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Sweeping cluster algorithm for quantum spin systems with strong geometric restrictions
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Quantum spin systems with strong geometric restrictions give rise to rich quantum phases such as valence bond
solids and spin liquid states. However, the geometric restrictions often hamper the application of sophisticated
numerical approaches. Based on the stochastic series expansion method, we develop an efficient and exact
quantum Monte Carlo “sweeping cluster” algorithm which automatically satisfies the geometrical restrictions.
Here we use the quantum dimer model as a benchmark to demonstrate the reliability and power of this algorithm.
Comparing to existing numerical methods, we can obtain higher accuracy results for a wider parameter region
and much more substantial system sizes.
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I. INTRODUCTION

Frustrated quantum spin systems display rich quantum
phases such as valence bond solids [1], resonating valence
bond (RVB) states [2], spin ice [3], and some novel topolog-
ical states of matter. However, these systems always hamper
numerical approaches: exact diagonalization (ED) is limited
to finite cluster, quantum Monte Carlo (QMC) has sign prob-
lems, and density matrix renormalization group (DMRG) [4]
works only for (quasi) one-dimensional lattices. So it is chal-
lenging to study numerically three-dimensional spin liquids
and other nontrivial phases on larger lattices. Nonetheless,
such exciting quantum phases are also found in models with-
out geometrical frustration but with strong geometric restric-
tions. For example, there is no spin liquid in the J-Q model
[5], but it can be in the quantum dimer model (QDM) [6].
These models are similar, but the QDM has a strong geometric
restriction, i.e., there must be only one dimer that belongs to
one site. Quantum spin models with geometric restrictions
are hard problems even by using sophisticated numerical
approaches: It is challenging to do sampling in QMC although
it has no sign problem, and it is almost impossible to add
blocks in DMRG.

Usually, the wave function of QDM is written on the link
basis (or dimer basis). If the wave function QDM is expressed
on the local spin basis which we are familiar with, i.e., every
link corresponds to a spin site, then up spin indicates that
there is a dimer, and down spin suggests that there is a link
without dimer, as depicted in Fig. 1(a). In terms of local spin
basis, geometric restrictions require that six down spins must
surround each up spin on a square lattice. This constraint
doesn’t exist in conventional spin models, like the Heisenberg
model or more complicated spin models with four spins ring
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exchange [7]. On the other hand, in terms of dimer basis, be-
cause two plaquettes share a common link, flipping a plaquette
will affect the properties of its surrounding ones, such as from
a flippable plaquette, i.e., plaquette with two parallel dimers,
to an unflippable one as shown in Fig. 1(b). So the update of
dimer configuration is not a local effect but a global one. In
the classical dimer model, one may use a regular loop update
to change dimer configurations as illustrated in Fig. 2(a).
Connect the thick and thin links into a loop, and flip all the
links to get a new configuration which obeys the geometric
restrictions. It can be seen that the dimer model is a strongly
correlated model. Flipping a link at a location will cause links
elsewhere to be flipped to ensure geometric constraints.

QDMs play an important role as low energy effective
descriptions of quantum spin systems [6,8,9]. Some frustrated
spin models with large energy scales always can be mapped
to QDMs. Large energy scales often appear as geometric
constraints. The Rokhsar-Kivelson (RK) QDM was first in-
troduced to study quantum spin liquids, and in particular, the
physics of the short-range RVB state is probably related to
high-Tc cuprates [2,10,11]. At the RK point, its ground state
is strictly solvable and is an RVB wave function. Later it
was discovered that QDMs also provide particularly simple
realizations of topological phases of matter, including a two-
dimensional gapped phase with Z2 topological order [12] and
a three-dimensional Coulomb phase described by an emergent
U (1) symmetry [13,14]. Recently, a QDM for the metallic
state of the hole-doped cuprates was also proposed to describe
the mysterious pseudogap state at low hole density [15].

The world-line quantum Monte Carlo method maps an
n-dimension quantum system into an n + 1-D classical sys-
tem. The +1-D here means the imaginary time dimension.
If we want to develop a QMC method for spin models with
constraints such as QDM, its schematic diagram of update
must be the same as shown in Fig. 2(b): The intersection of all
imaginary time update lines and each imaginary time surface
must be a classic loop update as the blue loops in this figure.
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    (a)     (b)

FIG. 1. (a) The mapping between the link basis and local spin
basis. Every link corresponds to a spin site, then up spin indicates that
there is a dimer, and down spin indicates that there is a link without
dimer. (b) Flip a plaquette (the bottom one) affects the properties of
its surrounding plaquettes.

The problem now is how to construct an update method as
Fig. 2(b) shown following the QMC rules.

In this paper, within the stochastic series expansion (SSE)
framework [16,17], we develop an efficient QMC algorithm
which automatically satisfies the geometric restrictions. In
principle, this method works as long as the Hamiltonian
does not destroy the geometric constraints. This condition
allows us to construct novel quantum states through geometric
constraints and study them by QMC. In particular, we use
the QDM on square and triangular lattices as examples to
elaborate the details of this algorithm and show that it is
efficient by calculating the order parameter on large lattices.

II. NUMERICAL METHOD

The QDM Hamiltonian can be written as

H = −
∑
plaq

(| 〉〈 | + H.c.) + V
∑
plaq

(| 〉〈 | + | 〉〈 |), (1)

FIG. 2. (a) Classical loop update of classical dimer models. After
flipping all the links enclosed by the dashed lines, you can get a new
configuration that obeys the geometric constraints. (b) Schematic
diagram of an update for quantum dimer models. Each imaginary
time surface is a classical dimer configuration. Red lines are update
lines of world-line QMC. The blue loops are the intersection of all
imaginary time update lines and each imaginary time surface which
are the same as the classical loop in (a).

where the summations are taken over all elementary plaque-
ttes of the lattice. A dimer represents an SU (2) singlet bond
between two spins located at its endpoints, and the kinetic
term describes a resonance between the two dimerizations of a
plaquette. This seemingly simple Hamiltonian contains strong
geometric constraint which requires every site on the lattice to
be covered by one and only one dimer.

The SSE method is a generalization of Handscomb’s
power series expansion method [18] for the isotropic S = 1/2
Heisenberg ferromagnet and antiferromagnet [19–21] to a
much wider range of systems. The starting point of the SSE
method is the power series expansion of the partition function
in a particular basis {|α〉}. Generally the Sz basis is chosen for
spin systems. For QDMs we choose the dimer basis and write
a dimer basis state as |α〉 = |D1, D2, . . . , DN 〉, where Di takes
value 1(0) if there is (not) a dimer on link i.

We write the Hamiltonian in terms of plaquette operators
Hp, H = −∑Np

p=1 Hp, where p labels a specific plaquette on
the lattice. The plaquette operators are further decomposed
into two operators: Hp = H1,p + H2,p, where H1,p is diagonal
and H2,p is off-diagonal:

H1,p = −V (| 〉〈 | + | 〉〈 |) + V + C, (2)

H2,p = (| 〉〈 | + | 〉〈 |). (3)

In this Hamiltonian, we have subtracted a constant Np(V + C)
from Eq. (1), which should be kept in mind when calculating
the energy. We do this because the constant V + C makes all
matrix elements of H1,p positive provided C > max(−V, 0).
We will choose C = 1 here for simplicity.

The powers of H in the series expansion of the parti-
tion function Z can be expressed as sums of products of
the plaquette operators (2) and (3). Such a product is con-
veniently referred to by an operator-index sequence: Sn =
[a1, p1], [a2, p2], . . . , [an, pn], where ai ∈ {1, 2} corresponds
to the type of operator (1=diagonal, 2=off-diagonal) and
pi ∈ {1, . . . , Np} is the plaquette index. It is also convenient
to work with a fixed-length operator-index list with M entries
and to include the identity operator [0,0] as one of the operator
types.

The expanded partition function takes then the same form
as that for the spin models [16,17],

Z =
∑

α

∑
SM

βn(M − n)!

M!

〈
α

∣∣∣∣∣
M∏

i=1

Hai,pi

∣∣∣∣∣α
〉
, (4)

where n is the number of operators [ai, pi] �= [0, 0]. By insert-
ing complete sets of states between all the plaquette operators,
the product can be written as a product of the following
nonzero plaquette matrix elements

〈 |H1,p| 〉 = 〈 |H1,p| 〉 = 1,

〈 |H2,p| 〉 = 〈 |H2,p| 〉 = 1,

〈others|H1,p|others〉 = 1 + V ; (5)

the |others〉 here means that the plaquette p has 1 or 0
dimer. Such matrix elements are depicted in Fig. 3 where the
plaquette below (above) is the ket (bra).
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FIG. 3. Some examples of the vertices and their update prescrip-
tions. The horizontal bar represents the full plaquette operator Hp

and the lines of the squares represent the dimer states (thick and thin
lines for dimer 1 or 0) on either side of the operator. Update lines are
shown as lines with an arrow. (c) and (d) are different updates of the
same configuration.

In the Monte Carlo sampling of the partition function we
insert or delete a diagonal operator in the operator-index
sequence just like the diagonal update for spins models:
We accept the insertion/deletion according to the Metropolis
acceptance probabilities,

Pins = Npβ〈α|H1,p|α〉
M − n

, (6)

Pdel = M − n + 1

Npβ〈α|H1,p|α〉 . (7)

The presence of Np in these probabilities reflects the fact that
there are Np random choices for the plaquette p in converting
[0, 0] → [1, p] but only one way to replace [1, p] → [0, 0]
when p is given. These diagonal updates are attempted con-
secutively for all 1, . . . , M, and at the same time the state
|α〉 is updated when plaquette flipping operators [2, p] are
encountered.

Cluster (loop) updates [17,22] can accomplish substitu-
tions [1, p] ↔ [2, p] in the standard scheme applied to spin
models. There are several kinds of cluster-update schemes:
operator loop [17], directed loop [22], clusterlike loop [23],
and others to solve different models. However, due to the
geometric restrictions of the QDM, regular cluster updates
cannot be applied. The main result described below is a kind
of cluster update obeying imaginary time order to change

operators more efficiently. We call it the “sweeping cluster”
method. It works as follows.

First, choose a starting operator vertex randomly with
flippable plaquettes(FPs) on both sides, either diagonal or
off-diagonal. FP means that the plaquette contains two parallel
dimers. Next, create a cluster of four update lines, one for
every link of the plaquette, each emanating from the starting
vertex in the positive imaginary-time direction. The update
lines serve as guiding lines in the imaginary-time direction
on where to change the configuration: The dimer at the
end of each update line is toggled on/off in the proposed
new configuration as they sweep simultaneously upwards in
imaginary time. Thus the four initial update lines rotate the
two dimers of the original FP as they go along. The update
lines are extended until they meet another operator vertex
from below. Then, after updating the plaquette beneath on the
new operator vertex according to the update lines, we need
to decide how to create or destroy update lines to update the
plaquette above and continue sweeping, see Fig. 3.

For this, there are three different processes to consider: (1)
The new plaquette beneath is an FP, and the old plaquette
above is not an FP. We can then change the plaquette above
into an FP in two ways: either the resulting vertex will become
diagonal or off-diagonal. For example, we choose between
these two possibilities shown in (c) and (d) in Fig. 3 with
probability 1/2. (2) The new plaquette beneath is not an FP.
Then the change of the upper plaquette is equivalent to the
change of one underneath, as examples shown in (a), (b), (e),
and (f) in Fig. 3 and the operator should be diagonal. (3) Both
the new plaquette beneath and the old plaquette above are
FPs. Then there are two choices: The cluster update ends if
the number of total lines is four. If not, the four update lines
continue through the vertex and sweep on. The reason that
we keep the operator unaltered in the latter case is to keep a
detailed balance regarding its reversed process.

As an example, we draw Fig. 4 where (a) and (b) are the
configurations before/after cluster update. Compare the dimer
configuration between (a) and (b) at a certain imaginary time,
and it returns to loop update in the classical dimer model, i.e.,
every link passed by loop has to be flipped.

At the end of the sweeping cluster update, when the last
four update lines are deleted, we get a new configuration B
with weight WB to replace the old configuration A with weight
WA. To ensure detailed balance, we must invoke a Metropolis
accept/reject step [24] on the whole cluster update with an
acceptance probability

Paccept (A → B) = min

(
W (B)Pselect (B → A)

W (A)Pselect (A → B)
, 1

)
, (8)

where Pselect (A → B) is the probability for the sweeping
cluster update to change configuration A into B. This step
involves both the random choice of starting vertex and the
random choices in update type (1). If we denote the number
of operator vertices in configuration A with FPs on both sides
by NFP, and the same amount in configuration B by NFP + �,
then

Paccept (A → B) = min

(
NFP

NFP + �

(
2

1 + V

)�

, 1

)
. (9)
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FIG. 4. Configurations of QDM in imaginary time space. Each picture is a dimer configuration at a certain imaginary time, and the long
arrows indicate the increasing imaginary time. The “D” and “N” means a diagonal and off-diagonal operator. (a) and (b) stand for dimer
configurations snapshots before and after the sweeping cluster update, respectively. The red “D” or “N” means half-chance to be a diagonal
or off-diagonal operator and we choose the red one randomly. The circle here means an update line exists on the link, i.e., the dimer has to be
toggled on/off.

At low temperature, the first term NFP
NFP+�

≈ 1. At the RK
point, any new configuration can be accepted. That’s because
the wave function of the RK point is an equal weight overlap
of all configurations.

It is worth mentioning that about 1/10 of the clusters
maybe could not be stopped in some complex lattices or
specific parameters. We can set a cutoff length. This does
not violate the detail balance. What’s more, this method can
be generalized to other models with geometric restrictions
because all update lines sweeping along imaginary time must
obey geometric constraints. As long as the initial configura-
tion conforms to the geometric constraints and the Hamil-
tonian does not destroy the condition, our algorithm always
obeys geometric restrictions. The difference is that we may
need to calculate a new update probability in different models.

III. RESULTS

To demonstrate the potential of our method, we first show
its efficiency. All the following results were obtained under
the condition of T = 0.01 and winding sector (0,0) [25]. At
T = 0, ground state energy of (0,0) sector is lowest on both
square and triangular lattices. In fact, (0,0) sector represents
a (even, even) sector on the triangular lattice. If we want to
solve QDM by the old world-line QMC scheme, we can only
use “pair update” which means flipping two FPs face to face
[16]. This update technique is neither ergodic nor efficient, as
can be seen from Fig. 5, which shows how much the “pair
update” and our cluster update deviate from ED for the same
number of Monte Carlo steps. Our algorithm matches the
ED results much better than the “pair update” does. This is
because the “pair update” only changes a few operators which
give long autocorrelation times resulting in statistical errors
that are smaller than the real error.

It is also important to check ergodicity (in a certain wind-
ing sector) of the method by tracking the movement of the
columnar order parameter as defined in Ref. [26],

�col = 1

L2

∑
r

{
(−1)rx

[
n

(
r + x

2

)
− n

(
r − x

2

)]

+ i(−1)ry

[
n

(
r + y

2

)
− n

(
r − y

2

)]}
, (10)

where x and y are unit vectors and L is the linear system size.
The dimer number operator n(r+e/2) is 1 if the site at r and
its nearest neighbor at r+e form a dimer, and zero otherwise.
As depicted in the inset of Fig. 5, the evolution of �col in a

FIG. 5. Correctness and ergodicity (in a certain winding sector)
check: The energy difference between ED and QMC with two
distinct updates, pair update and cluster update, on triangle lattice.
Inset: Evolution of �col in a complex plane at V = 0.5 of 16 × 16
square lattices by serial computing. Brighter colors indicate higher
density.
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FIG. 6. The dimer correlation function of QDM on 12 × 12
triangle lattice at V = 0.5. We can see a

√
12 × √

12 phase clearly.
The dashed line helps us to capture the periodic structure.

complex plane is circularly distributed even far from the RK
point; here we choose V = 0.5.

On the triangular lattice, there is a novel phase called√
12 × √

12 phase between the columnar phase and RVB
phase of the quantum dimer model [27]. By employing our
algorithm, we calculate the dimer correlation function as
Eq. (11) of QDM on the triangular lattice and obtain this phase
as shown in Fig. 6. Red bonds in this figure correspond to
dimers and blue ones mean no dimer. We can clearly observe
the periodic

√
12 × √

12 structure unit encircled with the
black dashed line. According to the principle of Monte Carlo
method, the computational complexity of this algorithm is the
same order of magnitude on different lattices, because the
units are rotated plaquettes.

Hereby we define the dimer correlation function as

Ci j = 〈nin j〉 − 〈ni〉〈n j〉
〈nini〉 − 〈ni〉〈ni〉 , (11)

ni = 1(0) means link i has a (no) dimer. Furthermore, to
verify the accuracy of our algorithm, we also reproduce high
precision results for the dimer correlation functions on an
8 × 8 square lattice given in Ref. [28] which is obtained by
ED method. As depicted in Fig. 7, we don’t label the error bar
since our results are within 0.1 percent difference comparing
with the ED results.

Having established its numerical efficiency and accuracy,
we use the method to obtain high-precision results for the
QDM. The averaged modulus of the columnar order param-
eter, χcol =

√
〈|�col|2〉, as a function of V , is shown in Fig. 8

for different lattices sizes. The error bars are smaller than
the size of the symbol. If long-range columnar order exists,
χcol remains finite as L → ∞. From Fig. 8 it is seen that
χcol decreases as L gets larger. However, as shown in the
inset of Fig. 8, an extrapolation carried out for the special
value V = 0, including the results for larger systems up to
L = 160, indicates that χcol may converge to a finite value
for L → ∞.

Our method presented here allows the study of QDM on
large lattices at finite temperatures. This method is in contrast
to zero temperature projector Monte Carlo methods that have
only been applied to QDMs of smaller system sizes than
used here to keep the statistical errors under control [29–31].
Other quantum cluster algorithms for the Ising model with
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FIG. 7. The correlation function of QDM on 8 × 8 square lattice
at V = 0. Red bond (positive number) means dimer strength, blue
one (negative number) means no-dimer strength.

restrictions [32,33] can be applicable only on specific lattices
and certain parameter regions. Another drawback with these
methods is that one must “throw away” configurations which
don’t obey the geometric restrictions. This ratio may be as
high as 3/4 [32].

IV. CONCLUSIONS AND OUTLOOK

Numerical study of the quantum spin model with strong ge-
ometric restrictions is important and notoriously difficult. We
have introduced the sweeping cluster SSE method to calculate
them. The technique keeps the geometric configuration satis-
fied by sweeping vertices in imaginary-time order. It is finite

0
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FIG. 8. The columnar order parameter as a function of V on
L × L square lattices with L = 8, 16, 32, 64. Inset shows finite size
extrapolation at V = 0 including also data for L = 128 and 160.
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temperature QMC method for QDMs that samples the dimer
space directly, which provides a positive all-around solution to
this hard problem. The algorithm is valid and efficient for the
whole parameter region of QDMs in principle. It works on any
lattice geometries and can be generalized to other models such
as the quantum loop model [34]. Furthermore, all existing
numerical algorithms for the quantum dimer model can only
do sampling in the same winding sector. We have made some
progresses on realizing the sampling of all winding sectors
through improving our sweeping cluster algorithm, which will
be discussed in a future paper. Besides, our algorithm is a
world-line algorithm. This method provides us with access

to the (imaginary-time) dynamic behavior of the quantum
dimer model and other spin models with strong geometrical
restrictions.
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