gapless point is located at point �

or M, and this indeed happens at ν = 1 and ν = 3 with the
given parameter set (horizontal green line) in Fig. 3(d).

IV. CONCLUSIONS

Based on our studies, one may expect that nonsymmorphic
symmetry breaking could give rise to the phase transition
from gapless metal to gapped trivial or topological insulating
phases. Hence, a system with strong coupling between lattice
and electronic degrees of freedom may favor spontaneous
lattice distortion. Due to the additional energy gain upon
opening the gap, the system may form charge or spin or-
der in such a way that the system breaks nonsymmorphic
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symmetries. Relevant future work would be to explore this
using the first-principle calculation. In addition, one can also
imagine a possible topological Kondo insulator in nonsym-
morphic crystals. In particular, the Kondo lattice model in
nonsymmorphic crystals can show interesting behavior in the
intermediate Kondo coupling [24]. In this case, the system
spontaneously breaks nonsymmorphic symmetry and opens a
gap where a Kondo insulator is energetically favored. There-
fore, depending on how the system breaks nonsymmorphicity,
the system can spontaneously drive the phase transition from
Kondo semimetal to topological Kondo insulator as a function

of the Kondo coupling strength. Our results provide insight
into the important role of lattice symmetries and their rele-
vance to topological phase transitions and pave the way for
exploration of relevant materials and experiments in future.
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