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Time-evolution patterns of electrons in twisted bilayer graphene
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We characterize the dynamics of electrons in twisted bilayer graphene by analyzing the time evolution of
electron waves in an atomic lattice. We perform simulations based on a kernel polynomial technique using
Chebyshev polynomials; this method does not requires any diagonalization of the system Hamiltonian. Our
simulations reveal that interlayer electronic coupling induces an exchange of waves between the two graphene
layers. This wave transfer manifests as oscillations of the layer-integrated probability densities as a function
of time. For the bilayer case, it also causes a difference in the wavefront dynamics compared to monolayer
graphene. The intralayer spreading of electron waves is irregular and progresses as a two-stage process. The first
one, characterized by a well-defined wavefront, occurs in a short time—a wavefront forms instead during the
second stage. The wavefront takes a hexagonlike shape with the vertices developing faster than the edges. Though
the detail spreading form of waves depends on initial states, we observe localization of waves in specific regions
of the moiré zone. To characterize the electron dynamics, we also analyze the time autocorrelation functions. We
show that these quantities exhibit beating modulation when reducing interlayer coupling.
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I. INTRODUCTION

Stacking two-dimensional (2D) materials [1] is a novel
method based on the lego principle for creating new van
der Waals heterostructures with well-controlled properties [2].
However, according to the principles of this method, the
successive layers are only stacked vertically, maintaining the
same orientation as the layer below. An important step for-
ward comes from allowing a change in the relative orientation
of the different stacked layers. The simplest system allowing
this new stacking method is twisted bilayer graphene (TBG).
This system, which has been receiving a great deal of attention
recently, is composed of two graphene layers stacked in a gen-
eral manner [3]. It was predicted that twisting two graphene
layers allows for a strong tuning of its electronic proper-
ties [4–8]. Interestingly, a very narrow isolated energy band
around the charge-neutrality level may appear in the spectrum
of TBG configurations with tiny twist angles [6]. Recently,
Cao et al. have demonstrated experimentally that this narrow
flat band is responsible for several strongly correlated phases,
including an unconventional superconducting phase and a
Mott-like phase [9,10]. Theoretically, it was shown by Zou
et al. that there are obstructions involving the symmetries
of the TBG lattice in constructing effective continuum and
tight-binding models to characterize the dynamics of electrons
occupying the flat band [11,12].

Generally, stacking two layered materials may result in
a system of reduced symmetry compared to the two con-
stituent lattices. The atomic configurations of TBG can be
characterized by an in-plane vector τ and a twist angle
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θ defining, respectively, the relative shift and rotation be-
tween the two graphene lattices. However, it is shown that
only the twist angle governs the commensurability of the
stacking, regardless of the twisting center [5,11,13,14]. In
particular, the lattice alignment is commensurate only when
the twist angle takes the values given by the formula θ =
acos[(3m2 + 3mr + r2/2)/(3m2 + 3mr + r2)], in which m, r
are positive coprime integers [5,11,13–16]. When the stacking
is commensurate, the translational symmetry of the TBG
lattice is preserved, but it usually defines a large unit cell,
especially for small twist angles θ . The electronic calculation
for such TBG configurations by brute force diagonaliza-
tion is therefore extremely expensive in terms of computa-
tional resources [17–21]. Furthermore, the electronic calcula-
tions based on the time-independent Schrödinger/Kohn-Sham
equation combined with the Bloch theorem are not applicable
for incommensurate configurations because of the loss of the
lattice translational invariance. In this work, we show that
methods based on the time-dependent Schrödinger equation in
real space are a powerful alternative to treat the TBG system
of arbitrary twist angles.

Following the time evolution of wave packets in real space
is a useful technique to simulate the dynamics of electrons.
This method was used for studying the case of monolayer
graphene and special TBG configurations. For instance, Rusin
and Zawadzki [22] and Maksimova et al. [23] used the kicked
Gaussian wave packet to analytically study the different fea-
tures of the zitterbewegung motion of electrons in various
carbon-based structures, including carbon nanotubes. In these
works, the wave-packet dynamics was governed by an effec-
tive Dirac Hamiltonian, thus the discrete nature of the atomic
lattice was not taken into account. Márk et al. [24], however,
described the evolution of the kicked Gaussian wave packet in
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a potential field constructed from an atomistic pseudopotential
model. This approach allows us to take into account the
distortion of the Dirac cones at high energy, and thus shows
the anisotropic dynamics of electrons in the graphene lattice.
In a tight-binding framework, Chaves et al. [25] used the
discrete Gaussian form to define a wave packet and showed
some quantitative differences in the zitterbewegung motion
of an electron described by the effective Dirac model and
the tight-binding description. Xian et al. [26] also used the
discrete Gaussian wave packet to simulate the transport of an
electron in a particular commensurate TBG. They showed the
existence of six preferable transport directions along which
the wave packets are not broadened; these are along the di-
rection perpendicular to the transport direction. In particular,
they discussed the behavior of the layer-integrated probability
density in each layer. They interpreted its behavior as similar
to the neutrino-like oscillations where the interlayer coupling
plays the role of mixing Dirac fermions in each layer: the two
neutrino flavors.

It is well known that the honeycomb structure of graphene,
as the chiral interlocking of two triangle sublattices, is respon-
sible for all the peculiar properties of graphene and related
systems. Accordingly, the electronic properties of graphene
can be described using a formulation in terms of relativistic
fermions [27]. This formulation is the same one used by
Schrödinger to show the zitterbewegung phenomena as a
result of the interference of states at positive and negative
energies [28,29]. The two-component spinor structure of the
low-energy electron states in graphene is due to the unit cell of
the honeycomb lattice constituted by only two carbon atoms.
Stacking two graphene sheets gives rise to the diversity of the
TBG configurations. It is therefore natural to wonder about the
manifestation of the atomic lattice structure on the dynamical
behavior of electrons, particularly in the TBG systems with
the lack of translational symmetry.

In this work, we address the dynamics of electrons in the
real lattice of generic TBG configurations using the tight-
binding approach, and we try to relate it to the lattice sym-
metries. Though the wave-packet method has been success-
fully used to demonstrate the optical analogy of electrons in
graphene [30–34], its definition depends explicitly on some
parameters and therefore it cannot provide a full picture of
the electronic properties of a system. Accordingly, we will
analyze the time evolution of localized electrons occupying
the 2pz orbitals of a carbon atom instead of Gaussian wave
packets, whose definition depends on a particular wave vector
and an initial position. Within this approach, we can study
the changes in the evolution pattern of electron wave func-
tions with respect to the details of the lattice structure. By
artificially tuning the value of the parameters encoding the
hybridization of the 2pz orbitals between two graphene layers,
we study the role of interlayer coupling on the time evolution
of electron states. To study the time evolution of a state,
we use the formalism of the time-evolution operator Û (t ),
i.e., |ψ (t )〉 = Û (t )|ψ (0)〉; we employ the kernel polynomials
method to approximate Û (t ) [35]. This method is efficient
and useful to work directly in the lattice space of TBG
configurations with arbitrary twist angles. Technically, we use
the Chebyshev polynomials of the first kind to approximate
the operator Û (t ). Our implementation scheme is efficient

because it accounts for the recursive relations of these poly-
nomials, and, as a matter of fact, we are never performing a
numerical diagonalization of the system Hamiltonian. Within
this method, we can incorporate the details of a discrete
atomic lattice into the dynamical properties of the 2pz elec-
trons of the TBGs. We shall study the intralayer development
of the 2pz orbitals and the transfer of the probability density
from one graphene layer to the other. The local information of
the dynamics is studied in the time domain.

The outline of this paper is as follows. In Sec. II, we
present an empirical tight-binding model, which allows us to
characterize the dynamics of the 2pz electrons in different
levels of hopping approximation, i.e., the nearest-neighbor
(NN), next-nearest-neighbor (NNN), and next-next-nearest-
neighbor (NNNN), and we also present the method for the
investigation of the time evolution of the states as well as
the calculation for several physical quantities characterizing
the dynamics of electrons. In Sec. III, we present results
for various graphene systems: single-layer graphene, TBG in
the AA and AB configuration, and finally for various TBGs
with generic twist angles. Finally, we present conclusions in
Sec. IV.

II. CALCULATION METHOD

In this section, we present the empirical method for defin-
ing the tight-binding Hamiltonian for TBG. Subsequently, we
present the method for evaluating the time evolution of a
state, and the calculation of the probability density and the
density of the probability current based on the kernel poly-
nomial method [35]. Furthermore, we present also a method
for evaluating the time autocorrelation function involving the
time evolution of a state. This quantity provides insight into
the electronic structure of the system under study.

A. The empirical tight-binding Hamiltonian

The Hamiltonian defining the dynamics of the 2pz elec-
trons reads [36]

HTBG =
2∑

ν=1

⎡
⎣∑

i, j

tν
i j ĉ

†
νiĉν j +

∑
i

V ν
i ĉ†

νiĉνi

⎤
⎦

+
2∑

ν=1

∑
i j

tνν̄
i j ĉ†

νiĉν̄ j . (1)

In this Hamiltonian, the terms in the square brackets define
the hopping of the 2pz electron in two graphene monolayers
(the index ν denotes the layer), with tν

i j the intralayer hopping
energies between two lattice nodes i and j, and V ν

i the on-site
energies that are generally introduced to include local spatial
effects. The creation and annihilation of an electron at a layer
“ν” and a lattice node “i” are encoded by the operators ĉ†

νi
and ĉνi, respectively. The hopping of an electron between
two layers is described by the last term of the Hamiltonian
characterized by the hopping parameters tνν̄

i j . The notation ν̄

implies that ν̄ �= ν. The values of the hopping parameters tν
i j
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and tνν̄
i j are obtained via the model [37,38]

ti j = V 0
ppπ exp

(
−Ri j − acc

r0

)[
1 −

(
Ri j · ez

Ri j

)2
]

+ V 0
ppσ exp

(
−Ri j − d

r0

)(
Ri j · ez

Ri j

)2

. (2)

This model for the hopping parameters is constructed through
two Slater-Koster parameters Vppπ ≈ −2.7 eV and Vppσ ≈
0.48 eV. These parameters characterize the hybridization of
the nearest-neighbor 2pz orbitals in the intralayer and inter-
layer graphene sheets, respectively. The hopping parameters
decay with exponential law as a function of the distance
between the lattice nodes Ri j = |Ri j |; Ri j is the vector con-
necting two lattice sites i and j, ez is the unit vector along
the z-direction perpendicular to the two graphene layers, and
d ≈ 0.335 nm is the distance between two graphene layers.
Accordingly, when i and j belong to the same layer, Ri j

is perpendicular to ez so that we obtain the intralayer hop-
ping tν

i j = Vppπ exp[−(Ri j − acc)/r0], otherwise we get tνν̄
i j .

The other parameters are defined as r0 ≈ 0.184
√

3acc, an
empirical parameter characterizing the decay of the electron
hopping, and acc ≈ 1.42 Å, the distance between two nearest
carbon atoms in the graphene lattice. In this work, we are
interested in the intrinsic properties of TBG, so we simply set
the on-site energies V σ

i to be zero.

B. The formalisms for the time evolution of a state

Let us start by considering an initial state |ψ (0)〉 at the time
t = 0. This state can evolve in time to |ψ (t )〉 by acting on it
with the time-evolution operator Û (t ) = exp(−iĤt/h̄):

|ψ (t )〉 = Û (t )|ψ (0)〉 = exp(−iĤt/h̄)|ψ (0)〉. (3)

This equation is the formal solution of the time-dependent
Schrödinger equation, where Ĥ denotes the Hamiltonian op-
erator. We account for the discrete nature of the atomic lattice
by describing the system within a tight-binding approximation
presented in the Sec. II A.

In writing the tight-binding Hamiltonian (1), we use a
localized basis set {| j〉, j = 1, . . . , N} to specify the repre-
sentation. Here, ket | j〉 denotes the 2pz orbital located at the
lattice node j, and N is the total number of lattice nodes of the
whole system. We can express a state |ψ (t )〉 in this basis set
in the following way:

|ψ (t )〉 =
N∑

j=1

g j (t )| j〉, (4)

where g j (t ) determines the probability amplitude of finding
an electron at node j at time t . The probability density
Pj (t ) = |〈 j|ψ (t )〉|2 = |g j (t )|2 is the quantity determining the
dynamics of the electron states. The value of gj (t ) is obtained
by solving the time-dependent Schrödinger equation or equiv-
alently by performing the calculation for Eq. (3).

In this work, we evaluate the time-evolution operator Û (t )
by expanding it in terms of the Chebyshev polynomials of the
first kind, Qm(x) = cos[m arcos(x)] [35]. As first, we rescale
the spectrum of the Hamiltonian Ĥ to the interval [−1, 1].

This scaling is obtained by replacing Ĥ = W ĥ + E0, wherein
W is half of the spectrum bandwidth, E0 is the central point of
the spectrum, and ĥ is the rescaled Hamiltonian. Practically,
we use the power method to estimate W . The time-evolution
operator is therefore expanded regarding the Chebyshev poly-
nomials as follows:

Û (t ) = eiE0t/h̄
+∞∑
m=0

2

δm,0 + 1
(−i)mBm

(
W t

h̄

)
Qm(ĥ), (5)

where Bm is the m-order Bessel function of the first kind, and
δm,0 is the Kronecker symbol. We define the so-called Cheby-
shev vectors |φm〉 = Qm(ĥ)|ψ (0)〉, which can be calculated
using the recursive relation

|φm〉 = 2ĥ|φm−1〉 − |φm−2〉, (6)

with |φ0〉 = |ψ (0)〉 and |φ1〉 = ĥ|φ0〉. Thus, the state |ψ (t )〉 is
formally obtained via

|ψ (t )〉 = eiE0t/h̄
+∞∑
m=0

2

δm,0 + 1
(−i)mBm

(
W t

h̄

)
|φm〉. (7)

This equation is exact, but we cannot numerically perform
the summation of an infinite series. We therefore approximate
|ψ (t )〉 by a finite series of M terms. Unfortunately, this trunca-
tion breaks the preservation of the norm of |ψ (t )〉. Practically,
the number of terms M contributing to the summation in
Eq. (7) is chosen to guarantee the norm conservation of |ψ (t )〉
in a finite, but sufficiently long, evolution time. For instance,
in order to evolve a state in a square TBG sample with 100 nm
size for an evolution time of 50 fs, M should be about 1200
[36].

To define the initial condition for the time-dependent
Schrödinger equation, one usually assumes the wave function
at t = 0 of a Gaussian form [39],

ψk(r, t = 0) = 1

σ
√

π
exp

[
− (r − r0)2

2σ 2

]
φk0 (r).

In this Gaussian form, φk0 (r) can be simply chosen as a plane
wave exp(ik0r) or generally as a Bloch function defining a
propagating electron state [26]. The Gaussian prefactor modu-
lates the extension of the function φk0 (r) localized around the
position r0 with a width of σ . The advantage of this choice is
that it allows simulating both the spreading and the moving
of the wave centroid. However, the particular behavior of
these phenomena varies concerning σ and k0, two parameters
defining a certain initial state.

In this work, we follow a different strategy: we choose
a lattice node randomly, then we select the corresponding
2pz orbital to be the initial state. It means that we choose
the coefficients g j (t = 0) = δi jeiφ , where φ is a random real
number, and thus

|ψ (t = 0)〉 =
N∑

j=1

δi je
iφ | j〉 = eiφ|i〉. (8)

While this choice does not allow us to simulate the displace-
ment of the wave centroid, it does enable us to study the whole
energy spectrum of the 2pz electron through the spreading of
waves in the various graphene systems.
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To quantify the electron transport, we calculate the expec-
tation value of the probability current operator. In the tight-
binding description, the probability current operator reads
[36]

Ĵ = i

h̄

N∑
j,k=1

(r j − rk )t jk ĉ†
j ĉk . (9)

Its expectation value on the state |ψ (t )〉 is expressed as
〈Ĵ〉(t ) = ∑N

j=1 J j (t ), where J j (t ) is interpreted as the density
of the probability current:

J j (t ) = −1

h̄

∑
i

(r j − ri )Im[ti jg
∗
i (t )g j (t )]. (10)

The study of the time evolution of a state gives us informa-
tion on the electronic structure of the system. Given an initial
state |ψ (0)〉, the time autocorrelation function Cψ (t ) is defined
as the projection of |ψ (t )〉 on its initial state |ψ (0)〉:

Cψ (t ) = 〈ψ (0)|ψ (t )〉. (11)

In the tight-binding representation with the initial states cho-
sen as localized at a particular lattice node |ψ (0)〉 = |i〉,
the time autocorrelation Ci(t ) = 〈i|ψ (t )〉 = gi(t ), i.e., it is
equal to the local probability amplitude at node i. Its power
spectrum, defined as the Fourier transform of Ci(t ), is the
local density of states of an electron in the considered system
[35,36],

ρi(E ) = s

π h̄
a
Re

[∫ +∞

0
dt eiEt/h̄Ci(t )

]
, (12)

where 
a is the volume assigned for each atom in the lattice,
and s = 2 counts the spin degeneracy. We can obtain the
system’s total density of states from Eq. (12) by replacing
Ci(t ) by an ensemble average of Ci(t ) over a small set of initial
states |i〉. We implemented this procedure for the first time in
Ref. [36], and results for an extremely tiny twist configuration
of TBG were in agreement with the approach of continuum
models [7].

III. RESULTS AND DISCUSSION

In this section, we present results for the three mentioned
physical quantities introduced in the previous section: the
probability density Pj (t ), the density of probability current
J j (t ), and the time autocorrelation function Ci(t ), to char-
acterize the dynamics of electrons in monolayer and bilayer
graphene systems.

A. Monolayer graphene

To better understand the physics of TBG, we start by ana-
lyzing the more straightforward case of monolayer graphene.
We performed the calculation for the tight-binding Hamil-
tonians accounting for the NN, NNN, and NNNN hopping
terms. As we shall see later, the three models result in different
quantitative behavior for the time autocorrelation function, but
they have the same spreading pattern of the electron wave
function; thus for simplicity, we will present results only for
the NN case.

We present in Fig. 1 the distribution of the probability
densities Pj (t ) = |g j (t )|2 and the probability current densities
J j (t ) obtained for the spreading of a 2pz state initially located
at a single lattice node. At each lattice node, we use the solid
circles and the arrows to represent the probability densities
and the probability current densities, respectively. The circle
radius is proportional to the value of Pj (t ), which is normal-
ized at each t to the maximal value of the set {Pj (t )},∀ j ∈
{1, . . . , N}. Similarly, the arrow length is proportional to the
length of J j (t ), which is also scaled appropriately. The length
and the direction of the arrows indicate the tendency for the
probability density at a lattice node to transfer to the neighbor
lattice nodes.

The time frames taken at t = 0.1 and 0.2 fs show that the
state first spreads to the three nearest neighbors oriented by the
angles π and ±π/3, i.e., along the direction of the armchair
lines (highlighted in red in Fig. 1; frame with t = 0.8 fs).
The instants t = 0.4 and 0.6 fs show that the probability
current density tends to flow from the central point to the
outside along the three directions determined by the angles
0 and ±2π/3, i.e., also along the direction of the armchair
lines. However, at t = 0.8 fs the dynamic shows clearly
six dominant spreading directions of the probability density,
oriented along the directions of the angles ±π/6, ±π/2,
and ±5π/6, i.e., along the zigzag lines of the honeycomb
lattice (cf. Fig. 1; frame with t = 0.8 fs). For the other time
frames, at t ∈ [1, 2] fs, we find a continuous spreading of the
electron wave function, and we observe the formation of a
wavefront with a hexagonal shape. After 2 fs, the wavefront is
well established with the corners heading the directions of the
zigzag lines.

To quantify the pattern of the wave spreading, we directly
inspected the distribution of both the probability densities
Pj (t ) and the probability current densities J j (t ) on the lattice
nodes. We learned that the distribution of these two quantities
obeys the features of the point group D3h. These symmetry
properties are not identical to those of the graphene lattice,
described by the symmorphic space group p6mm, and thus
the point group D6h [40]. However, we should remember
that D3h is a subgroup of D6h, and is the point group of the
lattice node. We then conclude that the spreading pattern of
electrons depends on not only the lattice symmetry, but also
the symmetry of the initial state.

To get quantitative information on the energy spectrum
of the π -bands from the observation of the spreading of a
2pz state, we calculated the time autocorrelation function
Ci(t ) [cf. Eq. (11)]. The Fourier transform of Ci(t ) provides
the local density of states at the lattice node i [36]. In our
calculation, we found that the time autocorrelation function,
despite being a complex function in general, gets purely real
when we consider a model with only NN hopping. In Fig. 2
we show the value of Ci(t ) obtained by invoking the three
hopping models. The result shows the oscillating behavior
of Ci(t ) as a function of time with decreasing magnitude.
This behavior implies the declining of the correlation at
long evolution times. For the NN hopping approximation,
the Hamiltonian has only one parameter tcc = V 0

ppπ , which
sets the energy scale. In this case, we find that Ci(t ) is
periodic with the oscillation pattern mentioned in Fig. 2. By
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FIG. 1. Spreading of the distribution of electron probability densities (in red) in the monolayer graphene taken at several time moments.
The arrows denote the vectors of probability current density (in green). The blue lines denote the three mirror-symmetry planes σv of the
hexagonal lattice. We highlight the direction of the armchair and zigzag lines in red in the frame with t = 0.8 fs.

changing the value of V 0
ppπ and measuring the corresponding

frequency f , we verified that the frequency is determined
by f = V 0

ppπ/(2π h̄) = 6.5 × 1014 Hz. By introducing in the
Hamiltonian higher-order hopping processes, the behavior of
Ci(t ) becomes complex, and we cannot find a clear dominant
frequency associated with any of the higher-order hopping
terms. Fourier transforming Ci(t ) via Eq. (12) results in the
local density of states, which shows the electron-hole sym-
metry in the NN and NNNN model, but not in the NNN
model [36].

B. AA- and AB-stacking bilayer graphene

We will analyze in this section two particular cases of
twisted bilayer graphene: AA and AB stacking. One should
notice that we generate the TBG configurations by starting
from the AA-stacking configuration and then twisting the
two graphene layers about a vertical axis going through a
pair of carbon atoms. Accordingly, the AA- and AB-stacking
configurations are characterized by a twist angle of 0◦ and
60◦, respectively. The point group symmetry of the AA-
and AB-bilayer graphene is related to that of the monolayer.
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FIG. 2. The real and imaginary part of the autocorrelation func-
tion Ci(t ) = 〈i|ψ (t )〉 calculated from three hopping models: the NN
in red, the NNN in green, and the NNNN in blue. The red rectangle
box identifies the typical oscillation pattern predicted by the NN
model. The inset shows the continuous variation of the real part of
Ci(t ) in a longer evolution time.

In other words, the symmetry of the AA-stacking bilayer
graphene is characterized by the symmorphic space group
p6mm, generated by the lattice translation and the point group
D6h, whereas the AB-stacking system is characterized by the
symmorphic space group symmetry P3̄m1 [41], generated by
the lattice translation and the point group D3d [42].

We start by considering the interlayer transfer of an elec-
tron wave function: we calculate the layer-integrated proba-
bility densities. This quantity is expressed as the summation
of the probability density in each layer:

Pα (t ) =
∑

j∈(Lα )

Pj (t ) ∀α ∈ {T,B}. (13)

In Fig. 3, we present the variation of PT and PB as a function
of the time evolution. The layer-integrated probability density
between the two graphene layers presents an oscillatory pat-
tern as a function of time; this behavior is similar to the phe-
nomenon discussed by Xian et al. as the neutrino-like oscilla-
tion [26]. In the case of the AA-stacking configuration, we ob-
serve how the wave on the top layer quickly penetrates into the
bottom one compared to the AB-stacking configuration. Af-
ter almost 1.3 fs, the transfer reaches a maximum of 54%
before increasing yet again. We notice how different the
oscillatory behaviors for the AA- and AB-stacking configu-
rations are from each other, although the distance between
the two graphene layers in the two systems d = 3.35 Å is
the same. The hybridization of the 2pz orbitals between the
two graphene layers is also characterized by the same energy
value of V 0

ppσ = 0.48 eV. To analyze the role of the interlayer
coupling on the electron dynamics in the two-layer systems,
we investigate the effects of tuning the interlayer coupling
parameter V 0

ppσ on the layer-integrated probability densities.
In Fig. 3 we present these probabilities obtained by setting
V 0

ppσ = 0.48 eV (the solid curves) and 0.12 eV (the dot-dashed
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T  B
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FIG. 3. Neutrino-like oscillation of the layer-integrated proba-
bility density PT/B(t ) for the (a) AA- and (b) AB-stacking bilayer
graphene. Data plotted for two values of the Slater-Koster parameter
V 0

ppσ = 0.48 eV (the solid curves) and 0.12 eV (the dot-dashed
curves). Only data in the interval of (0, 30) fs are displayed to zoom
in the oscillations. The vertical lines highlight the times τT→B and
t = 1.3 fs discussed in the text.

curves). We observe how the reduction of V 0
ppσ leads to an

increase in the characteristic transfer time, which we define as
the evolution time τT→B needed to transfer 50% of the wave
from the top layer to the bottom one. Calculation for various
values of V 0

ppσ shows that τT→B ∝ 1/V 0
ppσ . At very long evo-

lution time, each graphene layer supports about one-half of
the initial waves, and the layer-interchange transfer becomes
almost stationary with very weak oscillations in time. It is
worthwhile to note that, for the AB-stacking configuration,
we distinguished two cases of the initial state |i〉, one at the
A-atom on top of the B-atom in the bottom layer, and the other
at the B-atom on the center of the hexagonal ring underneath.
We found that the layer-integrated probability densities in the
two cases are the same, but the in-plane wave-spreading pat-
terns are different, as discussed in next paragraphs. We now
analyze the features of the intralayer spreading patterns in the
AA- and AB-configurations. In Figs. 4 and 5 we present the
evolution of a 2pz state initially localized at a lattice node in
the top layer of the two AA- and AB-stacking configurations
of bilayer graphene, respectively. We use colors to represent
the probability densities on two graphene layers, specifically
red for the top layer and black for the bottom one. Similar
to the case of monolayer graphene, the radius of the solid
circle at each lattice node is proportional to the value of Pj

normalized at the maximum value for each value of time.
By comparing the wavefront spreading behavior of the

electron wave function in the monolayer graphene and that
in the AA-stacking configuration for the evolution time t <

1.3 fs, we realize that the distribution of Pj (t ) on the top and
bottom graphene layers is similar to the case of monolayer
graphene, but it becomes different for larger evolution time.
It should be noticed from Fig. 3(a) that in the duration of
(0, 1.3) fs, the top layer-integrated probability density PT
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FIG. 4. Spreading of the electron probability density for the AA-stacking configuration taken at several time moments. Lattice nodes in
red (black) belong to the top (bottom) graphene layer. The blue lines in the frames at t = 1.3 and 3.2 fs denote the three symmetrical mirrors
σv of the lattice.

decreases monotonically. This means that the wave continues
transferring to the bottom layer and achieves the maximal
transferring percentage at 1.3 fs. When continuing to increase
t , the part of the wave in the bottom layer transfers back to
the top one. It results in the oscillation behavior of PT(t )

and PB(t ) similar to a Fabry-Pérot resonator. From Fig. 3(a)
we can determine a set of characteristic time intervals, e.g.,
(0, 1.3) fs, (2.4, 4.6) fs, (6.1, 7.3) fs, and so on, in which
the wave transfers predominantly from the top to the bottom
layer; alternatively, in the complementary time intervals the
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FIG. 5. Spreading of the electron probability density for the AB-stacking configuration taken at several time moments. The initial state |i〉
is set at the position of an A-atom of the top graphene layer, which is on top of a B-atom of the bottom layer. Lattice nodes in red (black) belong
to the top (bottom) graphene layer. The blue lines in the frames at t = 1 and 3.1 fs denote the three symmetrical mirrors σv of the lattice.
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wave transfers in the opposite direction. We found that after
1.3 fs, the distribution of Pj (t ) of monolayer graphene is not
coincident to that on the top or the bottom layers of the bilayer
system. This difference is a result of the combination of the
intralayer and interlayer spreading induced by the hopping
terms in the Hamiltonian (1). The wavefront at long evolution
time presents a hexagonal shape similar to the monolayer
graphene case. A direct inspection, however, shows that the
form of the spreading pattern obeys only the point group C3v .
Remember that the symmetry of a node in the AA lattice is
characterized by the point group D3h, but the successive inter-
layer penetration of the electron wave lowers the symmetry of
the distribution of probability densities to the C3v symmetry.

For the AB-stacking configuration, we use the same tech-
nique for displaying data as for the AA configuration. From
Fig. 3(b), we learn that for this configuration, the charac-
teristic time τT→B ≈ 7 fs is larger than for the AA one.
We found that when t < 1.3 fs, the probability densities on
the top layer are generally larger than those on the bottom
one. The distribution of Pj (t ) on the top layer is identical to
that of the monolayer graphene, but a quantitative difference
becomes apparent when t ∈ (1.3, 2.1) fs. When t > 2.1 fs,
the probability densities on the bottom layer become compa-
rable to those on the top layer and different from those on
the monolayer graphene in both quantitative and qualitative
aspects. Referencing Fig. 3(b), the interval (0, 1.3) fs is the
one in which the wave monotonically transfers from the top
layer to the bottom one. Though the percentage of the wave
transfer at t ≈ 1.3 is smaller than 50%, successively the wave
on the bottom layer transfers back to the top one. When this
process occurs, it causes a change in the distribution of the
probability densities from that of monolayer graphene. From
Fig. 3(b) we determine the sets of time intervals (0, 1.3) fs,
(2.2, 3.1) fs, (3.9, 6.6) fs, and so on, in which the wave
transfers predominantly from the top to the bottom layer, and
in the complementary intervals where the wave transfers in the
opposite direction. At long evolution time, the wave spreading
is also characterized by a wavefront in the hexagonal shape
that, similar to the AA-lattice case, reflects the plane symme-
tries of the lattice nodes in the AB-stacking system, i.e., the
group C3v , a subgroup of the point group D3d .

We also calculated the time autocorrelation function Ci(t )
for the AA- and AB-stacking configurations. In Fig. 6 we
present the data for Ci(t ) as a function of the time evolution for
the two different parameter models: V 0

ppσ = 0.48 and 0.12 eV.
We observe, in general, the intricate behavior of Ci(t ) in the
two cases, which are different from each other. Interestingly,
the figure shows the beating behavior of the autocorrelation
functions when considering V 0

ppσ = 0.12 eV. Our calculation
shows that the beating behavior does not appear clearly with
V 0

ppσ = 0.48 eV, but it does when decreasing the value of V 0
ppσ

to the values smaller than about 0.3 eV. We also realize that
the beating oscillation behavior is similar to the oscillation
features of the time autocorrelation function of the monolayer
graphene. It is expected because we should obtain a picture of
the two independent graphene layers in the limit of V 0

ppσ = 0.
This observation reflects the fact that the interlayer coupling
plays the role of modulating the electronic states between
the two graphene layers. When a wave is spreading in one
layer, it penetrates partially into the other and thus creates
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FIG. 6. Time autocorrelation functions Ci(t ) of the AA- (red) and
AB-stacking (blue) bilayer graphene calculated using the NN model
with V 0

ppσ = 0.48 and 0.12 eV.

two waves spreading in the two layers. The coupling between
the two layers induces the exchange of wave between the two
layers and forms the wave-interference pattern in the space
limited by the two layers. The interference is sensitive to the
alignment of the two atomic lattices. It thus explains the typi-
cal evolution features of electronic states in particular atomic
configurations. Though the behavior of the autocorrelation
functions versus the time is complicated, its Fourier transform
results in the density of states of these two configurations
[7,36].
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FIG. 7. Layer-integrated probability densities PT/B(t ) in the top
(solid lines) and bottom (dot-dashed lines) layers of three TBG
configurations with the twist angles of 5◦ (green), 2.5◦ (blue), and 1◦

(red). Panels (a) and (b) are for the cases in which the initial state
|2pz〉 is located at the central point of the AA0-like and AB-like
region, respectively. The parameter Vppσ = 0.48 eV. The vertical
lines highlight the time t = 1.5 fs discussed in the text.
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FIG. 8. Spreading of the electron probability density in the TBG configuration with θ = 2.5◦ taken at several time moments. The initial
state |ψ (0)〉 = |i〉 located in the center of the AA-like region in the moiré zone. Lattice nodes in red (black) belong to the top (bottom) layer.
The blue hexagon denotes the moiré zone. The characters AAi (i = 1, . . . , 6), ABi, and BAi (i = 1, 2, 3) remark the AA- and AB-like regions
in the moiré zone.

C. Twisted bilayer graphene

Regarding the atomic structure, twisted bilayer graphene is
a generalization of the AA- and AB-stacking bilayer systems
with a generic rotation angle between the two graphene layers.
In general, the alignment between the two graphene lattices in
the TBG systems is not commensurate, i.e., not defined by a
unit cell, and thus the lattice has very low symmetry. In the
case of commensurate stacking, the space group characteriz-
ing the TBG lattice is determined to be either p3m1 or p6mm
depending on both the twist origin and the twist angles [11].
Interestingly, the generic TBG lattice shows a special moiré
structure of the hexagonal form. In each moiré zone, we can
find regions in which the atomic arrangement is close to the
AA- and AB- or BA-stacking configurations. We illustrate
the moiré zone in Fig. 8 with the blue hexagon where we
marked the AA- and the AB-like regions [cf. the frame with
t = 0.2 fs]. The AB-like regions are of two distinct types: one
in which the A sublattice is in the top layer, and another in
which the B sublattice is in the top layer. The AA-like and the
two AB-like regions form two interpenetrating superlattices, a
triangular and a honeycomb one, respectively. We investigated

the electron time evolution in a series of TBG configurations
with different twist angles. The qualitative behavior of the
wave evolution is similar for the different twist angles we
have investigated, thus we are going to present results for
the case of two incommensurate twist angles 2.5◦ and 5◦.
The interlayer coupling always induces the wave transfer
between the two graphene layers. Figure 7 shows that similar
to the case of the AA-configuration, the transmission of the
electron wave function from the top layer to the bottom
one reaches a maximal value in about 1.5 fs. To illustrate
the wave transfer between two graphene layers, we study the
variation of the layer-integrated probability densities on time.
Figure 7 shows the oscillation behavior of the layer-integrated
probability densities for three incommensurate TBG config-
urations with a twist angle of 5◦ (green), 2.5◦ (blue), and 1◦
(red). (The last one is close to the first magic angle θ ≈ 1.05◦
[6].) Furthermore, we investigated how the layer-integrated
probability densities change by changing the initial position:
the panels (a) and (b) are for the cases in which the initial
state is localized in the center of the AA0-like and AB-like
regions, respectively. We observe that the percentage of the
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wave transmitted from the top layer to the bottom one depends
on the twist angle. For a short time of evolution, t < 5 fs,
the percentage is larger than 50% in the configuration with
the twist angle of 5◦. However, after 5 fs, there is about
60% of the wave propagating in the top layer and about
40% propagating in the bottom one. The minimal oscillation
of the green curves PT/B(t ) implies a very weak transfer of
wave between the two layers. This dynamical observation
supplements the explanation of the effective decoupling of
the two graphene layers in the TBG configurations with large
twist angles [6,43,44]. In other words, the two parts of the
wave become nearly independently propagating on the two
graphene layers after a long time evolution. For the TBG
configurations with much smaller twist angles, e.g., 2.5◦ and
1◦, after about 10 fs, the fluctuation of the blue and red curves
PT/B(t ) is always significant around the value of 50%. It im-
plies a strong interaction between the two wave components
when propagating in the TBG lattices with small twist angles.

We now present in Fig. 8 the intralayer spreading of a 2pz

state initially located at the central site of the AA-like region
through the distribution of the probability densities Pj (t ). The
time evolution is illustrated similarly to the case of the AA-
and AB-stacking configurations. From the figure we observe
that during the time interval (0, 2) fs, the initial state spreads
similarly to case of the AA-stacking lattice, i.e., extending
along the six preferable directions, and then a hexagonal
wavefront is established. In this time interval, the wavefront
takes the typical hexagonal shape, and it is still within the
AA-like region. For time longer than t = 3 fs, we observe
how the wavefront corners enter the AB-like regions, and the
wavefront edges reach the transition regions between the AA j

and AA0 regions. At this time, the probability densities start
to be redistributed: they become concentrated in the AB-like
regions as the six clusters seen in the time frame at t = 4 fs.
These clusters then move in the transition regions between the
AAi and AAi+1 regions, i.e., along the zigzag lines connecting
the AB-like regions in the first moiré zone to the other AB-like
regions in the next moiré zones, while the probability densities
on the edges of the hexagonal wavefront become scattered into
the AAi+1 (i �= 0) regions; see the time frames at t = 5, 6, and

7 fs. Though the wavefronts on the two graphene layers take
the same hexagonal pattern, the distribution of the probability
densities on those layers does not obey the hexagon symmetry
group. By inspection, we observe that the symmetry of the
wavefront reduces to the “approximate” C3 symmetry. The
wavefronts on the two graphene layers are not coincident due
to the misalignment of the lattice stacking.

Interestingly, for long evolution time, we observe the
higher intensity of the probability densities in the AA-like
regions (t > 15 fs), particularly in the TBGs of tiny twist
angles. This higher intensity is observed significantly in the
AAi region only; see Fig. 9. This observation might reflect
the “localization” of low-energy Bloch wave functions in the
AA-like regions as depicted in Refs. [6,7,18,19,36]. Notice
that, at the evolution time t , we would expect the dominance
of electron states of energies about h̄/t . It therefore implies
that, at long observation time, the localized signature shown
in Fig. 9 of the electron wave function in the AA-like regions
is the behavior of the states associated with the narrow energy
band around the charge-neutrality level. This localization
feature might also be related to topological properties of the
wavefront as recently pointed out in Refs. [8,45,46]. Quantita-
tively, this association is consolidated by Fourier transforming
the time autocorrelation C(t ) defined by Eq. (11) to obtain
the density of states. The resulting DOS of the TBG con-
figurations with the twist angles θ < 2.5◦ shows a small but
significant peak around the charge-neutrality level as reported
in Refs. [7,36].

In the following, once again, we will show how the dy-
namics of wave spreading in TBG strongly depends on the
symmetry of an initially localized state. We now consider an
initial 2pz state at the central node of one AB-like region in the
moiré zone. We note that, contrary to the central node in the
AA-like regions, for this choice, there are no exact symmetry
elements containing the central node of the AB-like regions.
For short time evolution (t < 1 fs), the wave spreading is
similar to that in the AB-stacking lattice. When increasing the
evolution time, the wave evolves preferably in the directions
heading three next-neighbor AB-like regions, i.e., along the
zigzag lines separating the AA-like regions (cf. panel t = 2 fs
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FIG. 9. Distribution of the probability densities in two TBG samples with θ = 5◦ (left panel) and θ = 2.5◦ (right panel) at large evolution
times t = 27 and 30 fs.
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FIG. 10. Similar to Fig. 9 but with the initial state |ψ (0)〉 = |i〉 located in the center of the AB-like region in the moiré zone. Lattice nodes
in red (black) belong to the top (bottom) layer.

in Fig. 10). Along the opposite directions, the wave spreads
into the AA-like regions, and the probability densities become
concentrated at the center rather than scattered (cf. panels
for t = 3 and 4 fs in Fig. 10). Following the distribution
of the probability densities at larger times, the probabil-
ity densities propagate along the zigzag lines in the transi-
tion regions between the AAi- and AAi+1-like regions and
concentrated in the center of the AA-like regions. Due to
the “approximated” symmetries about the initial position of
the 2pz state, the wavefront is formed and has an almost
hexagonal shape. The six corners of the wavefront orient
the preferably evolved directions. The distribution of Pj (t )
on the two layers satisfies the “approximated” point-group
symmetry C3.

To complete our discussion of the wave evolution in the
TBG lattices, we present in Fig. 11 the time autocorrelation
function C(t ). We remind the reader again that the choice
of the initial condition has a crucial effect on the wave
spreading. In Figs. 8 and 10, we have presented the data
for two particular initial conditions, which result in typical
spreading patterns of the 2pz state. To extract quantitative
information on observables, for instance the density of states,
from the time evolution of electronic states we have to account
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FIG. 11. The real (a) and imaginary (b) parts of the time auto-
correlation function C(t ) for three TBG configurations with the twist
angles of θ = 5◦ (green), 2.5◦ (blue), and 1◦ (red).
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for all possible initial conditions. According to Eq. (11), to
calculate the time autocorrelation function C(t ), we need to
calculate a set of functions Ci(t ) = 〈i|ψ (t )〉 with the initial
states |i〉 = |2pz〉 chosen at every lattice node in a sufficiently
large TBG sample. Though a TBG lattice is not always
defined by a unit cell with translational symmetry, the moiré
zone can be seen as an approximated unit cell. It suggests that
we need to consider only the lattice nodes in a moiré zone.
However, since the typical length LM defining the size of the
moiré zone is related to the twist angle θ via the expression
LM = √

3acc/2 sin(θ/2), it means that we have to work with a
very large moiré for the TBG configurations in the case of
a tiny twist angle—this can be a difficult task in practice.
However, we demonstrated in Ref. [36] that an appropriate
sampling scheme for a moderate number of lattice nodes in the
moiré zone is sufficient to obtain reliable values for important
physical observables. We apply here the same scheme to
evaluate C(t ). The results are shown in Fig. 11 for three TBG
configurations with θ = 5◦, 2.5◦, and 1◦. The figure shows
the complex behavior of C(t ) as a function of time. Despite
that, the Fourier transform of C(t ) [see Eq. (12)] results in
the density of states with typical van Hove peaks shown in
Refs. [7,36].

IV. CONCLUSION

We have presented a study of the time-evolution character-
istics of electrons in bilayer graphene lattices with arbitrary
twist angles. We used the Chebyshev polynomials of the
first kind to approximate the time-evolution operator for a
sufficiently long time evolution to calculate time-correlation
functions reliably. We have shown that the interlayer elec-
tronic coupling induces the interchange transfer of waves
between the two graphene layers, resulting in the oscillating
behavior of the layer-integrated probability densities as a
function of time, similar to complex Fabry-Pérot oscillations.
This behavior can also be interpreted as the precession of
electrons when describing the moiré-induced spatial modula-
tion in the interlayer coupling in terms of non-Abelian gauge
fields [47]. The percentage of the wave transmitted from one
layer to the other depends on the twist angle, i.e., smaller
than 50% and weak oscillation for large twist angles, θ >

2.5◦, and larger than 50% and strong oscillation otherwise.

This dynamical observation supplements the understanding
of the effective decoupling between the two graphene lay-
ers in the TBG configurations with large twist angles. For
the wave spreading in each graphene layer, we have indicated
that the spreading shape of electron waves is dictated by the
dominant hopping mechanism of the honeycomb pattern of
the monolayer lattice and by the plane symmetries of the
bilayer lattices. The wave spreading is irregular and takes
place in two stages: The first one occurs within a very short
time evolution, in which the wave spreads to the three nearest
neighbors and then develops to the lattice nodes along the
directions of the armchair lines of the honeycomb lattice.
The second stage is characterized by the formation of a well-
defined wavefront of hexagonal shape with the corners devel-
oping faster than the edges. For tiny twist TBG configurations,
we have observed the signature of the electron localization
in the AA-like regions inside the TBG’s moiré zone at long
time evolution. This would be associated with the formation
of a narrow energy band around the charge-neutrality level.
We have shown the interchange transfer of a wave between
the two graphene layers resulting in the difference of the
distribution of the probability densities on the TBG lattices
from that on the monolayer. We have also observed the ap-
pearance of a beating pattern in the autocorrelation functions
for a reduced intralayer coupling—it is possible to achieve
this reduction experimentally [48]. This might suggest a way
to engineer the electronic properties of bilayer systems. This
study provides a complementary intuitive understanding of
electron behavior in twisted bilayer graphene. The calculation
method implemented here represents an alternative paradigm
for future studies of exotic electronic properties of layered
materials, including twisted bilayer graphene but also other
van der Waals heterostructures.
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