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Thermal Hall effect in square-lattice spin liquids: A Schwinger boson mean-field study
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Motivated by recent transport measurements in high-Tc cuprate superconductors in a magnetic field, we study
the thermal Hall conductivity in materials with topological order, focusing on the contribution from neutral
spinons. Specifically, different Schwinger boson mean-field Ansätze for the Heisenberg antiferromagnet on
the square lattice are analyzed. We allow for both Dzyaloshinskii-Moriya interactions, and additional terms
associated with scalar spin chiralities that break time-reversal and reflection symmetries, but preserve their
product. It is shown that these scalar spin chiralities, which can either arise spontaneously or are induced by the
orbital coupling of the magnetic field, can lead to spinon bands with nontrivial Chern numbers and significantly
enhanced thermal Hall conductivity. Associated states with zero-temperature magnetic order, which is thermally
fluctuating at any T > 0, also show a similarly enhanced thermal Hall conductivity.
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I. INTRODUCTION

The Wiedemann-Franz (WF) law is a paradigmatic prop-
erty of a metal that relates its electrical conductivity tensor σ̂

to its thermal conductivity tensor κ̂ at temperature T as κ̂/T =
L0σ̂ , where L0 = π2k2

B/(3e2) is the Lorenz number [1].
Recent studies of the metallic state of high-Tc cuprate su-
perconductors, such as La1.6−xNd0.4SrxCuO4 (Nd-LSCO),
obtained by suppressing superconductivity using magnetic
fields, indicate a very interesting trend in the thermal Hall
coefficient [2] as a function of doping. On the overdoped side,
with a hole doping of p > p∗, where p∗ corresponds to the
doping value where the pseudogap temperature vanishes, the
thermal Hall conductivity κxy obeys the WF law for low T .
However, for hole doping p < p∗, corresponding to the pseu-
dogap phase, the thermal Hall conductivity changes sign and
becomes negative, while σxy remains positive. Further, the
magnitude of κxy/(T σxy) at low temperatures significantly
exceeds L0, thus signaling a comprehensive breakdown of the
WF law.

A possible explanation of this observation is the presence
of charge-neutral spin-carrying excitations in the pseudogap
phase. By virtue of being electrically neutral, they do not cou-
ple to the external electromagnetic field and, by association,
do not contribute to σxy; however, they give rise to a thermal
Hall current leading to the violation of the WF law in Hall
conductivities. The large κxy observed at dopings with and
without Néel order suggests that magnons are not responsible
for this phenomenon. Further, Grissonnanche et al. [2] argue
that the observed magnitude of κxy at low temperatures is
too large to be explained by spin-scattered phonons. This
prompts the rather intriguing possibility of emergent neutral
excitations that are responsible for this unusual behavior.

In this paper, we investigate the thermal Hall conductivity
(see Fig. 1) of phases where the electron fractionalizes into an
electrically charged gapless fermionic chargon and a gapped

charge-neutral spin-carrying spinon [3]. Such a phase of mat-
ter has topological order [4], and has been previously dis-
cussed in the context of the pseudogap metal [5–10]. Indeed,
model calculations of the longitudinal conductivities and the
electrical Hall conductivity in these fractionalized phases [5]
are consistent with experimental observations in the metallic
phases of several cuprates. However, Ref. [2] shows that the
large negative κxy persists even in the insulating phase as the
doping p → 0. This is the extreme limit of breakdown of
the WF law, as σxy = 0. Motivated by this observation, we
restrict our focus to Mott insulators with gapped chargons
and topological order, analogous to the phases discussed in
Refs. [6,9], and compute the contribution to the thermal Hall
effect from deconfined, charge-neutral, spinons.

Our first set of results is related to the thermal Hall
conductivity in square-lattice spin-liquid states with nonzero
scalar spin chiralities χi jk = Si · (S j × Sk ), where Si is the
spin operator on site i = (ix, iy) ∈ Z2 of the square lattice, but
without any spin-orbit coupling; these results are presented in
Sec. III. Note that, by virtue of being odd under time reversal
and spin-rotation invariant, χi jk can couple to bond-current
operators and, hence, these states are in general associated

FIG. 1. Schematic depiction of the thermal Hall effect in an
insulator with topological order, where the heat current is carried by
fractionalized S = 1

2 spinons.
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with nonzero loop currents. A recent paper [9] classified
four likely patterns (labeled A,B,C,D) of time-reversal and
mirror-plane symmetry breaking in spin liquids with nonzero
χi jk and associated loop currents. Among these, only pattern
D has a nonzero κxy and, hence, will be the center of our
attention. We will find that spin liquids of pattern D, which
breaks square-lattice and time-reversal symmetries down to
4
m m′m′, do indeed lead to values of κxy/T of order k2

B/h̄ at
temperatures above the spin gap; below the spin gap, κxy/T
vanishes exponentially as T → 0 [see Eq. (41)]. The reduc-
tion of the symmetry to 4

m m′m′ could either be spontaneous,
or simply due to the presence of an applied magnetic field. We
note that, in the latter case, no hysteresis in the thermal Hall
conductance is expected. As we review in Appendix A, the
orbital coupling of the field in a Hubbard-type model induces
a coupling between the magnetic field and the uniform scalar
spin chirality.

We also probe the thermal Hall conductivity of the asso-
ciated magnetically ordered states which break spin-rotation
symmetry at T = 0. In two spatial dimensions, spin-rotation
invariance is restored at any nonzero temperature by thermal
fluctuations, and this allows us to treat such states with the
same formalism as that used for spin liquids. For such ther-
mally disordered descendants of magnetically ordered states,
we also find values of κxy/T of order k2

B/h̄, but κxy/T vanishes
as a power of T as T → 0 [see Eq. (43)].

Although these results appear to be an attractive model
of the observations on the cuprates, it is important to keep a
caveat in mind. In the limit where full square-lattice and time-
reversal symmetries are restored, our Schwinger boson states
can undergo phase transitions to a variety of possible mag-
netically ordered states, and the observed Néel state is only
one among a continuum of possibilities; see Appendix C 2.
At least at the mean-field level, there is no selection mech-
anism for the Néel state when the time-reversal symmetry
breaking to 4

m m′m′ is turned off. Nevertheless, a weakly
distorted Néel state is indeed one of the possible states leading
to a large κxy/T .

The second set of conclusions in this paper pertain to
the influence of the spin-orbit coupling, which induces
Dzyaloshinskii-Moriya (DM) terms in the spin Hamiltonian.
We study the DM term in spin liquids connected to the Néel
state, and find that it induces a significantly smaller value of
κxy/T , as described in Sec. IV.

Our starting point is a Mott insulator where the low-energy
degrees of freedom are the S = 1

2 spins of the Cu atoms
located on a square lattice, with a Hamiltonian of the form

Hspin = 1

2

∑
i, j

(Ji j Si · S j + DM
i j · Si × S j )

−
∑

i

BZ · Si + Hχ . (1)

The Heisenberg couplings Ji j are taken to be positive, Ji j > 0,
and spatially local. The orientation of the external magnetic
field is assumed to be perpendicular to the lattice plane (see
Fig. 1). For the Zeeman field, we have BZ = Bzẑ, where
we have absorbed the Bohr magneton μB in the definition
of Bz. The associated orbital coupling is described by Hχ

which involves third-order (and higher-order) powers in Si

(see Appendix A). We also include a spin-orbit-induced
Dzyaloshinskii-Moriya (DM) term, which is allowed when
certain spatial symmetries are broken. The precise orienta-
tions of the DM coupling vectors DM

i j will be described below.
To treat Hspin, we adopt a Schwinger boson mean-field

approach, which is capable of describing both spin-liquid
phases and ordered antiferromagnets [11,12]. This approach,
as detailed later, provides us with a mean-field Ansatz, and
the projective action of lattice or time-reversal symmetries
on the Ansatz describes the particular spin-liquid state under
consideration [13,14]. Among the different Ansätze we con-
sider, only one, for which all in-plane reflection symmetries
are broken (pattern D in Ref. [9]), leads to spinon bands with
nonzero Chern numbers.

In previous literature, the thermal Hall effect has been
widely investigated on the kagome [15–18], pyrochlore [19],
and honeycomb [20–24] lattices for insulating phases with
and without long-range magnetic order and in the presence of
additional electric field gradients [25]. However, it is strongly
constrained by no-go theorems on the square lattice owing to
the geometry thereof; the fluctuation of the scalar spin chiral-
ity averaged over nearby elementary plaquettes in the square
lattice vanishes for a generic phase [26,27]. For our model, the
discrete broken symmetries are carefully chosen such that the
associated loop current pattern corresponds to a net addition
of spin chirality on neighboring triangular plaquettes [9].
This enables our model to overcome the symmetry barriers
associated with the square lattice. This can be achieved since
we consider a Schwinger boson mean-field Ansatz that is not
smoothly connected to that of the usual Néel state (which
has topologically trivial bands). Rather, our Ansatz can be
viewed as a perturbation to the symmetric bosonic π -flux spin
liquid [14]. As we show in the paper, these perturbations can
indeed induce nonzero Chern numbers and lead to a much
larger κxy compared to other phases with topologically trivial
spinon bands. At the same time, as already noted above, the
associated magnetically ordered phase can still be (a small
deformation of) the Néel state.

We begin in Sec. II by setting up the Schwinger boson
mean-field formalism and its computation of the thermal Hall
conductivity. Section III evaluates the thermal Hall effect
in spin liquids with nontrivial magnetic point groups but
full SU(2) spin-rotation invariance (SRI). The DM term is
not included in these analyses, but is considered separately
in Sec. IV (without the additional time-reversal symmetry-
breaking terms of Sec. III). Finally, Sec. V summarizes the
results and four Appendices, A–E, detail our calculations.

II. FORMALISM

In order to compute the thermal Hall conductivity, one
needs to first know the nature of the low-energy excitations
above the quantum ground state of Hspin. An approximate
method to treat this problem is provided by Schwinger boson
mean-field theory (SBMFT) in which the Hamiltonian is
written in terms of Schwinger bosons [11,12], whereupon an
appropriate mean-field decoupling renders it quadratic. We
briefly review this formalism in the context of the thermal Hall
effect below.
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A. Schwinger boson mean-field theory

The spin operator can be represented at each site i =
(ix, iy) ∈ Z2 of the square lattice (we set a = 1 for the lattice
constant) using a pair of bosons (bi↑, bi↓) as

Si = 1

2

∑
σ,σ ′

b†
iσ σσσ ′ biσ ′ , (2)

where σ = (σ1, σ2, σ3)T is a vector of Pauli matrices. These
operators satisfy the standard bosonic commutation relations
[biσ , b†

jσ ′ ] = δi jδσσ ′ . This construction enlarges the onsite
Hilbert space; to remain within the physical space, Eq. (2) has
to be supplemented with the local holonomic constraint

n̂i =
∑

σ

b†
iσ biσ = 2S, (3)

which enforces that S2
i = S (S + 1).

In this fashion, the reformulated Hamiltonian Hspin con-
tains only quadratic, quartic, and sextic terms in the bosonic
operators. Now, we perform a mean-field decoupling of Hspin

into quadratic operators. We neglect here the DM interactions,
which will be analyzed in Sec. IV and Appendix D, and the
orbital coupling Hχ , which will be discussed in Appendix A;
for now, we concentrate on terms that preserve SRI. The only
such operators are the spin singlets

Âi, j = 1

2

∑
σ,σ ′

biσ (iσ2)σσ ′b jσ ′ ; Â j,i = −Âi, j (4)

B̂i, j = 1

2

∑
σ

biσ b†
jσ ; B̂ j,i = B̂†

i, j (5)

and their adjoints. Here and in the following, we use i to
denote the imaginary unit. The expectation values {Ai, j,Bi, j}
of the operators in Eqs. (4) and (5) collectively define the
parameters of the mean-field Ansatz.

First, let us examine the antiferromagnetic Heisenberg
exchange term [28] in a simple spin Hamiltonian

H (1) =
∑
i> j

Ji jSi · S j ; Ji j > 0. (6)

Using the identity

Si · S j = : B̂†
i, jB̂i, j : −Â†

i, jÂi, j = B̂†
i, jB̂i, j − Â†

i, jÂi, j − 1

4
n̂i,

(7)

with : : denoting normal ordering, Eq. (6) can be reduced
to a mean-field quadratic bosonic Hamiltonian preserving
SU(2) spin-rotation invariance. This is achieved by neglecting
bond operator fluctuations and replacing 〈Âi, j〉 and 〈B̂i, j〉 by
complex bond parameters Ai, j and Bi, j , respectively:

H (1)
MF =

∑
i> j,σ

[
Ji j

2
(B∗

i, jbiσ b†
jσ − A∗

i, jσ biσ b j−σ + H.c.)

+ Ji j (|Ai, j |2 − |Bi, j |2)

]
+ λ

∑
i

(b†
iσ biσ − 2S). (8)

At the mean-field level, the local constraint (3) is en-
forced only on average, namely, 〈n̂i〉 = κ via the Lagrange
multiplier λ. One could, in principle, search for an optimal

Ai, j and Bi, j by self-consistently solving for the stationary
points of the mean-field free energy; however, for the purpose
of this work, we simply treat them as free (complex) parame-
ters. The only constraints thereon come from the upper bounds
[29] on the moduli |A| � S + 1/2, |B| � S, which must be
obeyed for any self-consistent Ansatz in SBMFT.

In the presence of a nonzero transverse magnetic field,
spin-rotation invariance is broken by the additional Zeeman
term in the Hamiltonian

H (2) = −Bz

∑
i

Sz
i = −Bz

2

∑
i σ,σ ′

b†
iσ (σ3)σσ ′biσ ′ = H (2)

MF . (9)

This term is already quadratic and thus requires no further
decoupling.

Since we will discuss spin-liquid phases with certain dis-
crete broken symmetries, to be precise, let us clarify when a
given Ansatz breaks a symmetry. The physical spin operator
is invariant under a local U(1) gauge transformation bj →
eiϕ( j)b j . Under such a gauge transformation, the mean-field
Ansatz transforms as

Ai, j → ei[ϕ(i)+ϕ( j)]Ai, j, Bi, j → ei[ϕ(i)−ϕ( j)]Bi, j . (10)

Therefore, a symmetry g is preserved as long as there is
a gauge transformation b j → Gg( j)b j , Gg( j) = eiϕg( j) that
leaves the Ansatz invariant when combined with the action of
the symmetry operation. Contrarily, if no such gauge transfor-
mation exists or, equivalently, there is some gauge-invariant
operator that transforms nontrivially under g and has a finite
(nonzero) expectation value in the phase under consideration,
then the symmetry g is broken.

B. Diagonalization of bosonic quadratic Hamiltonians

The mean-field Schwinger boson Hamiltonian can be diag-
onalized by the Bogoliubov-Valatin canonical transformation
[30,31]. For illustrative purposes, consider a general quadratic
bosonic Hamiltonian

H = 1
2 	† M 	; 	† = (b†

1, . . . , b†
N , b1, . . . , bN ). (11)

Generically, the index n = 1, . . . , N on bn and b†
n could label

momentum, spin, or some other degrees of freedom. To find
the eigenmodes corresponding to M, we introduce new anni-
hilation (creation) operators γm (γ †

m) such that

	 = T�; �† ≡ (γ †
1 , . . . , γ

†
N , γ1, . . . , γN ). (12)

The standard bosonic commutation relations for both the
	 and � fields are conveniently encapsulated in the matrix
equation

[	i, 	
†
j ] = [�i, �

†
j ] = (ρ3)i j ; ρ3 ≡

(
1N×N 0

0 −1N×N

)
.

(13)
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We choose T such that the Hamiltonian (11) becomes

H = 1

2
�† T† M T�;

T† M T =

⎛
⎜⎜⎝

ω1 0 · · · 0
0 ω2 . . . 0
...

...
. . .

...
0 0 · · · ω2N

⎞
⎟⎟⎠, (14)

for ωi ∈ R. Meanwhile, to safeguard the bosonic statistics of
the system, the transformation matrix must fulfill the neces-
sary condition

T ρ3 T
† = ρ3 (15)

or, in other words, T is paraunitary [32]. The elements of the
transformation T can be obtained from the eigenvectors of
the dynamic matrix K = ρ3M, which defines the Heisenberg
equation of motion for 	. All the eigenvalues of the dynamic
matrix (when diagonalizable) are real and appear in pairs.
Then, T, conventionally referred to as the derivative matrix,
consists of all the eigenvectors of K :

T = [V (ω1), . . . , V (ωN ), V (−ω1), . . . , V (−ωN )], (16)

with the eigenvectors V ordered as

V †(ωi ) ρ3 V (ωi ) = 1, V † (−ωi ) ρ3 V (−ωi ) = −1 (17)

for each set (V (ωi ),V (−ωi )). Thus, each eigenvalue of K is
counted up to its multiplicity and the N dynamic mode pairs
are separated and arranged sequentially as columns in T such
that its left (right) half is filled with eigenvectors of positive
(negative) unit norms [33]. Consequently,

T−1K T = diag (ω1, . . . , ωN , −ω1, . . . , −ωN ), (18)

T†M T = diag (ω1, . . . , ωN , ω1, . . . , ωN ), (19)

i.e., both M and K are simultaneously diagonalized. Bor-
rowing fermionic terminology for Eq. (14), we refer to the
bands with indices n = 1, . . . , N (n = N + 1, , . . . , 2N) as
the particle (hole) bands.

C. Berry curvature and thermal Hall conductivity

The prescription outlined above can be straightforwardly
applied to the Hamiltonians in the sections hereafter, the
only difference being that the matrices H(k), associated with
the mean-field Hamiltonian H = ∑

k (	†
k H(k) 	k )/2, and

Tk therein are momentum dependent. Suppose εnk > 0 is
the nth band energy after such a diagonalization procedure;
accordingly,

H =
∑

k

N∑
n=1

εnk

(
γ

†
nkγnk + 1

2

)
. (20)

Then, within SBMFT, the thermal Hall conductivity in the
clean limit is given by [34]

κxy = −k2
B T

h̄V

∑
k

N∑
n=1

{
c2[nB(εnk )] − π2

3

}
�nk, (21)

where the sum on n runs only over the particle bands. Here,
nB(ε) is the Bose distribution function, and

c2(x) ≡
∫ x

0
d t

(
ln

1 + t

t

)2

= (1 + x)

(
ln

1 + x

x

)2

− (ln x)2 − 2 Li2(−x), (22)

which is monotonically increasing with x: it has a minimum
value of 0 at x = 0 and, in the opposite limit, tends to π2/3 as
x → ∞. �nk in Eq. (21) is the Berry curvature in momentum
space [35], which, for bosonic systems, is given by

�nk ≡ i εμν

[
ρ3

∂ T†
k

∂ kμ

ρ3
∂ Tk

∂ kν

]
nn

; n = 1, . . . , N. (23)

The integral of the Berry curvature over the Brillouin zone
(BZ) is the first Chern integer [36,37]

Cn = 1

2π

∫
BZ

dk �nk ∈ Z. (24)

In addition to being integer valued, Cn further obeys the
constraint

N∑
n=1

Cn =
2N∑

n=N+1

Cn = 0, (25)

i.e., the sum of the Chern numbers over all particle and
hole bands is individually zero [35]. Since the expression in
Eq. (21) for κxy entails the summation over all particle bands
and the momentum sum (or integral in the thermodynamic
limit) is taken over a closed surface (the first Brillouin zone),
Eq. (25) dictates that

−k2
B T

h̄ V

∑
k

N∑
n=1

{
−π2

3

}
�nk = 0.

For this reason, we can neglect the additional −π2/3 piece in
the momentum sum in Eq. (21) in the following.

It is worth noting that the derivation of the formula (21),
with the Berry curvature defined as in Eq. (23), assumes that
H(k) has been chosen to satisfy the particle-hole symmetry

H(k) = ρ1(H(−k))T ρ1; ρ1 ≡
(

0 1N×N

1N×N 0

)
. (26)

As it will be useful below, we point out that, as a consequence,
the Berry curvatures of the particle and hole bands are related
as [38]

�n+N,−k = −�nk; 1 � n � N. (27)

Before proceeding with the analysis of different spin-liquid
states, a few general statements on the behavior of κxy are in
order. First, if the temperature is much larger than the max-
imum energy of the mth particle band so that nB(εmk ) � 1,
the contribution of this band to Eq. (21) is related to its Chern
number Cm as

[κxy]m ≈ π2 k2
B T

3 h̄

∫
BZ

dk
4π2

�mk = π k2
B T

6 h̄
Cm. (28)

Conversely, if T lies far below the minimum of the mth
band, then nB(εmk ) ≈ 0 and its contribution to Eq. (21) is
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exponentially small in the spinon gap divided by temperature
[see also Eq. (37) below].

As �nk is weighted by c2[nB(εnk )] in Eq. (21), there is a
nonvanishing thermal Hall conductivity at finite temperatures
even if all bands have zero Chern numbers. The overall
magnitude of κxy, however, hinges on whether Cn = 0 or
Cn �= 0. For a trivial band, the momentum-space average of
the Berry curvature is itself zero and we generically expect
that [κxy]

m|Cm=0
� [κxy]

m|Cm �=0
. As a result, the total κxy is

expected to be much smaller for a system with Cn = 0 ∀ n
than for one with nonzero Chern numbers. This is evident
upon comparing Figs. 5 and 8, which correspond to conduc-
tivities arising from C �= 0 and C = 0 bands, respectively; for
a similar set of parameters, the former are a thousandfold
larger. We note that, in principle, it is possible that the Berry
curvature has significant energy dependence and, hence, κxy

is large even for Cn = 0; however, such a situation was not
realized for any of the Ansätze we considered in this work.

III. SPIN-LIQUID ANSÄTZE WITH TIME-REVERSAL
SYMMETRY BREAKING

Having established the necessity of Chern numbers for a
sizable thermal Hall conductivity, we study spin-liquid mod-
els that can yield such topologically nontrivial band structures
within SBMFT. Inspired by the recent work of Ref. [9] in
the context of possible broken symmetries in cuprates, we
examine states with nontrivial magnetic point groups. By
breaking time-reversal symmetry while preserving SRI, the
Ansätze we discuss are naturally associated with nonzero
scalar spin chiralities.

The simplest class of symmetry-breaking spin liquids of
Ref. [9] are described by Ansätze that, while preserving all
translational symmetries of the square lattice, have magnetic
point group m′mm; this means that twofold rotation perpen-
dicular to the plane, C2, and time-reversal symmetry, �, are
broken, but the product �C2 is preserved. Depending on
whether the reflection symmetry along a Cu-O bond or along
a diagonal Cu-Cu bond is present, these states are referred to
as patterns A and B in [9]; they also appeared in studies of Z2

spin liquids using bosonic [6,8] and fermionic [39] spinons.
However, as will be shown below, both these Ansätze lead
to spinon bands which are topologically trivial, prompting
the consideration of other patterns to procure nonzero Chern
numbers.

To this end, we analyze a translationally invariant spin-
liquid phase, referred to as pattern D in [9], that has magnetic
point group 4

m m′m′; this means that time-reversal symmetry
and the point group C4v have been broken down to the
symmetry group generated by fourfold rotation perpendicular
to the plane, C4, and �Rx (the product of time-reversal � and
reflection symmetry Rx at the xz plane). Unlike the earlier
cases, all mirror symmetries are broken by this Ansatz and
the sum of all scalar spin chiralities within the unit cell does
not add up to zero. As evidenced in this section, we find that
nonzero Chern integers can indeed be realized. Note that the
magnetic symmetries of the state we consider are the same as
those of an orbital magnetic field. Consequently, if the Ansatz
emerges spontaneously, we find an anomalous contribution
to κxy, i.e., a thermal Hall response in the absence of an

(a) (b)

FIG. 2. Schwinger boson band structure (in units of JA1) for
the Ansatz of (a) Eq. (30a)) (pattern A), and (b) Eq. (30b)
(pattern B), with A2 = 0.75, B1 = 0.5, Bz = 0, and λ = 3. For clar-
ity, the eigenvalues of the dynamic matrix are shown; the energies of
the actual bosonic bands are just the absolute values of the same and
are strictly positive. The different lines for each of the two colors re-
fer to distinct values of ky = −π, −π + π/6, . . . , π . The dispersion
minima are at ±(π/2, π/2) for A2 = 0, but shift to ±(K, K), with
K incommensurate, when A2 �= 0. The states can thus be smoothly
connected to the antiferromagnet by tuning A2.

external magnetic field. This, however, also means that the
symmetry-breaking terms of the Ansatz can be induced by the
orbital coupling Hχ . In the latter case, there is no anomalous
contribution.

A. One-orbital model with trivial bands

Throughout this section, we direct our attention to the
one-orbital model of the cuprate superconductors, which only
involves the Cu-d orbitals forming a square lattice. The
general form of the mean-field Hamiltonian, only involving
spin-rotation invariant terms, reads as

HMF = J

2

∑
i, j, σ

(Bi, j b†
iσ b jσ − A∗

i, j σ biσ b j−σ + H.c.)

+ λ
∑

iσ

(b†
iσ biσ − S). (29)

One can write a suitable Ansatz consistent with all the m′mm
symmetries to describe pattern A as

Ai,i+x̂ = Ai,i+ŷ = A1, Bi,i+x̂ = Bi,i+ŷ = iB1,

Ai,i+x̂+ŷ = Ai,i−x̂+ŷ = A2, (30a)

and all others terms set to zero, where x̂ = (1, 0) and ŷ =
(0, 1) have been introduced. Similarly, for pattern B,

Ai,i+x̂ = Ai,i+ŷ = A1, Bi,i+x̂ = Bi,i+ŷ = iB1,

Ai,i+x̂+ŷ = A2. (30b)

By tuning |B1| and |A2| to sufficiently small values, the
Ansätze in Eq. (30) can be brought arbitrarily close to that
of the conventional two-sublattice Néel state and its quantum-
disordered partner [for which only A1 is nonzero in Eq. (30)].
Accordingly, the concomitant magnetically ordered state is
a smooth deformation of the Néel state and happens to be a
conical spiral [6,40].

Since the spectrum for |B1|, |A2| �= 0, illustrated in Fig. 2,
retains its gap upon continuously tuning B1 and A2 to zero, the
Chern numbers must be Cn = 0 (exactly like those of the Néel
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FIG. 3. Schwinger boson mean-field Ansatz for the one-orbital
model defined by Eqs. (31) and (33). The Cu atoms in the CuO2

plane are depicted here as dark blue circles. The arrows indicate the
sign conventions: along the (next-)nearest-neighbor bond from site
i to site j, the bond operators have the expectation values 〈Âi, j〉 =
A1(2), 〈B̂i, j〉 = iB1(2); due to Â j,i = −Âi, j and B̂ j,i = B̂†

i, j , the bonds
are directed and associated with blue (red) arrows in the figure.

state), wherefore these Ansätze are not expected to be a good
starting point for obtaining a sizable thermal Hall response.

B. Chern numbers and thermal Hall conductivity

The considerations above seem to suggest looking instead
at Ansätze that are not adiabatically connected to that of the
conventional antiferromagnet with only A1 nonzero. Moti-
vated by the recent study [9] of spin-liquid states with orbital
loop currents, we next consider an Ansatz with magnetic point
group 4

m m′m′. A minimal choice, yielding this point group
while preserving translations Tx, Ty, is

Ai,i+x̂ = A1, Ai,i+ŷ = (−1)ix+iyA1, (31a)

Bi,i+ημ
= i sμ(−1)ix+iyB2, (31b)

with second-nearest-neighbor vectors ημ = x̂ + (−1)μŷ. The
relative signs of sμ ∈ {+1,−1} can be read off Fig. 3, and
are chosen so as to attain the correct magnetic point group.
Obviously, the Ansatz is not explicitly invariant under the
symmetry generators Tx, Ty, C4, and �Rx. However, since the
symmetries act projectively, it is invariant under the respective
symmetry operations when they are applied in conjunction
with the following gauge transformations:

GTμ
( j) = (−1) jy ; μ = x, y (32a)

G�Rμ
( j) = i(−1) jx+ jy , (32b)

GC2
( j) = (−1) jx , (32c)

GC4
( j) =

⎧⎪⎨
⎪⎩

cos
(π

2
( jx + jy)

)
; j ∈ α

sin
(π

2
( jx + jy)

)
; j ∈ β.

(32d)

At the same time, one can indeed construct explicit gauge-
invariant fluxes which are odd under � or Rμ [9], and our
Ansatz does break these symmetries.

It turns out that the Ansatz of Eqs. (31a) and 31(b) alone
proves to be insufficient to yield bands with nonzero Chern
numbers, so we add on top the additional operator expectation
values:

Bi,i+x̂ = iB1, Bi,i+ŷ = i(−1)ix+iyB1, (33a)

Ai,i+ημ
= sμ(−1)ix+iyA2. (33b)

It is straightforward to check that Eqs. (31) and (33), in
totality, preserve both translation and 4

m m′m′ by applying the
gauge transformations in Eq. (32). From this point onward,
the term “one-orbital model” always implicitly refers to this
combined Ansatz for pattern D. For completeness, the three-
orbital model of the cuprates, also taking into account the
oxygen p orbitals, is discussed in Appendix E; the conclusions
are similar in spirit.

The generalization in (33) results in topologically non-
trivial bosonic bands and, hence, a considerable thermal
Hall response as we show below. As long as the interband
gaps remain open, the Chern integers are invariant under
smooth variations of the mean-field parameters {Aμ,Bμ} in
the Hamiltonian. Consequently, this state is not smoothly
connected to the SBMFT of the conventional square-lattice
antiferromagnet, for which the Chern numbers of all the bands
are identically zero.

A useful characterization of spin-liquid phases can be ob-
tained by gauge-invariant fluxes. Of particular importance for
our study is the flux φ = A1,2A∗

2,3A3,4A∗
4,1, where 1, 2, 3,

and 4 label the four sites of any elementary square plaquette in
counterclockwise order. The limiting case A2 = B1 = B2 =
0 of the Ansatz in Fig. 3 corresponds to the π -flux states
of Yang and Wang [14], which have full square-lattice and
time-reversal symmetries; turning on nonzero values of A2,
B1, and B2 reduces the symmetry to 4

m m′m′, and leads to
spinon bands with nonzero Chern numbers. On the other
hand, the CP1 model [41], a low-energy effective field theory
of quantum antiferromagnets on a square lattice, describes
the more familiar zero-flux Schwinger boson state [14]. It
was shown in Ref. [9] that there is no quadratic perturba-
tion to the CP1 theory which breaks the symmetry down to
4
m m′m′, and we discuss the needed perturbations further in
Appendix B. Our results here are consistent with these earlier
results: we need to perturb a π -flux state to have nonzero
Chern numbers of spinon bands in SBMFT; such nontrivial
bands cannot be obtained as a perturbation of the zero-flux
state. Further, the CP1 theory can naturally describe low-
energy excitations close to Q = (0, 0) and (π, π ); in contrast,
the spin-liquid phase we consider has low-energy excitations
at (0, π ) and (π, 0) as well.

Yang and Wang [14] also analyzed the magnetic ordered
states that appeared upon condensing bosonic spinons from
the π -flux state. They found a variety of possibilities with
ordered moments at wave vectors (0, π ), (π, 0), and (π, π ):
this included cases where the dominant moment was at the
(π, π ) wave vector of the Néel state. Nonzero values of A2,
B1, and B2 distort these states to also allow for a (possibly
small) ferromagnetic moment at (0, 0), leading to a four-
sublattice magnetic order of the form (see Appendix C 2 for
details)

〈S( j)〉 = n(0,0) + (−1) jx n(π,0) + (−1) jy n(0,π )

+ (−1) jx+ jy n(π,π ). (34)
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FIG. 4. (a) Dispersion of the Schwinger boson particle bands εnk, n = 1, . . . , 4, shown in blue, orange, green, and red, respectively, along
the line kx = 0, for the one-orbital model with A2 = 0, B1 = 0, B2 = 0.25, λ = 2, and Bz = 0.5, measured in units of JA1. The bands touch
along lines in the BZ, as underscored by the density plot of ε2k − ε1k in (b), and thus lack well-defined Chern numbers. (c) The intersection
of the bands persists even with A2 = 0.75 on top of the parameters in (a) and (b). (d) The addition of a nonzero B1 (taken to be 0.5 here)
is required to prevent the touching of two particle bands, necessitating the addition of Eq. (33) to the minimal Ansatz. With B1 �= 0, the
bands acquire a nontrivial Chern number. (e) The dispersion of the lowest-energy band in (d) exhibits minima at k = (±π/2, 0), indicating
anisotropic antiferromagnetic order in the corresponding confined phase. (f) Berry curvature for the particle band displayed in (e); it is seen that
�1k = 0 at the global minima of the dispersion. The first Chern integers are Cn = −1 (+1) for the n = 1, 2 (n = 3, 4) bands. The curvatures
are ill defined at Bz = 0, for which all the particle bands are pairwise degenerate.

Note that this ferromagnetic moment arises without a Zeeman
term in the Hamiltonian, and is a consequence of either spon-
taneous breaking of the symmetry to 4

m m′m′, or one induced
by the orbital coupling to the external field (see Appendix A).

One might wonder whether adding the orbital coupling of
the magnetic field, Hχ , described in leading order in t/U by
terms involving the triple products Si · (S j × Sk ) [42], can be
used to describe the symmetry reduction to the magnetic point
group 4

m m′m′ within SBMFT. We consider the decoupling of
this triple-product term in Appendix A. Although we do not
include this self-consistently in our analysis, we verify that
spin-liquid states with symmetry broken to 4

m m′m′ do indeed
lead to a nonzero expectation value for the triple products in
the Hamiltonian, in the quadratic approximation.

1. Spectrum and symmetries

In spite of the final thermal Hall conductivity itself being
a gauge-invariant quantity, any intermediate calculations re-
quire the explicit choice of a gauge. Owing to the alternating
factor of (−1)ix+iy , the Ansatz (31) is translationally invariant
only modulo a gauge transformation or, in other words, it
is invariant under two-site lattice translations when working

in a fixed gauge. We therefore choose a two-sublattice unit
cell with sublattice indices defined by the parity of ix + iy.
In each unit cell, we denote the Schwinger boson operators
by α (even parity) and β (odd parity). The basis vectors for
this new bipartite lattice are ημ, and the reciprocal lattice
vectors are Gμ = π ημ, so the BZ can be chosen to be the con-
ventional antiferromagnetic Brillouin zone {(kx, ky) | kx, ky ∈
[−π, π ); |kx| + |ky| � π}.

As sketched in Appendix C, the mean-field Hamiltonian
can be represented in terms of the eight-component
spinor 	

†
k = (α†

k↑ β
†
k↑ α

†
k↓ β

†
k↓ α−k↑ β−k↑ α−k↓ β−k↓) with

HMF = ∑
k (	†

k H(k) 	k )/2. The associated band structures
upon diagonalization are plotted in Fig. 4. At each momentum
k, the dynamic matrix K has eight eigenvalues, four positive
and four negative; we label the former (latter) by n = 1, . . . , 4
(n = 5, . . . , 8) in ascending (descending) order. The energies
of the actual bosonic bands are simply the absolute values of
these and are necessarily positive.

Additionally, the Hamiltonian H(k) harbors another sym-
metry that is somewhat less apparent. Although the particle
bands are generically distinct, they become pairwise degen-
erate when there is no Zeeman field, Bz = 0. We emphasize
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FIG. 5. Thermal Hall conductivity in the one-orbital model with the parameters A2 = 0.75, B1 = 0.5, B2 = 0.25, and λ = 2, as a function
of Zeeman field at (a) low and (b) high temperatures. In the second case, there is almost no dependence on Bz. We emphasize that we only
show the dependence of κxy/T on the Zeeman field at constant orbital coupling. The latter enters indirectly through the parameters A1,2, B1,2 of
the Ansatz. (c) The variation of κxy/T with temperature at a constant Bz = 0.25 for which the spinon gap (inset) is � = 0.582. The parameter
A2 can be used to tune the strength of the response. κxy/T decays as (�/T )2 exp(−�/T ) and 1/T (with 1/T 3 corrections) at low and high
temperatures, respectively. (d) The same as in (c) but with the gap now varied as �(T ) = T exp(−m/T ); m = 0.2π , so that it is exponentially
small with temperature. As in the figures above, all energies are measured in units of JA1.

that this degeneracy is not the same as the trivial redundancy
described in Eq. (19), which arises due to the pairwise occur-
rence of the eigenvalues of the dynamic matrix. Despite the
seeming lack of an a priori reason, the degeneracy of these
eigenvalues stems from an effective antiunitary symmetry,
which we scrutinize more carefully later in Appendix C 1.

From the paraunitary matrix Tk, one can calculate the
Berry curvatures of the bands. However, the Berry connection,
defined as

Aj,μ(k) ≡ i Tr[� j ρ3 T
†
k ρ3(∂kμ

Tk )], (35)

where � j is a diagonal matrix with (� j )ab = δ jaδ jb, cannot
be smoothly specified over the entire BZ and the phases of
the eigenvectors that constitute Tk must be chosen accord-
ingly. The resolution lies in decomposing the BZ into two
overlapping regions H1 and H2 with H1 ∪ H2 = BZ, and
H1 ∩ H2 = ∂H1 = −∂H2 [35]. These regions are chosen such
that [Tk]mν , j is never zero within the region Hν , where ν =
1, 2, and mν = 1, . . . , 8. The phase of the jth eigenvector can
then be uniquely defined by choosing a gauge in region H1

(H2) such that [Tk]m1, j ([Tk]m2, j) is always real and positive.

The two gauge choices, which are related by a U(1) trans-
formation, are patched together to cover the entire BZ. This
construction enables us to unambiguously calculate the Chern
number [43,44] as

Cj = 1

2π

∮
∂H1

dk · (
A(1)

j − A(2)
j

)
, (36)

where (A(ν)
j )μ is the gauge field [Eq. (35)] of band j in the

patch ν. Inspecting the eigenstructure of Tk, we find a suitable
partition to be H1 = {k : ky � 0, |kx| + |ky| � π} and H2 =
BZ\H1. The resultant Berry curvatures for the particle bands
are illustrated in Fig. 4(e). The final thermal Hall conductivity,
which involves contributions from all four bands, is plotted in
Fig. 5.

2. Parameter dependence of κxy

In this section, we discuss the parameter dependence of the
thermal Hall conductivity in Fig. 5 in detail and compare with
asymptotic analytical considerations.
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First, note that while κxy is always positive in the plots of
Fig. 5, its sign is actually determined by that of the parameters
Aμ and Bμ of the Ansatz; under the simultaneous reversal
of Aμ → −Aμ and Bμ → −Bμ, the Hall conductivity also
changes sign as κxy → −κxy. This is required by symmetry as
the global sign reversal of Aμ and Bμ is equivalent [modulo
gauge transformation G( j) = i] to performing a time-reversal
transformation.

Next, we turn to the temperature and field dependence.
κxy/T tends to zero at high temperatures, where all bands
are equally occupied, as well as very low temperatures, below
the spinon gap, when all bands are nearly empty: intuitively,
c2(nB) is the same constant for any band for both high and
low T ; factoring it out, we are left with the sum of the Chern
numbers of all the particle bands and these add up to zero. To
determine how κxy/T decays for low and high T , we use the
asymptotic expansions for the c2 function defined in Eq. (22):

c2(x) →
{

π2

3 − 1
x + 1

2x2 + O
(

1
x3

)
for x → ∞,

[2 − ln(x) + ln2(x)]x + O[x2 ln(x)] for x → 0.

(37)

For simplicity, consider the contribution to κxy for a single
pair of particle bands that have equal Berry curvatures (ergo,
Chern numbers); the existence of such a pair is guaranteed by
the effective antiunitary symmetry in the one-orbital model
discussed above. Without loss of generality, let these be
labeled by n = 1, 2; the discussion here can be easily extended
to include the n = 3, 4 bands for the specific case of the
one-orbital model. At zero external magnetic field, the bands
in the pair are degenerate energetically, i.e., ε1k = ε2k ≡ Ek,
and have the same curvatures �1k = �2k. A finite uniform
Zeeman field splits their energies to Ek ± Bz/2. The Zeeman
term is proportional to the identity in the dynamical matrix
K of Eq. (C5). Therefore, it leaves the spinon wave functions,
which are determined by the dynamic matrix K rather than the
Hamiltonian, unchanged. Hence, the Berry curvature remains
unaffected, whereby we still have �1k = �2k.

At temperatures much larger than the band maximum, it is
reasonable to approximate the Bose distribution function by
nB(E ) ∼ kBT/E for kBT � E . Using Eq. (21), the thermal
Hall conductivity then follows as

κxy

T
= − k2

B

h̄ V

∑
k

∑
n=1,2

{
c2[nB(εnk )] − π2

3

}
�nk

≈ k2
B

h̄V

∑
k

(
�1k

nB(ε1k )
+ �2k

nB(ε2k )

)
+ O

(
1

n2
B(εnk )

)

= k2
B

h̄V

∑
k

�1k

(
Ek − Bz/2

kBT
+ Ek + Bz/2

kBT

)

=
(

2

T

)
kB

h̄ V

∑
k

�1k Ek ≈ kB ζ C1

π h̄ T
, (38)

where C1 is the Chern number of the n = 1 band, and ζ is
a measure of the average band energy without the magnetic
field. We stress that Eq. (38) is a consequence of the effective
antiunitary symmetry explicated in Appendix C 1, and, in
particular, of Eq. (C10), which ensures the equality of the
Berry curvatures for the two bands. Therefore, to first order,

κxy is independent of Bz at high temperatures, in consistence
with Fig. 5(b). In particular, there is an anomalous thermal
Hall response, i.e., κxy �= 0 for Bz = 0. This is expected based
on the symmetries of the Ansatz that are identical to those of
the orbital magnetic field.

Going beyond leading order in the 1/T expansion incorpo-
rates a subleading term

κxy

T
= kB ζ C+

π h̄ T

(
1 − 3B2

z + 4 ζ 2

72 k2
B T 2

)
+ O

(
1

T 4

)
. (39)

This term is of the opposite sign but it is parametrically small,
and being of O(B2

z /T 3), negligible at high T . Hence, the
decrease of κxy with Bz is hardly observable in Fig. 5(b). Note,
however, that in reality, the parameters of the Ansatz itself
might be magnetic field dependent; this is not accounted for
in the present calculation, and might yield a rather different
dependence of κxy on the magnetic field.

Equation (39) also specifies that κxy/T goes to zero as 1/T
at large temperatures (with 1/T 3 corrections), which is indeed
confirmed by Fig. 5(c) for T � 0.5. On the contrary, at T
much smaller than the spinon gap �, the bosonic band oc-
cupancies are almost zero, and we can approximate nB(E ) ≈
e−E/kBT for all bands. For the leading contribution, we need
only consider the dominant term in the small-x expansion of
c2(x) from Eq. (37), which goes as x ln2(x). The net result in
the T � � limit is

κxy

T
= − k2

B

h̄V

∑
k

∑
n=1,2

c2[nB(εnk )]�nk

≈ − k2
B

h̄V

∑
k

(
ε2

1ke−ε1k/kBT + ε2
2keε2k/kBT

) �1k

(kBT )2

≈ C1

2π h̄ T 2
e−�/kBT (�2 + e−Bz/kBT (� + Bz )2). (40)

In moderate magnetic fields Bz > T , κxy/T decays exponen-
tially as (�/T )2 exp(−�/kBT ) at low temperatures, in agree-
ment with the regime of T � 0.5 in Fig. 5(c). Concurrently,
Eq. (40) tells us about the dependence of κxy on the external
magnetic field. Recognizing that the spinon gap � at a finite
field Bz is related to the zero-field gap �0 as � = �0 − Bz/2,
we find that

κxy

T
≈ C1

2π h̄ T 2
e−�0/kBT

(∑
n=±

e−nBz/2kBT (�0 + nBz/2)2

)

≈ C1

π h̄ T 2
cosh

(
Bz

2kBT

)
e−�0/kBT (41)

for small Bz � �0, thereby justifying the nonlinear behavior
observed in Fig. 5(a).

Another interesting limit is the intermediate temperature
range when � < max ε1,k � T � min ε2,k. From the afore-
mentioned calculations, we notice that the thermal Hall con-
ductivity is the largest in this two-band picture when the
magnetic field splits the particle and hole bands, both of which
have nonzero Chern numbers, such that the temperature T is
greater than the lower-band maximum, but smaller than the
upper-band minimum.
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With our formalism, we can also study phases with mag-
netic order at T = 0, but with restored SRI due to thermal
fluctuations at nonzero temperature. To this end, we vary the
gap such that it is exponentially small with temperature; in
practice, this is achieved by tuning the Lagrange multiplier λ.
Instead of performing a self-consistent calculation, we assume
a functional form �(T ) = T exp(−m/T ), m = 2πρs (with
spin stiffness ρs), in analogy with the two-dimensional (2D)
antiferromagnetic Heisenberg model [45–47]. The variation
of κxy/T with this choice of �(T ) is conveyed by Fig. 5(d).
Despite always being in the regime � < T , κxy/T does not
diverge as T → 0, but instead tends to zero. To understand
this, we focus on the contribution from the lowest band and
momenta close to the dispersion minima ±k0. Near ±k0, the
momentum dependence of the energy is quadratic, while that
of the Berry curvature is empirically observed to be quartic.
Accordingly, assuming � = 0,

κxy

T
≈ − k2

B

h̄ V

∑
k

�1k

nB(ε1k )

≈ −k2
B

h̄

∫
|k−k0|<�

d2k
(2π )2

�0(k − k0)4 c2

(
1

e(k−k0 )2/2m∗T −1

)

− k2
B

h̄

∫
|k+k0|<�

d2k
(2π )2

�0(k+k0)4 c2

(
1

e(k+k0 )2/2m∗T −1

)
.

(42)

As T → 0, we may rescale k ± k0 = y
√

2m∗T and extend the
upper limit of y integration to infinity, to obtain

κxy

T
= −2k2

B(2m∗T )3�0

h̄

∫ ∞

0

y5dy

2π
c2

(
1

ey2 − 1

)

= −2k2
B(2m∗T )3�0

h̄
(5.78117 . . .). (43)

So, we find that κxy/T ∼ T 3 as T → 0 with � � T .

IV. ANTIFERROMAGNET WITH
DZYALOSHINSKII-MORIYA INTERACTIONS

So far, our discussion has been confined exclusively to
spin-rotation-invariant spin liquids. In this section, we will
extend the analysis to include spin-orbit coupling, i.e., spin
rotations are not independent symmetry operations any more,
but are coupled with real-space symmetry transformations.
In terms of the underlying spin model, this corresponds to
including DM interactions [48–50] as described by the term
proportional to DM

i j in Eq. (1):

H (3) =
∑
〈i, j〉

DM
i j · (Si × S j ). (44)

The thermal transport properties of a spin Hamiltonian
with DM coupling were studied on the kagome lattice in
Ref. [51] for the magnetically ordered phase using both
Holstein-Primakoff bosons and Schwinger bosons; in particu-
lar, the latter approach featured a large thermal Hall coefficient
at Bz, T ∼ J . On the square lattice, however, it is strongly
constrained by no-go theorems [26,27]. In a recent spin-wave
analysis, Ref. [52] demonstrated that a thermal Hall effect can

FIG. 6. Illustration of the DM coupling vectors [53,54] for
(a) orthorhombic La2CuO4 and (b) YBCO, where the black dots
represent the Cu atoms of the CuO2 planes and D1 = (d1, d2, 0)T ,
D2 = (−d2, −d1, 0)T , D3 = (d3, 0, 0)T , D4 = (0, d3, 0)T with real
constants dj (not determined by symmetry). Given that DM

i j = −DM
ji,

the DM coupling vector DM
i j corresponds to a directed bond, which

is indicated by the arrows in the figure. The different DM textures
are due to the different symmetries: in YBCO, the Cu atoms are not
centers of inversion, which allows a spatially constant DM coupling
vector; in La2CuO4, it must alternate in sign since the Cu atoms
are inversion centers, which is permitted because of the broken
translational symmetry.

be realized in an inversion-symmetry-broken square-lattice
antiferromagnet with DM couplings. Here, we move away
from the magnon description, which necessarily requires
long-range magnetic order, and probe the influence of the DM
interactions relevant to the cuprate superconductors in a spin-
liquid phase using Schwinger bosons. We will show that some
of these DM vectors can lead to a nonzero Berry curvature
�nk �= 0 and, in turn, a nonzero thermal Hall coefficient, albeit
with much smaller magnitude than in the Ansatz of Sec. III B.
This is related to the fact that the Chern number vanishes for
each band in the models with DM interactions that we study
here.

We will focus here on the Zeeman coupling of the magnetic
field and neglect orbital effects. In this case, only a certain
class of DM coupling vectors can lead to κxy �= 0 due to sym-
metry constraints. For instance, consider global spin rotations
by angle |ϕ| along axis ϕ/|ϕ|. Under these transformations,
it holds that Ji j → Ji j , BZ → RϕBZ , and DM

i j → RϕDM
i j , where

Rϕ is the vector representation of the spin rotation. As for any
spin-rotation-invariant observable, the thermal Hall conduc-
tivity κxy satisfies

κxy

[
Ji j, DM

i j, BZ
] = κxy

[
Ji j, RϕDM

i j, RϕBZ
]
. (45)

Being odd under time reversal, it further obeys

κxy

[
Ji j, DM

i j, BZ
] = −κxy

[
Ji j, DM

i j,−BZ
]
. (46)

Consequently, if the DM coupling vectors are collinear, i.e.,
DM

i j ∝ d̂, and d̂ · BZ = 0, the combination of Eqs. (45) and

(46), with ϕ = π d̂, implies κxy = 0. To wit, this is the case
for DM

i j = D0x̂, or for the potentially more relevant (spatially
alternating) DM coupling vector of the tetragonal phase of
La2CuO4 [54].

It is also easily seen that κxy vanishes for the DM coupling
vector in the orthorhombic phase of La2CuO4 [Fig. 6(a)]: the
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spatial reflection symmetry Ry with action (x, y) → (−x, y),
not combined with any rotation in spin space, remains a
symmetry of the system also in the presence of Zeeman field
along ẑ. Being odd under Ry, κxy has to vanish.

This is different for the DM coupling vector expected to
arise in the tetragonal phase of YBa2Cu3O6+x (YBCO) [54],
shown in Fig. 6(b), which analytically corresponds to

DM
i j = D‖ d̂i j, d̂i j = di j (cos θi j x̂ + sin θi j ŷ), (47)

where d̂i j is a unit vector, di j = −d ji = ±1 for j = i ± êμ

(μ = x, y), and θi j = 0 (π/2) on all x (y) bonds. Note that this
form of DM

i j respects the translational and fourfold-rotational
(C4) symmetries of the underlying square lattice (when ac-
companied by an appropriate rotation in spin space). It is
not collinear and does not break time-reversal symmetry [the
argument in Eqs. (45) and (46) does not apply]; furthermore, it
also breaks all in-plane reflection symmetries in combination
with a Zeeman field and will indeed give rise to a nonzero
thermal Hall response as we will show next.

To proceed with the Schwinger boson description of the
DM interactions, we define the additional operators

Ĉ†
i, j = 1

2

∑
μ ν

b†
iμ(id̂i j · σ )μνb jν = i

2
di j e−i σ θi j b†

iσ b j−σ ,

D̂i, j = 1

2

∑
μ ν

biμ(σ2 d̂i j · σ )μνb jν = − i

2
σ di j ei σ θi j biσ b jσ ,

whereupon the DM term can be decomposed as [55]

d̂i j · (Si × S j ) = 1

2
(: B̂†

i, j Ĉi, j + Ĉ†
i, jB̂i, j :

+Â†
i, jD̂i, j + D̂†

i, jÂi, j ). (48)

Assuming only SU(2) spin-rotation-invariant operators
acquire nontrivial expectation values in the mean-field
decoupling (e.g., B̂†

i, j Ĉi, j → 〈B̂†
i, j〉 Ĉi, j + const), the SBMFT

analysis is carried out in Appendix D to obtain the dispersion
of the bosonic bands for a zero-flux Ansatz appropriate to
a conventional Néel state [14] Ai,i+μ = A, Bi,i+μ = B ∀ i,
μ = x̂, ŷ, taking the DM coupling vector defined in Eq. (47)
and Fig. 6(b). Note that considering only SU(2)-invariant
operators does not mean that the resulting mean-field
Hamiltonian preserves SRI since the DM term in Eq. (48)
couples the operators Âi, j and B̂i, j that are spin-rotation
invariant to Ĉi, j and D̂i, j , which are not.

Unlike previously, there is no effective antiunitary symme-
try and, therefore, the bands are nondegenerate even in zero
fields. Nonetheless, in the absence of a magnetic field, the two
particle (and hole) bands intersect at a finite number of points
as can be seen in Fig. 7(a), so the Berry curvatures are well
defined only for Bz �= 0. These are plotted for the Schwinger
boson particle bands in Figs. 7(e) and 7(f); the curvatures of
the hole bands are related by Eq. (27). Despite a nonvanishing
Berry curvature, each band is actually topologically trivial
with zero Chern number.

The ensuing thermal Hall conductivities, which can be
calculated directly using the formalism of Sec. II C, are found
to be more than two orders of magnitude smaller than for the
earlier spin-liquid Ansätze that result in nonzero Chern num-
bers. Although the Hall coefficients are nonzero, as displayed
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(b)

(c) (d)

(e) (f)

FIG. 7. (a), (b) Dispersion of the Schwinger boson bands for the
mean-field approximation to Hspin (1), with JxA = JyA = 1, B =
0.5i, and D‖ = 0.10, in (a) zero and (b) large (Bz = 2) magnetic
fields. Shown are the eigenvalues of the dynamic matrix; the bosonic
bands have energies given by the absolute values of the same, which
are always positive. In a finite magnetic field, the individual particle
and hole bands become progressively well separated. Exactly as
in Fig. 2, the lines refer to different values of ky = −π,−π +
π/6, . . . , π . (c), (d) Same as above but now plotted in the kx-ky plane
for the (c) n = 1 (blue; particle) and (d) n = 3 (yellow; hole) bands,
at Bz = 0: the two bands are nonidentical. At each point in k space,
min (ε1k, ε3k ) corresponds to the lowest-energy eigenmode and the
band minima are at {(π/2, π/2), (−π/2, −π/2)}. Condensation of
these Schwinger bosons generally leads to long-range antiferromag-
netic order. (e), (f) Berry curvatures of the particle bands with the
same parameters as before, and a magnetic field Bz = 0.5.

in Fig. 8, this is a purely thermal effect in the sense that the
main contribution to κxy comes from asymmetric weighting
of the Berry curvature by the thermal distribution function
nB(εnk ) in Eq. (21) because the integral of �nk over the
Brillouin zone alone is identically zero. We also remark that
there is no anomalous contribution as time-reversal symmetry
is preserved at zero Zeeman field, guaranteeing that κxy = 0.

Since the CuO2 square plaquettes in YBCO are slightly
distorted and form a rectangular lattice [56,57], we have also
studied the impact of anisotropic Heisenberg exchanges Jx and
Jy along the x̂ and ŷ directions, respectively; this breaks the C4
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FIG. 8. The thermal Hall conductivity in an antiferromagnetic
Heisenberg spin model with Dzyaloshinskii-Moriya interactions, as
a function of magnetic field for different constant temperatures (top)
and as a function of temperature at a constant magnetic field Bz = 0.5
(bottom). Although not clearly visible in the numerical data, κxy

has to vanish exactly at zero field (no anomalous contributions) as
dictated by symmetry. The couplings considered are JxA = JyA = 1
(solid lines in both plots) and JxA = 1.05, JyA = 0.95 (red dots),
with all other parameters the same as in Fig. 7. When Jx �= Jy, C4

rotational symmetry is broken. The Schwinger boson bands do not
acquire nontrivial Chern numbers in the model considered, and κxy is
thus much smaller than for the spin-liquid Ansätze in Sec. III.

rotation symmetry down to C2. As demonstrated by Fig. 8,
even a moderately large anisotropy has no significant impact
on κxy.

V. CONCLUSION

Our primary collection of results concerns the thermal Hall
effect of spin liquids on the square lattice using SBMFT
in the absence of spin-orbit coupling. We have discussed
different spin-rotation and translation-invariant Ansätze that
break time-reversal and certain point-group symmetries; these
phases exhibit nonzero scalar spin chiralities. Among the
Ansätze considered, only one, with magnetic point group
4
m m′m′ and defined in Fig. 3, yields spinon bands with nonzero
Chern numbers. As seen in Fig. 5, where the Zeeman field Bz

and temperature T dependence of the resulting thermal Hall
conductivity κxy are shown, the nonzero Chern numbers lead
to a sizable κxy, of order one in units of k2

B/h̄. We derived
asymptotic expressions for the dependence of κxy on T and
Bz, and established that κxy/T vanishes as ∼exp(−�0/T ) at
low T for a spin liquid with a nonzero energy gap �0.

Our formalism also enables us to consider states in which
spin-rotation symmetry is broken and there is magnetic order
as T → 0. Any broken spin-rotation symmetry is restored
at infinitesimal temperatures in two spatial dimensions, and
within SBMFT, this can be captured by a spin liquid with a
gap �, which vanishes as � ∼ exp(−m/T ). In this case, we
found that κxy/T acquired similarly large values (Fig. 5), and
vanished only as a power of T as T → 0.

The spin-liquid states with 4
m m′m′ symmetry descend from

the time-reversal-preserving π -flux SBMFT states of Yang
and Wang [14]. As such, they do not have a special connection
to the Néel state in the limit of a vanishing spin gap. However,
our spin liquids do include cases in which they condense to
small distortions of the Néel state, although there is no natural
selection mechanism for such states, at least in mean-field
theory. With such a selection mechanism, our results yield
an attractive proposal to explain recent observations in the
cuprates [2].

The breaking of square-lattice and time-reversal symme-
tries to 4

m m′m′ in our states could either be spontaneous,
or simply induced by the orbital coupling of the applied
magnetic field (see Appendix A). Only for the case when the
symmetries are spontaneously broken, there is an anomalous
contribution to the thermal Hall effect, i.e., κxy �= 0 even when
Bz = 0.

Finally, we also discussed whether the DM interactions
relevant to the cuprates can give rise to a thermal Hall effect
within a SBMFT treatment of the spin model in Eq. (1). We
identify one DM coupling vector, defined in Eq. (47) and in
Fig. 6(b), which not only is expected to be realized in YBCO
[54], but also produces a nonzero κxy. However, as evinced
by Fig. 8, the thermal Hall conductivity is much weaker than
that of the Ansatz in Fig. 3 with 4

m m′m′ symmetry, due to the
absence of bands with nontrivial Chern numbers.

Note added. (i) In a recent paper with others [58], we have
discussed the thermal Hall response of antiferromagnets using
fermionic spinons. (ii) Han et al. [59] have described the
thermal Hall response of the cuprates using a quantum spin
Hall state, that could be favored by spin-orbit interactions.
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APPENDIX A: COUPLING TO AN ORBITAL
MAGNETIC FIELD

Aside from the Zeeman coupling (9), which we focused
on in the main text, there is also an orbital coupling of
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the magnetic field. Being odd under time reversal and spin-
rotation invariant, its leading contribution in a t/U expansion
of the underlying Hubbard model involves the triple product
of neighboring spins and is of order t3/U 2. Explicitly, it reads
as [42]

Hχ = −ϒ
∑
�

sin(�) Si · (S j × Sk ), ϒ = 24t2t ′

U 2
, (A1)

where the sum involves the triangular plaquettes � formed by
nearest-neighbor (with hopping t) and next-nearest-neighbor
bonds (hopping t ′), and � is the flux of an applied mag-
netic field through a single triangular plaquette. We see from
Eq. (A1) that this orbital coupling induces uniform scalar spin
chiralities and, as mentioned earlier, breaks the symmetry of
the system to 4

m m′m′.
In this Appendix, we prove that the different terms in

Eq. (A1) cancel out exactly on the square lattice after per-
forming a Schwinger boson mean-field decoupling, as long
as there exists a gauge where the Ansatz is explicitly trans-
lation invariant. This is, for instance, certainly the case for
the conventional Ansatz of the antiferromagnetic state (with
only Ai,i+x̂ = Ai,i+ŷ = A1), but not for the one with 4

m m′m′
symmetry defined in Sec. III B. As we outline below, Hχ in
Eq. (A1) will lead to a nonzero contribution at the mean-field
level when decoupled with the parameters in Eqs. (31) and
(33).

As a means of decoupling Hχ within SBMFT, we use the
identity [29]

4 : B̂i, j B̂ j,k B̂k,i : = 1

2
(n̂i S j · Sk + n̂ j Sk · Si + n̂k Si · S j )

+ n̂in̂ j n̂k

8
− i Si · (S j × Sk ), (A2)

from which it follows that

Si · (S j × Sk ) = 2i (B̂i, j B̂ j,k B̂k,i − B̂†
k,i B̂

†
j,k B̂

†
i, j ). (A3)

In a mean-field approximation,

B̂i, j B̂ j,k B̂k,i � 〈B̂i, j〉 〈B̂ j,k〉 B̂k,i + 〈B̂i, j〉 B̂ j,k 〈B̂ki,〉
+ B̂i, j 〈B̂ j,k〉 〈B̂k,i〉 − 2〈B̂i, j〉 〈B̂ j,k〉 〈B̂k,i〉.

(A4)

Based off this simplification, we can now evaluate the
quadratic terms for each individual bond. As an example, con-
sider a bond linking sites i and i + x̂; following the labeling
scheme of Fig. 9, let this be numbered 1–3. The only spin
chirality terms in the Hamiltonian that involve this bond are

S1 · [(S2 × S3) + (S4 × S3) + (S3 × S6) + (S3 × S5)]

≈
[
B̂1,3

(
B∗2 + |B|2

)
+ B̂†

1,3

(
B2 + |B|2)] − H.c. + · · · ,

(A5)

where we have isolated the terms proportional to B̂1,3 or B̂3,1,
and those from all other bonds are grouped together in the
ellipsis. However, the term enclosed in the brackets is already
Hermitian so the total contribution from the 1–3 (and more
generally, any horizontal or vertical) edge is always zero.
An analogous statement holds for any bond in the diagonal
direction as well. In this regard, let us survey the 1–4 link,

2 4

3

65

1

FIG. 9. Convention for the spin chirality term Si · (S j × Sk ) in
the Hamiltonian. For each triangular plaquette, the sites i, j, and k are
the vertices of the corresponding dashed triangle, taken succesively
in a clockwise fashion. The net interaction Hχ involves the sum over
all C4 rotated copies of such triangles.

which connects sites i and i + x̂ + ŷ. The relevant spin inter-
actions in which this bond participates are S3 · (S1 × S4) and
S2 · (S4 × S1), and collecting the quadratic terms for Eq. (A4),
we finally have

B̂1,4B∗2 + B̂†
1,4B2 − H.c. = 0. (A6)

Since this cancellation occurs on any bond on the square
lattice, Hχ in Eq. (A1) does not contribute to the Hamiltonian
to quadratic order and the orbital coupling to the magnetic flux
necessarily vanishes in the mean-field framework.

If, instead, we use the parameters of the Ansatz with sym-
metry 4

m m′m′ in Eqs. (31) and (33), there is no cancellation
using SBMFT. In fact, as expected from a symmetry point
of view, the resultant mean-field contribution of Hχ can be
absorbed by rescaling of the Ansatz per se as

B1 −→ B1 − 4ϒ sin �B1B2, (A7)

B2 −→ B2 − 2ϒ sin �B2
1 . (A8)

This conveys that the parameters B1 and B2 can also be
induced or enlarged by the orbital coupling to the external
magnetic field.

APPENDIX B: PERTURBATIONS IN THE CP1 THEORY

Quantum fluctuations about the conventional square-lattice
Néel state are conveniently described in the Schwinger boson
theory using a continuum formulation based on the CP1

model [60]. Here, we discuss, following Ref. [9], the addi-
tional perturbations that are introduced into this theory from
the three-spin interaction in Eq. (A1), which is induced by the
orbital effect of the applied magnetic field, and which breaks
the symmetry down to 4

m m′m′.
The CP1 model is expressed in terms of a bosonic spinor

zσ which is coupled to a U(1) gauge field aμ (μ = τ, x, y) with
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Lagrangian

LCP = 1

g
|(∂μ − iaμ)zσ |2. (B1)

Perturbations with symmetry of Hχ are most conveniently ex-
pressed in terms of the gauge field aμ. In a relativistic formula-
tion, the leading perturbation is the term [9,61] εμνλ fμν∂ρ fρλ.
But, more generally, without relativistic invariance, there are
two independent terms which are expressed in terms of the
internal electric and magnetic fields derived from aμ (these
are unrelated to the applied external electromagnetic field):

ei = ∂τ ai − ∂iaτ , b = ∂xay − ∂yax . (B2)

Analysis of symmetries leads to the perturbation

Lχ = iλ1(ex∂τ ey − ey∂τ ex ) + iλ2 b ∂iei (B3)

with couplings λ1,2 which are expected to be proportional to
ϒ sin(�) in Eq. (A1).

In terms of the underlying spin-wave fluctuations, the
gauge field aμ involves terms with one gradient, and so Lχ

has five spatiotemporal gradients [9]. As such, its effects can
be expected to be quite weak.

APPENDIX C: MEAN-FIELD HAMILTONIAN FOR THE
ONE-ORBITAL MODEL

The mean-field Hamiltonian for the one-orbital model pre-
sented in Sec. III is described by Eq. (29). We first expand out
the different terms therein with the Ansatz of Eqs. (31) and
(33). Labeling the two kinds of sites for a fixed gauge choice
by α and β, this can be written as

HMF = J

2

∑
(u,v) ∈α, σ

(iB1 α
†
(u,v) σ β(u,v)+x̂ σ + iB1 α

†
(u,v) σ β(u,v)+ŷ σ + iB2 α

†
(u,v) σ α(u,v)+η1 σ − iB2 α

†
(u,v) σ α(u,v)+η2 σ

−A1 σ α(u,v) σ β(u,v)+x̂ −σ − A1 σ α(u,v) σ β(u,v)+ŷ −σ − A2 σ α(u,v) σ α(u,v)+η1 −σ + A2 σ α(u,v) σ α(u,v)+η2 −σ ) + H.c.

+ J

2

∑
(u,v) ∈β, σ

(iB1 β
†
(u,v) σ α(u,v)+x̂ σ − iB1 β

†
(u,v) σ α(u,v)+ŷ σ − iB2 β

†
(u,v) σ β(u,v)+η1 σ + iB2 β

†
(u,v) σ β(u,v)+η2 σ

−A1 σ β(u,v) σ α(u,v)+x̂ −σ + A1 σ β(u,v) σ α(u,v)+ŷ −σ + A2 σ β(u,v) σ β(u,v)+η1 −σ − A2 σ β(u,v) σ β(u,v)+η2 −σ ) + H.c.

+ λ
∑

(u,v), σ

(α†
(u,v) σ α(u,v) σ + β

†
(u,v) σ β(u,v) σ − 2S), (C1)

with (u, v) running exclusively over all α (β) sites in the first (second) summation above. Fourier transforming to momentum
space, with the convention biσ = ∑

k bkσ exp(i k · ri )/
√

N , we find

HMF =
[

J

2

∑
kσ

(iB1E+α
†
k σ βk σ + 2B2eikxSyα

†
k σ αk σ − A1 σ (E+)∗ αk σ β−k −σ − 2iA2 σ e−i kxSy αk σ α−k −σ )

+ J

2

∑
kσ

(iB1E−β
†
k σ αk σ − 2B2eikxSyβ

†
k σ αk σ − A1 σ (E−)∗ βk σ α−k −σ + 2iA2 σ e−i kxSy βk σ β−k −σ )

]
+ H.c.

+ λ
∑
k σ

(α†
k σ αk σ + β

†
k σ βk σ − 2S), (C2)

where we have adopted the shorthand Cμ ≡ cos(kμ), Sμ ≡ sin(kμ), and E± ≡ exp(ikx ) ± exp(iky). In real space, the positions
of the α and β states within the same unit cell are spatially separated, so the second-quantized Hamiltonian is invariant under
k → k + Gμ only up to a gauge transformation [62]. The presence of an external magnetic field Bz now appends the Zeeman term
(9) to HMF. Equation (C2) is easily converted into the form HMF = ∑

k (	†
k H(k) 	k )/2, where 	 is the eight-component spinor

defined as 	
†
k = (α†

k↑ β
†
k↑ α

†
k↓ β

†
k↓ α−k↑ β−k↑ α−k↓ β−k↓). This can be diagonalized in accordance with the process sketched in

Sec. II B to calculate the Berry curvatures and conductivities.
More compactly, though, HMF can equivalently be expressed using the reduced four-component spinor ψ† =

(α†
k↑ β

†
k↑ α−k↓ β−k↓). Up to a constant, the bosonic mean-field Hamiltonian reads as

H(k) = 1

2

⎛
⎜⎜⎜⎝

−B + 4B2 J Cx Sy + 2λ 2iB1 J (Cy + iSx ) 4iA2 J Cx Sy −2A1 J (Cy + iSx )

−2iB1 J (Cy − iSx ) −B − 4B2 J Cx Sy + 2λ 2A1 J (Cy − iSx ) −4iA2 J Cx Sy

−4iA2 J Cx Sy 2A1 J (Cy + iSx ) B − 4B2 J Cx Sy + 2λ 2B1 J (−iCy + Sx )

−2A1 J (Cy − iSx ) 4iA2 J Cx Sy 2B1 J (iCy + Sx ) B + 4B2 J Cx Sy + 2λ

⎞
⎟⎟⎟⎠. (C3)

Denoting the Pauli matrices acting in spin and sublattice space by σ and τ , respectively,

H = λσ0τ0 + Jσ2(A1Sxτ1 + A1Cyτ2 − 2A2CxSyτ3) − B

2
σ3τ0 − Jσ3(B1Sxτ1 + B1Cyτ2 − 2B2CxSyτ3). (C4)

This form of the kernel H contains the same information as the 8 × 8 matrix for the full spinor 	 but is much more amenable to
analytical calculations. On grounds of simplicity, it is therefore convenient to frame the discussion in the following subsections
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in terms of the 4 × 4 matrix description of the mean-field Hamiltonian H(k). In this language, the dynamic matrix K = ρ3 H =
σ3τ0 H is

K = −B

2
σ0τ0 − JB1Sxσ0τ1 − JB1Cyσ0τ2 + 2JB2CxSyσ0τ3 − iJA1Sxσ1τ1 − iJA1Cyσ1τ2 + 2iJA2CxSyσ1τ3 + λσ3τ0. (C5)

Diagonalizing this dynamic matrix results in two particle bands, which we list as m = 1, 2, and two hole bands (m = 3, 4). Note
that one could just as well have elected to work with 	 instead of ψ and the correspondence between these bands and our
previous indexing scheme is m = {1, 2, 3, 4} ↔ n = {1, 3, 6, 8}. For the remaining n bands, associated with n = {2, 4, 5, 7} ≡
n′, the energies and curvatures are simply related as εn′,k = ε(n′+4) mod 8 ,k and �n′,k = −�(n′+4) mod 8 ,−k, but (n′ + 4) mod 8 ∈
{1, 3, 6, 8}, closing the loop between the four- and eight-component formulations.

1. Effective antiunitary symmetry

As mentioned in Sec. III B 1, the pairwise degeneracy of the particle bands in the one-orbital model (at zero Zeeman fields)
is due to an effective symmetry of the Hamiltonian, which we single out here. To begin with, we identify an antiunitary operator
O = U C, where U is unitary and C is complex conjugation such that

O K (k)O† = −K (k) ⇒ U K∗(k)U † = −K (k). (C6)

This implies that if �m is an eigenvector of K with eigenvalue ωm, then so is U �∗
m but with eigenvalue −ωm, which is precisely

the particle-hole symmetry that must be broken to lift the degeneracy of the bosonic bands. The only such operator (unique up
to an additional phase factor) is O = σ2τ2C, i.e., U = σ2τ2. Equation (C6) then states that

σ3Uσ3H∗(k)U † = −H(k). (C7)

As σ3 and U = σ2τ2 anticommute, this yields an effective “time-reversal symmetry,” i.e., H(k) and the antiunitary operator O
commute:

OH(k)O† = H(k). (C8)

Since O2 = +1, this does not translate to a Kramers degeneracy (in general, all eigenvalues of H are indeed nondegenerate)
whereas Eq. (C6) does force the spectrum of K to be symmetric with respect to zero energy. It then follows that the resulting
degenerate bands have opposite Chern numbers. The wave functions are the eigenvectors of K and, by virtue of Eq. (C6), may
be grouped according to the eigenvalues as Tk = [v1(k) v2(k) (Uv∗

1 (k)) (Uv∗
2 (k))]. More concisely,

Tk = UT∗
kσ1; U = σ2τ2. (C9)

The implication for the Berry curvature is that

�mk = i εμν

[
σ3

∂ T†
k

∂ kμ

σ3
∂ Tk

∂ kν

]
mm

= i εμν

[
σ3σ1

∂ TT
k

∂ kμ

U †σ3U
∂ T∗

k

∂ kν

σ1

]
mm

= i εμν

[
σ3

∂ TT
k

∂ kμ

σ3
∂ T∗

k

∂ kν

]
m m

= −�∗
mk = −�mk, (C10)

where m = 3 (m = 4) for m = 1 (m = 2), and we have used the fact that �mk is real in the last step. Translating back to the
band index n, this proves that the pairs n = (1, 2) and (3, 4) are indeed degenerate and also have the same curvatures modulo
k → −k. The degeneracy is split at any temperature by a uniform Zeeman field BZ , which creates a constant gap between the
two bands at each momentum.

2. Magnetic order

Within the Schwinger boson framework, magnetic order is obtained via the condensation of bosons, which occurs when
the bosonic modes have at least one zero eigenvalue [63,64]. The minima of the spinon bands are found from diagonalizing
K = σ3τ0H(k), with H(k) as in Eq. (C3), and lie at ±k0, where k0 = (π/2, 0). Without an external magnetic field (Bz = 0), the
eigenvalues, each doubly degenerate at these momenta, are

ε± = |
√

λ2 − 2A2
1J2 ±

√
2B1J|. (C11)

For B1 > 0, the spinon gap is set by ε− and closes when
√

λ2 − 2A2
1J2 = √

2B1J; B2 appears neither in this equation nor in the

eigenstates below. Eliminating B1 in favor of A1, λ, and setting ξ ≡ λ/(
√

2A1J ) for notational convenience, we find that the
two zero-energy eigenvectors at k = k0 = (π/2, 0) are

	1 = (eiπ/4ξ, i
√

ξ 2 − 1, 0, 1)T , 	2 = (i
√

ξ 2 − 1,−e−iπ/4ξ, 1, 0)T , (C12)

where the superscript T denotes transpose. Likewise, at k = −k0 = (−π/2, 0), there are two degenerate eigenvectors when the
gap closes:

	3 = (e−iπ/4ξ, i
√

ξ 2 − 1, 0, 1)T , 	4 = (i
√

ξ 2 − 1,−eiπ/4ξ, 1, 0)T . (C13)
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The condensate in real space is a linear combination of those at ±k0. Introducing arbitrary complex numbers zi to represent the
strength thereof, we have ⎛

⎜⎜⎝
〈αr↑〉
〈βr↑〉
〈α†

r↓〉
〈β†

r↓〉

⎞
⎟⎟⎠ = (z1	1 + z2	2)eik0·r + (z3	3 + z4	4)e−ik0·r, (C14)

whereafter the condensate on each sublattice can be written as

Xα =
(〈αr↑〉

〈αr↓〉
)

=
(

eiπ/4z1ξ + iz2

√
ξ 2 − 1 e−iπ/4z3ξ + iz4

√
ξ 2 − 1

z∗
4 z∗

2

)(
eik0·r

e−ik0·r

)
,

Xβ =
(〈βr↑〉

〈βr↓〉
)

=
(

iz1

√
ξ 2 − 1 − e−iπ/4z2ξ iz3

√
ξ 2 − 1 − eiπ/4z4ξ

z∗
3 z∗

1

)(
eik0·r

e−ik0·r

)
. (C15)

The spinor (eik0·r, e−ik0·r)T is proportional to (1, 1)T for even x, whereas for odd x coordinate, it is ∝ (1,−1)T [the overall U(1)
phase is redundant for calculating physical spin expectation values]. This calls for further classification of the sites on the α and β

sublattices, defined by (−1) jx+ jy = 1 and −1, respectively, according as whether x is even (e) or odd (o), creating a four-sublattice
structure for the magnetic order. The expectation value of the spin at each site can then be evaluated as 〈Sμa(r)〉 = X †

μaσXμa for
μ = {α, β} and a = {e, o}.

At this point, we note that the spin-liquid state described by the Ansatz (31) has a gauge-invariant flux φ of π (modulo 2π )
through each elementary square plaquette [65] (see main text for definition). Similar π -flux states on the square lattice were
studied by Yang and Wang [14]; the latter states are all identical in the limit of only A1 �= 0. The corresponding magnetically
ordered state was found to be a subset of the classical ground state for the J2/J1 = 1

2 Heisenberg model, and, in general, quite
distinct from Néel order. A formal route to draw a connection to the Yang-Wang π -flux ansatz is to construct a local gauge
transformation mapping the one-orbital model onto it. Recall that under such a transformation, one generically has

b jσ → eiϕ( j)b jσ , Ai, j → ei[ϕ(i)+ϕ( j)]Ai, j Bi, j → ei[ϕ(i)−ϕ( j)]Bi, j . (C16)

The Ansatz (31) is characterized by Ai,i+x̂ = A1 and Ai,i+ŷ = (−1)ix+iyA1, whereas that of Ref. [14] has Ai,i+x̂ = (−1)iyA1 and
Ai,i+ŷ = −A1. If the two are to be related by a gauge transformation, then the phase ϕ( j) must satisfy

ϕ( jx, jy) + ϕ( jx + 1, jy) = π jy, ϕ( jx, jy) + ϕ( jx, jy + 1) = π ( jx + jy + 1). (C17)

Both these equations hold modulo 2π and their solution is ϕ( jx, jy) = π (−2 j2
x + 2 jy + 1)/4. Applying this transformation

shifts the one-orbital dispersion minima, which are inherently gauge dependent: with the earlier gauge choice, the minima were
positioned at (±π/2, 0) but in the new gauge, they are at ±(π/2, π/2), as expected from Ref. [14] in the limit where all terms
but A1 are zero. Proceeding beyond this special case, we can similarly transform the remaining (A2, B1, B2) terms in Eq. (33)
according to Eq. (C16), and the minimal Ansatz which gives quantized Chern bands in this gauge reads as

Ai,i+x̂ = (−1)iyA1, Ai,i+ŷ = −A1,

Bi,i+x̂ = −(−1)ixB1, Bi,i+ŷ = B1(−1)ix+iy , Bi,i+x̂+ŷ = Bi,i+x̂−ŷ = −iB2(−1)iy . (C18)

As Fig. 10(a) corroborates, the minima for the lowest-energy spinon band remain at ±(π/2, π/2) even on turning on B1 and B2

[cf. Fig. 4(d)].
We return to our original gauge choice where the computation of magnetic order is more tractable. Noting that the spin-liquid

state for the one-orbital model reduces to that in Ref. [14] in the limit of only A1 �= 0, we first set ξ = 1 (as dictated by the
gap-closing condition with B1 = 0). Upon calculating the spin expectation values using the boson-condensation procedure, we
find that the ordered moments on the four sites of a plaquette add to zero, i.e.,∑

μ=α,β

∑
a=e,o

〈Sμa〉 = 0, (C19)

which is precisely the four-sublattice ordered state in Ref. [14]. A particular instance thereof is the Néel state which is obtained
when the coefficients are chosen such that only one of the four zi is nonzero. For general ξ > 1, the spinors Xμa are

Xαe =
(

ξ (eiπ/4z1 + e−iπ/4z3) + i
√

ξ 2 − 1(z2 + z4)
z∗

4 + z∗
2

)
, Xαo =

(
ξ (eiπ/4z1 − e−iπ/4z3) + i

√
ξ 2 − 1(z2 − z4)

z∗
4 − z∗

2

)
,

Xβe =
(

−ξ (e−iπ/4z2 + eiπ/4z4) + i
√

ξ 2 − 1(z1 + z3)
z∗

3 + z∗
1

)
, Xβo =

(
ξ (−e−iπ/4z2 + eiπ/4z4) + i

√
ξ 2 − 1(z1 − z3)

z∗
3 − z∗

1

)
. (C20)
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FIG. 10. (a) Dispersion of the n = 1 spinon band corresponding to the Schwinger boson Ansatz for the one-orbital model in Eq. (C18) with
J = 1, A1 = 1, B1 = 0.5, B2 = 0.5, λ = 2.0, and Bz = 0. In this gauge, the minima are always at ±(π/2, π/2). (b) The Néel state is obtained
upon boson condensation with ξ = 1 (implying B1 = 0) and only one of the zi (taken to be z1 here) nonzero. (c) This state can be perturbed by
increasing ξ which equals 1.05 here, thus setting B1 ≈ 0.32A1. (d) The magnetically ordered state with the complex coefficients chosen to be
{z1, z2, z3, z4} = {z, iz, 0, 0}, and (e) {z,−iz, 0, 0}. The magnetic moment is uniform at all sites for the states exhibited, and the vector plotted
in each figure is, for clarity, (Sx/2, Sy/2, Sz ).

Akin to the analysis above, we again compute the values of the ordered moment at each site but the analytical expressions in this
case prove to be unwieldy. Specifically, Sz

μa takes the form

Sz
αe = ξ 2(|z1 − iz3|2 + |z2 + z4|2) − 2|z2 + z4|2 + 2ξ

√
ξ 2 − 1 Im[(z∗

2 + z∗
4 )(z1eiπ/4 + z3e−iπ/4)],

Sz
αo = ξ 2(|z1 + iz3|2 + |z2 − z4|2) − 2|z2 − z4|2 + 2ξ

√
ξ 2 − 1 Im[(z∗

2 − z∗
4 )(z1eiπ/4 − z3e−iπ/4)],

Sz
βe = ξ 2(|z2 + iz4|2 + |z1 + z3|2) − 2|z1 + z3|2 + 2ξ

√
ξ 2 − 1 Im[(z1 + z3)(z∗

2eiπ/4 + z∗
4e−iπ/4)],

Sz
βo = ξ 2(|z2 − iz4|2 + |z1 − z3|2) − 2|z1 − z3|2 + 2ξ

√
ξ 2 − 1 Im[(z1 − z3)(z∗

2eiπ/4 − z∗
4e−iπ/4)]. (C21)

As can be seen, for general complex values zi, there is no simple relation between the z components. Further,

∑
μ=α,β

∑
a=e,o

〈
Sz

μ,a

〉 = 4(ξ 2 − 1)
4∑

i=1

|zi|2 + 4ξ
√

ξ 2 − 1 Im[z1z∗
2eiπ/4 + z3z∗

4e−iπ/4] (C22)

vanishes only for ξ = 1. Therefore, the sum of ordered moments on the four sites of a plaquette is nonzero, and the spin order
parameter can be parametrized as

〈S( j)〉 = n(0,0) + (−1) jx n(π,0) + (−1) jy n(0,π ) + (−1) jx+ jy n(π,π ), (C23)

where we have defined

n(0,0) = 1
4 (〈Sαe〉 + 〈Sαo〉 + 〈Sβe〉 + 〈Sβo〉), n(π,0) = 1

4 (〈Sαe〉 − 〈Sαo〉 + 〈Sβe〉 − 〈Sβo〉),

n(0,π ) = 1
4 (〈Sαe〉 − 〈Sαo〉 − 〈Sβe〉 + 〈Sβo〉), n(π,π ) = 1

4 (〈Sαe〉 + 〈Sαo〉 − 〈Sβe〉 − 〈Sβo〉). (C24)

It is noteworthy that n(0,0) = 0 exactly corresponds to the solution of Ref. [14] with zero average moment on a plaquette. The
most general ordered state breaks C4 and lattice translation (Tx and Ty) symmetries but preserves the reflections Rx and Ry;
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A1, iB1

A2, iB2

êy/2

êx/2

êx

êy

(a) (b)

FIG. 11. (a) Schwinger boson mean-field Ansatz for the three-
orbital model. Since the Ansatz is explicitly translation invariant, we
show only one Cu atom and its four neighboring oxygen atoms. The
arrows indicate the directionality of the bonds, which is required for
specifying Ai, j (odd under i ↔ j) and complex Bi, j (as B∗

i, j = B j,i).
(b) The lattice conventions employed for this model. A single unit
cell, shown here with dotted lines, consists of three sites, labeled α,
β, and γ .

of course, it also breaks time reversal and SRI. While the
moments on the four sites of each plaquette are generically
distinct, previously studied states on the square lattice, like
the Néel, the canted Néel, or the tetrahedral umbrella state
[66] are not necessarily ruled out. If the structure of the
condensate is such that n(π,π ) is large in magnitude compared
to n(0,0), n(π,0), and n(0,π ), the magnetically ordered state can
be thought of as a perturbation to the Néel state, an example
of which is sketched in Fig. 10(c) for zi = 0 ∀ i �= 1. The
magnitude of the ordered moments is uniform at all lattice
sites, i.e., X †

μaXμa = constant, if we choose such a solution
for the zi. One can also impose this requirement of uniformity
when more than one coefficient is nonzero. Endowed with this
constraint, there are four solutions, which are {z1, z2, z3, z4} =
{z,±iz, 0, 0} or {0, 0, z,±iz}. The two associated symmetry-
inequivalent ordered states are shown in Figs. 10(d) and 10(e).

APPENDIX D: SBMFT WITH DZYALOSHINSKII-MORIYA
INTERACTIONS

In this Appendix, we continue along the lines of Sec. IV to
develop the mean-field Hamiltonian for the nearest-neighbor
Heisenberg antiferromagnet with additional Dzyaloshinskii-
Moriya couplings. Pursuant to Eq. (48), the mean-field ap-
proximation for the in-plane DM term is

H (3)
MF = D‖

2

∑
〈i, j〉

(B∗
i, j Ĉi, j + Ĉ†

i, jBi, j + A∗
i, jD̂i, j + D̂†

i, jAi, j )

= D‖
2

∑
〈i, j〉

− i

2
di je

iσθi j (B∗
i, jb

†
j−σ biσ + σA∗

i, jbiσ b jσ )

+ H.c. (D1)

The total mean-field Hamiltonian HMF is now a sum of
Eqs. (8), (9), and (D1). All things considered, Hspin bears the
mean-field momentum-space representation:

H (1)
MF =

∑
k σ μ

[
Jμe−ikμ

(B∗

2
b†

kσ bkσ − σ
A∗

2
bkσ b−k−σ

)
+ H.c.

+ λ b†
kσ bkσ

]
− 2NsλS + 2NsJ (|A|2 − |B|2),

H (2)
MF = −B

2

∑
k σ

σ b†
kσ bkσ ,

H (3)
MF = DM

4

∑
k σ

[−i Ēσ (B∗b†
k−σ bkσ + σ A∗bkσ b−kσ ) + H.c.].

(D2)

For the sake of notational brevity, we work with the short-
hand Eσ ≡ (ei kx + i σ ei ky ) and overhead bars connote the
same expressions but with the replacement k → −k; thus,
(E+)∗ = Ē−. Upon expanding and explicitly summing over
σ =↑,↓ in Eq. (D2), the full Hamiltonian is expressible, as
before, as HMF = ∑

k (	†
k H(k) 	k )/2 with the spinor 	

†
k ≡

(b†
k↑ b†

k↓ b−k↑ b−k↓), and the kernel

H(k) =

⎛
⎜⎜⎜⎝

(
B Jμeikμ

)r + (
λ − B

2

)
i
4 D‖

(
B E− − B∗ Ē−

)
i
2 D‖AE− −J AE+

i
4 D‖

(
B E+ − B∗ Ē+

) (
B Jμeikμ

)r + (
λ + B

2

)
JAE+ − i

2 D‖ AE+
− i

2 D‖ A∗ Ē+ J A∗ E+
(
B Jμe−ikμ

)r + (
λ − B

2

)
i
4 D‖

(
B Ē+ − B∗ E+

)
−J A∗ E+ i

2 D‖A∗Ē− i
4 D‖

(
B Ē− − B∗ E−

) (
B Jμe−ikμ

)r + (
λ + B

2

)

⎞
⎟⎟⎟⎠, (D3)

where the superscript r stands for the real part; HMF further includes another constant piece, which we ignore. Diagonalizing
with the paraunitary matrix Tk gives the full information of the dispersions for the volume-mode bands and some representative
energy dispersions are shown in Fig. 7.

APPENDIX E: THREE-ORBITAL MODEL

The three-orbital CuO2 model, with the broken time-reversal and reflection symmetries of pattern D, allows for nonzero loop
currents unlike its one-orbital counterpart [9] studied in Sec. III, and offers the added advantage of an explicitly translation-
invariant Ansatz. In this Appendix, we illustrate that the three-orbital model also shows a large thermal Hall conductivity in the
presence of a magnetic field, analogous to the one-orbital model, with identical broken symmetries as in Sec. III B.

Let us consider the Schwinger boson Ansatz for this model, illustrated in Fig. 11(a). More explicitly, in the mean-field
Hamiltonian (29), the only bond operator expectation values are

A j, j± êμ
2

= ±A1, B j, j± êμ
2

= ±iB1, A j± x̂
2 , j+ ŷ

2
= A j± x̂

2 , j− ŷ
2

= A2, B j± x̂
2 , j+ ŷ

2
= B j± x̂

2 , j− ŷ
2

= iB2, (E1)
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(a) (b) (c) (d)

FIG. 12. Schwinger boson band structure for three of the six different particle bands with J = 1, A1 = 1, B1 = 0.5, λ = 2.5, and Bz = 0;
the other bands are degenerate at zero field and are not shown. The remaining parameters are chosen as follows: (a)A2 = 0, B2 = 0;
(b) A2 = 0.75, B2 = 0; (c) A2 = 0.75, B2 = 0.5. Only with B2 �= 0 are the upper bands prevented from touching; all the bands then acquire
well-defined Chern numbers. The bands that are the degenerate counterparts of the ones shown have the same Chern numbers. (d) The
dispersion for the lowest-energy band exhibits minima at k = (0, 0), signaling ferromagnetic order in the spin correlations.

where A j,k, iB j,k ∈ R. The basis vectors of the direct lattice are êμ; μ = x, y, and we adopt the convention that integer-valued
(half-integer-valued) lattice indices refer to copper (oxygen) sites [see Fig. 11(b)]. The state with only A1 (or also B1) nonzero
has the full symmetries of the square lattice but turning on B2 (and/or A2) breaks the symmetries down to 4

m m′m′. Denoting the
three sites of a unit cell, at position (u, v), as α(u,v), β(u,v), γ(u,v) and expanding, the mean-field Hamiltonian is

HMF =
∑

(u,v), σ

J

2
[(iB1 α

†
(u,v)σ β(u,v)σ + iB1 α

†
(u,v)σ γ(u,v)σ − iB1 α

†
(u,v)σ β(u−1,v)σ − iB1 α

†
(u,v)σ γ(u,v−1)σ )

− (A∗
1 σ α(u,v)σ β(u,v)−σ + A∗

1 σ α(u,v)σ γ(u,v)−σ − A∗
1 σ α(u,v)σ β(u−1,v)−σ − A∗

1 σ α(u,v)σ γ(u,v−1)−σ )

− (A∗
2 σ β(u,v)σ γ(u,v)−σ + A∗

2 σ β(u−1,v)σ γ(u,v)−σ + A∗
2 σ β(u−1,v)σ γ(u,v−1)−σ + A∗

2 σ β(u,v)σ γ(u,v−1)−σ )

+ (iB2 β
†
(u,v)σ γ(u,v)σ + iB2 β

†
(u−1,v)σ γ(u,v)σ + iB2 β

†
(u−1,v)σ γ(u,v−1)σ + iB2 β

†
(u,v)σ γ(u,v−1)σ ) + H.c.]

+
∑

(u,v), σ

λ (α†
(u,v)σ α(u,v)σ + β

†
(u,v)σ β(u,v)σ + γ

†
(u,v)σ γ(u,v)σ − 3S). (E2)

After a Fourier transform to momentum space, this reads as (up to constants)

HMF =
∑
kσ

[−JB1(α†
kσβkσ Sx + α

†
kσ γkσ Sy) + i JA∗

1 σ (αkσβ−k−σ Sx + αkσ γ−k−σ Sy) + H.c.

+ 2J CxCy
(
iB2β

†
kσ γkσ − A∗

2 σ βkσ γ−k−σ + H.c.
) + λ(α†

kσαkσ + β
†
kσ βkσ + γ

†
kσ γkσ − 3S)], (E3)

where we use the shorthand Cμ(Sμ) ≡ cos (sin) kμ

2 . Adding on an external magnetic field introduces the Zeeman term of Eq. (9)
and, subsequently, the Hamiltonian can be expressed as

HMF =
∑

k

	
†
k H(k) 	k; 	

†
k ≡ (α†

k↑ β
†
k↑ γ

†
k↑ α−k↑ β−k↓ γ−k↓), (E4)

with the kernel

H(k) = 1

2

⎛
⎜⎜⎜⎜⎜⎝

2λ − Bz −2J B1 Sx −2J B1 Sy 0 −2i J A1 Sx −2i J A1 Sy

−2J B1 Sx 2λ − Bz 4i J B2 Cx Cy −2i J A1 Sx 0 −4J A2 Cx Cy

−2J B1 Sy −4i J B2 Cx Cy 2λ − Bz −2i J A1 Sy 4J A2 Cx Cy 0
0 2iJ A1 Sx 2i J A1 Sy Bz + 2λ 2J B1 Sx 2J B1 Sy

2i J A1 Sx 0 4J A2 Cx Cy 2J B1 Sx Bz + 2λ −4i J B2 Cx Cy

2i J A1 Sy −4J A2 Cx Cy 0 2J B1 Sy 4i J B2 Cx Cy Bz + 2λ

⎞
⎟⎟⎟⎟⎟⎠. (E5)

This mean-field Hamiltonian can now be easily diagonalized, employing the standard methods formulated above; the resultant
band structure is sketched in Fig. 12.

In a like manner, from the paraunitary matrix Tk, one can once again calculate the Berry curvature for these bands [Fig. 13(a)]
using the partition H1 = {k : ky < 0} and H2 = {k : ky � 0}. The caveat is that the expression for the thermal Hall conductivity
in Eq. (21) is formulated exclusively in terms of particle bands whereas our choice of the six-component spinor in Eq. (E4)
eliminates the trivial particle-hole duplication, leaving us with three particle and three hole bands. Exploiting the relation (27)
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FIG. 13. (a) Berry curvatures of the particle bands with nonzero Chern numbers in the three-orbital model, with the parameters J = 1,
A1 = 1, A2 = 0.75, B1 = B2 = 0.5, Bz = 0, and λ = 2.5. (b) The thermal Hall conductivity as a function of temperature at fixed Bz = 0.5 for
two (arbitrarily chosen) values of A2, indicating that the strength of the thermal Hall signal does vary with A2 even though the Chern numbers
do not. (c), (d) The magnetic field dependence of the conductivity for different temperatures with A2 = 0.75.

between the curvatures of the particle and hole bands, Eq. (21) can be brought to the more implementable form

κxy = −k2
B T

h̄V

∑
k

⎡
⎣ ∑

n ∈ particle

{
c2[nB(εnk )] − π2

3

}
�nk −

∑
n ∈ hole

{
c2[nB(εn−k )] − π2

3

}
�n−k

⎤
⎦. (E6)

Summing over all six bands, the net conductivity in Fig. 13 is observed to be three orders of magnitude greater than in the
model with Dzyaloshinskii-Moriya interactions alone. The behaviors at both high and low temperatures resemble that for the
one-orbital model in Fig. 5 and is owed to origins similar to the discussion in Sec. III B 2. Furthermore, we again find an
anomalous contribution.
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165126-22

https://doi.org/10.1103/PhysRevB.91.125413
https://doi.org/10.1103/PhysRevB.91.125413
https://doi.org/10.1103/PhysRevB.91.125413
https://doi.org/10.1103/PhysRevB.91.125413
https://doi.org/10.1103/PhysRevB.99.054422
https://doi.org/10.1103/PhysRevB.99.054422
https://doi.org/10.1103/PhysRevB.99.054422
https://doi.org/10.1103/PhysRevB.99.054422
https://doi.org/10.1103/PhysRevB.42.6509
https://doi.org/10.1103/PhysRevB.42.6509
https://doi.org/10.1103/PhysRevB.42.6509
https://doi.org/10.1103/PhysRevB.42.6509
https://doi.org/10.1103/PhysRevB.44.10112
https://doi.org/10.1103/PhysRevB.44.10112
https://doi.org/10.1103/PhysRevB.44.10112
https://doi.org/10.1103/PhysRevB.44.10112
https://doi.org/10.1103/PhysRevB.54.12946
https://doi.org/10.1103/PhysRevB.54.12946
https://doi.org/10.1103/PhysRevB.54.12946
https://doi.org/10.1103/PhysRevB.54.12946
https://doi.org/10.1038/35008005
https://doi.org/10.1038/35008005
https://doi.org/10.1038/35008005
https://doi.org/10.1038/35008005
https://doi.org/10.1038/nature02774
https://doi.org/10.1038/nature02774
https://doi.org/10.1038/nature02774
https://doi.org/10.1038/nature02774
http://arxiv.org/abs/arXiv:1903.01992
http://arxiv.org/abs/arXiv:1903.01125
https://doi.org/10.1103/PhysRevLett.62.1694
https://doi.org/10.1103/PhysRevLett.62.1694
https://doi.org/10.1103/PhysRevLett.62.1694
https://doi.org/10.1103/PhysRevLett.62.1694
https://doi.org/10.1103/PhysRevX.7.031051
https://doi.org/10.1103/PhysRevX.7.031051
https://doi.org/10.1103/PhysRevX.7.031051
https://doi.org/10.1103/PhysRevX.7.031051
http://arxiv.org/abs/arXiv:1802.01533
https://doi.org/10.1103/PhysRevB.40.5028
https://doi.org/10.1103/PhysRevB.40.5028
https://doi.org/10.1103/PhysRevB.40.5028
https://doi.org/10.1103/PhysRevB.40.5028
https://doi.org/10.1103/PhysRevB.45.12377
https://doi.org/10.1103/PhysRevB.45.12377
https://doi.org/10.1103/PhysRevB.45.12377
https://doi.org/10.1103/PhysRevB.45.12377
https://doi.org/10.1209/epl/i2005-10389-2
https://doi.org/10.1209/epl/i2005-10389-2
https://doi.org/10.1209/epl/i2005-10389-2
https://doi.org/10.1209/epl/i2005-10389-2
https://doi.org/10.1103/PhysRevB.96.115115
https://doi.org/10.1103/PhysRevB.96.115115
https://doi.org/10.1103/PhysRevB.96.115115
https://doi.org/10.1103/PhysRevB.96.115115

