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Statistics-tuned phases of pseudofermions in one dimension
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We show that a quadratic system of pseudofermions, with tunable fractionalized statistics, can host a rich phase
diagram on a one-dimensional chain with nearest- and next-nearest-neighbor hopping. Using a combination of
numerical and analytical techniques, we show that by varying the statistical angle and the ratio of the hopping,
the system stabilizes two Tomonaga-Luttinger liquids (TLL) with central charges c = 1 and 2, respectively,
along with the inversion symmetry broken bond-ordered (BO) insulating phase. Interestingly, the two quantum
phase transitions in the system, (1) between the two TLLs and (2) the c = 1 TLL and BO phase, can be
engendered by solely tuning the statistics of the pseudofermions. Our analysis shows that both these transitions
are continuous and novel with the former lacking a local order-parameter based description and the latter of
Berezinskii-Kosterlitz-Thouless type. These phases and phase transitions can be of direct experimental relevance
in the context of recent studies of fermionic cold atoms.
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I. INTRODUCTION

Advances in the physics of one-dimensional systems moti-
vated by, inter alia, the possibility of Majorana zero modes
[1–3], have ushered in many new possibilities and oppor-
tunities. Particularly remarkable is the prospect of creating
quantum entangled phases with fractional quantum numbers
and statistics [4–9]. Several recent proposals indeed suggest
that starting with bosons or fermions, effective local Hamil-
tonians with degrees of freedom following fractionalized or
intermediate statistics can be realized, for example, in ultra-
cold atomic systems [10–14]. Exploring the physics of such a
system with tunable statistics has hence emerged as an active
field of research.

One way of tuning statistics can be accomplished by
generalizing the commutation algebra of second quantized
creation/annihilation operators between different sites on a
one-dimensional chain via a parameter φ such that at φ = 0
one realizes “fermions” and at φ = π “bosons.” This however
still allows for a freedom to choose on-site operators to be
either bosonic or fermionic. We call the former choice as
pseudobosons and the latter as pseudofermions. Both pseu-
dobosons and pseudofermions are generalizations of two-
dimensional “anyons” to one spatial dimension following
the pioneering work of Leinass and Myrheim [4]. In fact,
early works on exactly solvable one-dimensional interacting
bosonic [5,6] and fermionic systems [7–9] have shown inter-
esting implications on generalized operator algebra [15–18]
as well as understanding of such one-dimensional anyons in
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terms of exclusion statistics [19] and generalized distribution
functions [20,21].

Recent work, in particular motivated by the advances in
87Rb cold atomic experiments [22–25], has concentrated on
pseudobosons [12,26–35]. However, even more recently, there
have been crucial experimental breakthroughs in cold atomic
experiments with fermionic atoms. This includes, among
other things, realization of spin-orbit coupling in 87Sr [36]
atoms, and spin-dependent tunneling and correlated hopping
in 40K atoms [37–39]. Indeed, several interacting many-body
phases such as correlated insulators [40,41], incommensurate
magnets [42], and topological phases have been realized
[43,44].

In parallel, several microscopic lattice Hamiltonians with
tunable couplings have been realized in optical lattice setups
of 173Yb [45,46] atoms, such as the Creutz ladder [47] and
the cross-linked chiral ladder [48]. This opens the possibility
to explore, as we show below, a very different, but equally
rich set of somewhat complementary set of phases and as-
sociated unconventional quantum phase transitions for the
pseudofermions.

In this paper we introduce a deceptively simple hopping
problem of pseudofermions on a zigzag ladder and show that it
can realize many interesting phases and phase transitions. This
hopping problem is parametrized by a single dimensionless
parameter t2/t1 which is the ratio of hopping strengths be-
tween the next-nearest-neighbor and nearest-neighboring sites
(see Fig. 1) in addition to an angle φ ∈ [0, π ] that character-
izes the statistics of pseudofermions themselves. Interestingly
we show that the above pseudofermion hopping problem is
equivalent to a correlated hopping model for fermions in one
dimension. Hence our results can be alternatively looked upon
as an outcome of competing interactions mediated by con-
strained kinetic energy, characteristic to strongly correlated
solid-state systems [49–52]. The central result of this work
is summarized in Fig. 2 which shows the various phases
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FIG. 1. Model Hamiltonian: Schematic figure describing a
pseudofermion hopping model, or equivalently the correlated
fermionic hopping Hamiltonian [see Eqs. (2) and (4)] on a zigzag
chain.

and phase transitions realizable in this system. In particular,
phases realized include an inversion symmetry broken gapped
bond-ordered (BO) phase in addition to the two Tomonaga-
Luttinger liquids (TLL) with central charges c = 1 and c = 2,
respectively. Most interestingly, both as a function of the
hopping amplitudes as well as the statistical angle φ, the
pseudofermions show direct Lifshitz phase transition [53–56]
between c = 1 and c = 2 TLLs. This Lifshitz transition thus
provides an example of a phase transition between two non-
Fermi liquids each of which is described by separate confor-
mal field theories (CFTs). Furthermore, in a regime of t2/t1,
another unconventional continuous quantum phase transition
can be engendered by tuning the statistical parameter φ be-
tween the c = 1 TLL and the BO phase. This latter transition
is of Berezinskii-Kosterlitz-Thouless (BKT) type with subtle
Berry phase effects leading to inversion symmetry broken BO
phase.

We provide a comprehensive understanding of the phase
diagram using a combination of approaches such as den-
sity matrix renormalization group (DMRG) (corroborated

FIG. 2. Phase diagram: Phases of the model in the φ-t2 plane
(t1 = 1). At φ = 0 the free Fermi system encounters Lifshitz tran-
sitions where the number of Fermi points changes. At φ �= 0 these
evolve into central charge c = 1 and = 2 Tomonaga-Luttinger liquids
(TLL). Near φ = π systems undergo a BKT transition from c = 1
TLL to a gapped bond-ordered (BO) phase which spontaneously
breaks lattice parity. At φ = π and t2 = −0.5 the system has an
exactly solvable Majumdar-Ghosh (MG) point. The phase bound-
aries are determined by studying the excitation gap. The dashed
line represents the Lifshtiz transitions under the Hartree-Fock (HF)
approximation (see text). Representative system sizes for DMRG
calculations are L ∼ 200.

numerically with exact diagonalization for smaller sys-
tem sizes), Hartree-Fock (HF) theory, and bosonization ap-
proaches. Our results can motivate further experimental work,
particularly in cold atoms to pursue some of these interesting
phases and phase transitions.

The rest of the paper is arranged as follows.
In Sec. II we introduce the idea of generalized algebra

and the Hamiltonian we are interested in (with further details
on the symmetries in Appendix A). In Sec. III we uncover
the rich phase diagram of the model using various methods.
Section III A first discusses free fermion limit and explicitly
shows how the Hartree-Fock solution predicts that the TLL
(c = 1) to TLL (c = 2) gapless-gapless transition is indeed a
Lifshitz transition even in the interacting regime. Section III B
further analyzes the model using DMRG and characterizes the
various phases and phase transitions through scaling of the
excitation gap, nature of fidelity, and central charge. Some
of the numerical details are relegated to Appendix D. In
order to further understand the phases and the phase transi-
tions we include fluctuations over the HF ground state under
bosonization framework. This analysis is presented in Sec. IV.
Here we also provide comprehensive understanding of the
TLL phase and the dependence of the Luttinger parameter
K on φ both from DMRG and bosonization. In Sec. V we
summarize our results and provide the possibility of realizing
this experimentally in cold atomic experiments with fermionic
atoms.

II. GENERALIZED ALGEBRA: PSEUDOFERMIONS IN
ONE DIMENSION

In a one-dimensional (1D) chain with sites labeled i, j, etc.,
tunable statistics can be captured by the algebra generated by
the on-site creation/annihilation operators given by

a jai ± aia je
iφ sgn(i− j) = 0,

a ja
†
i ± a†

i a je
−iφ sgn(i− j) = δi j,

[Ni, a j] = −δi ja j,

[Ni, a†
j ] = δi ja

†
j (1)

(where Ni = a†
i ai). The underlying physics consistent with

sgn(0) = 0 produces an on-site algebra that is bosonic or
fermionic depending on the relative sign (±). Owing to this,
we refer to the two cases as pseudofermions (+ sign) or
pseudobosons (− sign), respectively, even for φ �= 0. In either
case, the off-site algebra can be tuned from fermionic to
bosonic (or vice versa) by an appropriately tuning statistical
parameter φ ∈ [0, π ]. However pseudofermions, unlike pseu-
dobosons, satisfy a hard-core constraint at any φ with φ = π

limit being the hard-core boson limit. While this constraint
may also be accessed as the infinite on-site interaction limit
of pseudobosons, pseudofermions are naturally relevant to
studies of ultracold fermionic atoms [57,58] and hence can
allow us access to complementary parts of the generalized
phase diagram.

To this end, we consider a set of pseudofermions hop-
ping on a one-dimensional lattice labeled by sites i via the
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FIG. 3. Lifshitz transition schematically: (a) The Hartree-Fock
(HF) dispersion is schematically shown in the TLL c = 1 phase.
(b) Schematic of the HF dispersion at a “Lifshitz” transition when the
system undergoes a gapless-gapless transition between TLL (c = 1)
and TLL (c = 2) phase. (c) Schematic of the HF dispersion when the
system is in c = 2 TLL phase.

Hamiltonian

H = −
∑

i

[t1a†
i ai+1 + t2 a†

i ai+2] + H.c., (2)

where t1 (t2) denotes the nearest- (next-nearest-) neighbor
hopping. We focus on half-filling and this model, as we will
discuss below, has a rich phase diagram (see Fig. 2) with
interesting gapless and gapped phases.

To uncover the physics of Eq. (2) we exploit the well
known idea of interchanging statistics and interactions in
1D by introducing fractional Jordan-Wigner strings Ki, and
defining operators

ci = Kiai, c†
i = a†

i K†
i with Ki = e−iφ

∑
j<i n j . (3)

Equation (2) is thus mapped into a fermionic Hamiltonian

H = −
∑

i

[t1c†
i ci+1 + t2eiφni+1 c†

i ci+2] + H.c., (4)

where c†
i , ci are fermionic creation/annihilation operators at

site i obeying usual fermion anticommutation algebra with
the number density ni = c†

i ci. While the first term in Eq. (4)
is the nearest-neighbor hopping, the second term contains
the physics of correlated hopping between next-nearest-
neighboring sites—fermions hop with a phase of 0 (φ) in the
absence (presence) of another fermion at the intermediate site
(see Fig. 1). We note that a finite t2 is crucial to realization of
nontrivial phases [59,60]. Interestingly, correlated hoppings
are known to arise in strongly correlated systems with con-
strained kinetic energies leading to frustration [49–52,61].
In particular, correlated hoppings can lead to unconventional
superconductivity [50,51,62,63] and many-body bound states
[52,64]. Interestingly, recent work has shown that correlated
hoppings can realize topological phases such as integer quan-
tum Hall effect of bosons [65].

At φ = 0 and π , the Hamiltonian in Eq. (4) has both
time-reversal (TRS) and parity symmetries separately present.
At any generic φ only a combination of both is a symmetry
(for a detailed discussion on the symmetries see Appendix A).
Under the nonlocal transformation [see Eq. (3)] the pseud-
ofermion number density operator Ni = a†

i ai is equal to the
fermion density operator ni = c†

i ci and hence the filling frac-
tion remains unchanged and the system conserves the total
number of particles. Here we shall focus on 1/2 filling. In
the remainder we set t1 = 1 and study the phase diagram as a
function of t2 (real) and φ. The system described in Eq. (4) is
studied by analytical and numerical techniques.

III. PHASE DIAGRAM

A. Mean field theory around (φ = 0) free fermionic limit

1. φ = 0: free fermions

Along the φ = 0 line the system reduces to that of free
fermions with nearest- and next-nearest-neighbor hopping
with a single particle dispersion given by

E (k) = −2t1 cos k − 2t2 cos 2k, k ∈ [−π, π ]. (5)

Due to parity for φ = 0, the dispersion is always symmetric
about k → −k. There is a change in the number of the Fermi
points as the system undergoes a Lifshitz transition at t2/t1 =
±0.5. For |t2/t1| > 0.5 (< 0.5), there are four (two) Fermi
points corresponding to the left most extremum of Fig. 2 (see
details in Appendix B).

2. Self-consistent Hartree-Fock theory

The Hartree-Fock (HF) theory incorporates the effect of the
interactions on average. This starts by writing the fermionic
Hamiltonian in Eq. (4) (in Fourier space) as a sum of the free
quadratic part and an interacting quartic part:

H = H0 + Hint, (6)

where in the momentum space k ∈ [−π, π ], and

H0 =
∑

k

ε0(k)c†
kck (7)

being the (free) quadratic part with

ε0(k) = −2[t cos(k) + t2 cos(2k)]
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FIG. 4. Fermionic occupancy using HF and DMRG: 〈n(k)〉 as a function of k and t2 for different values of φ = 0.0, 1.0, 2.0, 3.0 using
self-consistent mean field theory (top panel) and DMRG calculations (bottom panel) (L = 62).

being the bare dispersion and

Hint = −t2
∑

k1,k2,k3,k4

δ(k1 + k2 − k3 − k4)

× [(eiφ − 1)ei(−k2+k3+2k4 )]

× c†
k1

c†
k2

ck3 ck4 + H.c. (8)

Within a self-consistent HF treatment of the correlated
hopping term (for φ �= 0) we decouple the k-mode density
〈n(k)〉 = 〈c†

kck〉 as discussed in Appendix C.
The general structure of the HF band is shown schemat-

ically in Fig. 3 when the system is in the two kinds of
TLL phases and at a Lifshitz transition. We find that for
|t2/t1| < 0.5, the center of the Fermi surface shifts away from
zero for φ �= 0, π due to the absence of TRS. For higher
values of |t2/t1| the Lifshitz transition continues into the
φ �= 0 regime. Figure 4 shows the HF fermionic occupation
for representative points in the parameter space. The HF
theory clearly captures the gapless phases with two and four
Fermi points as well as an associated Lifshitz phase transition
separating the two. For comparison we have also plotted the
fermionic occupation 〈n(k)〉 for the fermions obtained from
our DMRG calculations in Fig. 4. Clearly there is a good
quantitative agreement on the position of the Fermi points
such that fluctuations on top of the HF theory can be system-
atically incorporated within Abelian bosonization approaches
as presented below. The Lifshitz transitions of this effective
HF Hamiltonian at any {t2, φ} traces a continuous quantum
phase transition between the two gapless metallic phases (see
the dashed curve in Fig. 2). However, not unexpectedly, this
HF analysis breaks down in the gapped phase obtained in the
vicinity of φ = π .

B. DMRG results

To understand the nature of the phases and phase transi-
tions beyond HF theory, we performed density matrix renor-
malization group (DMRG) (using [66]) on Eq. (4). Here we
provide various details of our DMRG calculations including

the comparison with exact diagonalization (ED) results for
small systems.

1. The metallic phases: Tomonaga-Luttinger liquid metals

The DMRG calculations incorporate the fluctuations ig-
nored in the HF theory. Once these fluctuations are incorpo-
rated, two metallic TLL phases occupy the phase diagram (see
Fig. 2) for φ away from π . We calculate the single particle
excitation gap �L,

�L = E (L, N + 1) + E (L, N − 1) − 2E (L, N ) (9)

[where E (L, N ) is the ground state energy for a system with
N fermions on L sites] numerically using DMRG and sys-
tematically perform finite-size scaling. In the gapless regime
�L scales as 1/L (see Fig. 5) and reaches zero while in the
gapped regime the value saturates to a finite value ≡ �∞. The
�∞ = 0 is one measure that identifies the gapless metallic
region from our DMRG calculations.

Using DMRG we calculate 〈n(k)〉 for few representative
parameteres as was shown in Fig. 4. While HF theory does
reproduce DMRG fermion occupancy of these phases remark-
ably well (see Fig. 4), we must note that once the interac-
tions are incorporated the single-particle residue is completely
killed resulting in the non-Fermi liquid TLL. However, as
is clear from Fig. 4, the Lifshitz transition survives in the
presence of fluctuations and we indeed have two different
TLLs.

In order to further understand the above fluctuations and
characterize these phases further, we calculate their central
charges using the Calabrese-Cardy formula for the entangle-
ment entropy [67] (see Appendix D) from our DMRG results.
This is summarized in Fig. 6 which shows that even for finite
φ, the Lifshitz transition survives for the pseudofermions that
separates two TLLs c = 1 and the c = 2 TLLs. We find that
this transition can also be characterized from the “moment of
intertia” of the Fermi sea given by

I =
∫

dk〈n(k)〉[sin(k)]2, (10)
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FIG. 5. Excitation gap: (a) Behavior of �L at some parameters of {t2, φ} as a function of 1/L. For gapless phases �L reaches zero as a
function of 1/L and saturates to a finite value (≡ �∞) for a gapped regime. (b) Behavior of �∞ in the gapped regime is shown as a function
of t2 for few values of φ and (c) is the same as (b) in the region.

the variation of which as a function of t2 for different values
of φ is shown in Fig. 7 and also in the lower panel of Fig. 6.
While the gapless to gapless transition is characterized by
a change in I , the gapless to gapped transition (see below)
shows, as expected, no such variation.

2. Around φ = π: The gapped phase

For φ = π we recover the familiar fermion to (hard-core)
boson mapping evident from Eqs. (1) and (3). Thus we have
a 1/2-filled system of hard-core bosons with nearest- and
next-nearest-neighbor hoppings corresponding to the right
extremum of Fig. 2. This is the easy-plane limit of the J1-J2

spin-1/2 chain [68,69]. It has two phases: c = 1 TLL for
t2/t1 � −0.3 and a gapped BO phase which spontaneously
breaks inversion symmetry about a site. Variation of �∞ as
a function of t2 for various values of φ is shown in Fig. 5
showing the gapped regime.

FIG. 6. Lifshitz transition: (Top) Central charge as a function
of φ at t2 = −0.75 shows a transition from a c = 2 to a c = 1
plateau. Fermion occupancy 〈n(k)〉 is shown as a function of k
at three representative values of φ as pointed. (Bottom) Variation
of Iφ ≡ ∫ π

−π
sin2 k〈n(k)〉dk captures the Lifshitz transition. Io is the

corresponding value for a half-filled Fermi sea at t2 = 0.

The bond-ordered phase is characterized by a finite value
of the order parameter

OBO = 1

L

∑
i

(−1)iBi, (11)

where Bi = 〈a†
i ai+1 + a†

i+1ai〉. Dimer-dimer correlator
〈BiBi+r〉 behaves as ∝e−r/ξ capturing a length scale ξ

in the gapped regime. Transition to the gapless scale is
characterized by ξ → ∞. Since the φ = π BO phase has a
finite excitation gap, we expect it to be stable for the small
deviation of φ from π . DMRG results are plotted in Fig. 8
where we show both the BO order parameter as well as
the two-point correlation function for the bond order near
φ = π . One finds an extended BO phase where the lobe of
BO order is roughly centered about t2/t1 = −0.5 which is
the Majumdar-Ghosh point [68,70,71] for which the the BO
ground state is exact at φ = π . The structure of the lobe
shows that at a fixed 0.79π � φ < π there is a reentrant
transition into a c = 1 TLL as we tune t2/t1 from positive
to negative. At t2/t1 = −∞ we have two decoupled chains
which are in a separate TLL phase. Turning on a positive t1
destroys this state in favor of a bond order. However, we note
that our calculations suggest that turning on a φ away from

0.5

0.75

1

1.25

1.5

−1 −0. 0.5 0 5 1

I
/I

o

t2

φ/π = 0.000
φ/π = 0.159
φ/π = 0.318
φ/π = 0.477
φ/π = 0.636
φ/π = 0.796
φ/π = 0.986

φ/π = 1.0

FIG. 7. Moment of inertia: Variation of I = ∫
dk〈n(k)〉(sin(k))2

with t2 for different values of φ. Io is the corresponding value for a
half-filled Fermi sea at t2 = 0 (L = 62).
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FIG. 8. Bond-ordered phase: (Left) |OBO| as a function of φ and
t2 in the gapped regime. (Top right) Dimer-dimer correlator 〈BiBi+r〉
and its behavior as a function of r is shown at the marked points
(A–D) on the left. (Bottom right) Fitting 〈BiBi+r〉 ∝ e−r/ξ ; behavior
of 1/ξ with t2 for different values of φ.

φ = π instead favors an instability to a c = 1 TLL which
competes with BO leading to a domelike structure.

3. Phase boundaries and the phase transitions

Our discussion up to now has described the two metallic
phases and the gapped phase. We now describe the phase
boundaries and their characterization via DMRG. There are
two types of phase boundaries denoting quantum phase tran-
sition between (1) c = 1 TLL [equivalently a power-law su-
perfluid (SF)] to the symmetry broken bond-ordered phase,
and (2) c = 1 and c = 2 TLL phases.

Fidelity: To analyze the phase boundaries, one particularly
useful quantity to examine is the ground state fidelity. Given
two ground state wave functions evaluated at parameters λ and
λ + dλ, the fidelity susceptibility is given by [72]

χF (λ) = lim
dλ→0

−2 log[|〈ψ (λ + dλ)|ψ (λ)〉|]
(dλ)2

. (12)

Signatures in χF signal phase transitions. Figure 9 shows the
behavior of χF while going from gapless to gapped regime
[Figs. 9(a) and 9(b)] and between gapless to gapless regime
[Figs. 9(c) and 9(d)] for different system sizes. Note that
χF behaves rather differently at the two kinds of transition.
In order to corroborate our DMRG results we compare the
results for small system sizes with exact diagonalization (ED)
studies. Some representative results are shown in Fig. 10.

Central charge and gap: While the Lifshitz transition
between the two TLLs is characterized by a sudden jump in
central charge c, the boundary between the gapped phase and
c = 1 TLL shows a smooth transition with systematic finite
size scaling (see Appendix D).

To estimate the phase boundaries we use the excitation
gap �L [see Eq. (9)]. Behavior of �L as a function of t2
across the gapless-gapless transition is rather abrupt. A few
representative plots for φ/π = 0.28 and φ/π = 0.42 for three
different values of L = 200, 240, 300 is shown in Fig. 11. We
now analyze the transition between the gapped and gapless
phase near φ = π . At φ = π the transition has been shown
to be BKT like [68]. During such a transition it is useful to

(a)

(b)

(c)

(d)

FIG. 9. Fidelity susceptibility χF : (a) as a function of t2 at φ

π
=

0.8732 and (b)–(d) as a function of φ/π for t2 = −0.46, 1.00, and
0.7. The humps signal phase transitions.

analyze the variation of �LL with log L − a√
V −Vc

, where V
is any tuning parameter and Vc is the critical value [73,74].
Defining xL = log L − a√

V −Vc
, values of �LL and correspond-

ing xL for various L and V near Vc (in the gapped regime) can
be fitted to a curve. Treating a and Vc as variational param-
eters, the least square fitting error is minimized to optimize
a,Vc (see Fig. 11). We use this data collapse to determine the
gapless-gapped transition boundary as shown in Fig. 2.
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F
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FIG. 10. DMRG and ED: Ground state energy and fidelity sus-
ceptibility χF /L as a function of t2 for φ/π = 0.859 for a system size
L = 20 under open-boundary condition, both using exact diagonal-
ization and DMRG.

IV. BOSONIZATION: THE PHASES AND
PHASE TRANSITIONS

The fluctuation about the HF theory can be systematically
taken into account in one dimension using the framework of
Abelian bosonization to understand both the phases as well as
the phase transitions out of the metallic states. As an immedi-
ate well-known fallout of the fluctuations, the quasiparticles
in the metals are no longer well defined resulting in TLLs
which are one-dimensional non-Fermi liquid metals. In the
regime t2/t1 < 0.5, the Hartree-Fock treatment (Sec. III A) as
discussed above leads to a dispersion as schematically shown
in Fig. 3(a). In general this free theory has two Fermi points
(kL

F and kR
F ) centered about ko �= 0 and the Fermi velocities

(vR
f and vL

f ) are different. Further Luttinger theorem restricts
kR

F − kL
F = π at half-filling. The low energy excitations about

the HF ground state constitute single particle excitations about
these two Fermi points which can be understood within a low
energy linearized (about the left and the right Fermi points)
theory about the HF ground state given by

H0 = −i

∫
dx

[
vR

f �
†
R∂x�R − vL

f �
†
L∂x�L

]
, (13)

where (�R, �L) are left and right moving fermions and in the
present case for φ, t2 �= 0 the corresponding Fermi velocities.
A standard bosonization treatment [75] in terms of the bosonic
fields 
(x, t ) and �(x, t ) satisfying

[∇�(x),
(y)] = [∇
(x),�(y)] = iπδ(x − y) (14)

leads to the following free theory linearized about the HF
ground state

H̃0 = VF

2π

∫
dx[(∂x�)2 + (∂x
)2]

+ W

2π

∫
dx[∂x�∂x
 + ∂x
∂x�], (15)

where VF = vR
f +vL

f

2 and W = vR
f −vL

f

2 . As discussed in
Appendix E, the interaction term for the bosonized modes is
given by (where the normal ordering is done about the HF
ground state)

Hint = H̃Fow
int + H̃Ump

int , (16)

where

H̃Fow
int = V

∫
dx[(∂x�)2 − (∂x
)2], (17)

(a)

(b)

(c)

(d)

FIG. 11. Excitation gap at phase transitions: (a) and (b) Best
obtained collapse of �LL and xL = log L − a√

φ−φc
by variation of

a, φc. The estimation of a, φc is done by minimizing the fitting error.
Here, this is done for the transition from gapless to gapped point
as a function of φ for t2 = −0.70. (c) and (d) Behavior of �L as a
function of t2 across the gapless-gapless transition for φ/π = 0.28
and φ/π = 0.42 for three different values of L = 200, 240, 300.
Notice that unlike the gapless-gapped transition, for any finite L, �L

shows a jump to zero at the Lifshitz transition.
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where V = 4t2[cos(φ + 2ko) − cos(2ko)] denotes the forward
scattering among the low energy left and right moving
fermions, and

H̃Ump
int = −λ

∫
dx cos 4�, (18)

with λ = −2V . Gathering all the terms we get the bosonized
Hamiltonian to be

H = v f

2π

∫
dx

[
1

K
(∂x�)2 + K (∂x
)2

]

− W

2π

∫
dx[∂x�∂x
 + ∂x
∂x�] − λ

∫
dx cos 4�,

(19)

where the renormalized average Fermi velocity is given
by v f =

√
(VF )2 − 4π2V 2 and the Luttinger parameter is

given by

K =
√

VF − 2πV

VF + 2πV
. (20)

From the expression it is clear, as expected, V and λ both
go to zero at φ = 0 and hence at this point, K = 1. Also, as
expected, W = 0 in this limit. This is nothing but the free
fermions. Thus, while V kills the quasiparticles by renor-
malizing the Luttinger parameter K, λ destabilizes the TLL
leading to bond order.

To understand the effect of the other terms, we derive the
corresponding real time action which is given by

S = 1

2πv f K

∫
dtdx

[(
∂t� + w

2
∂x�

)2

− v2
f (∂x�)2

]

+ λ

∫
dt dx cos 4�, (21)

where w = W/�τ where the limit is taken such that w is
constant. The effect of the “boost” can then be “gauged away”
[76] after which we can wick rotate it to imaginary time to get
the Euclidean action

SE = 1

2πv f K

∫
dτdx

[
(∂τ�)2 + v2

f (∂x�)2
]

− λ

∫
dτ dx cos 4�. (22)

We use the relation between Luttinger parameter K and the
fermion two-point correlator

C(r) := 1

L

∑
i

〈c†
i ci+r〉 ∼ 1

r (K+1/K )/2
(23)

to extract K from DMRG results and compare them with
the values obtained from the bosonized theory. Away from
the gapped region, where the Umklapp processes are small,
the bosonization result compares well with DMRG results
as seen in Fig. 12. For a fixed t2, the Umklapp amplitude λ

increases monotonically with φ such that the Umklapp scatter-
ing becomes important ultimately making the TLL unstable to
a gapped BO phase. In the latter case, the bosonization values
of K, λ should be viewed as initial points of the RG flow as
shown in Fig. 12. The instability to a gapped phase is also

FIG. 12. Bosonization and BKT transition: (Top) Luttinger pa-
rameter (K) and λ calculated from the bosonization result for a set
of parameters of {t2, φ/π} as shown by (A–D) in Fig. 8 [see near
Eq. (19)] are shown by square points on the RG flow diagram of
the BKT transition with TLL, BO, and charge density wave (CDW)
phases. V and λ are scaled by multiplicative prefactors of α/2π

and α, respectively, where α ≈ 0.3. (Bottom) A plot of numerically
extracted K from the DMRG using 〈c†

i ci+r〉 correlators and compared
with the bosonization result.

manifested through the Luttinger parameter reaching a critical
value of K = 1/2 as anticipated from a perturbative RG
calculation. Away from the bond-ordered phase, for generic
values of 2K > 1 our numerical calculation suggest a direct
transition between the present TLL with central charge c = 1
to another with central charge c = 2.

While a similar construction can be obtained for the c = 2
TLL by linearizing about the four Fermi points and introduc-
ing two pairs of left and right moving fermions, characteriz-
ing this low energy theory requires characterizing the 2 × 2
matrix Luttinger parameter [77], which we do not pursue here
in detail except to understand the critical point between the
c = 1 and c = 2 TLLS (see below).

Therefore, starting with the above c = 1 TLL, we now try
to understand the entire phase diagram including the phase
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transition between the c = 1 TLL and the BO phase as well as
between the c = 1 and c = 2 TLLs.

A. Transition between the power-law SF to BO phase

Our numerical calculations show that the entire phase
boundary is captured by a BKT type phase transition. This is
expected in the φ = π limit, where we have hard-core bosons
and an application of XY duality in (1 + 1)D [78] captures
both the SF and the BO phases where extra Berry phases
induce breaking of inversion symmetry in the BO phase [79].

To understand this transition to general φ, it is convenient
to use the bosonized field theory by writing down the Eu-
clidean action in Eq. (21). The effect of finite φ is to provide
a “boosted” field theory where the effect of the “boost” can
then be gauged away [76]. The Umklapp scattering then drives
the BO instability gapping out the TLL as can be seen in
the behavior of the Luttinger parameter (see Fig. 12). The
corresponding RG flows based on the Sine-Gordon theory
(Fig. 12) effectively capture the phase transition along with
the phases.

B. Transition between c = 1 and c = 2 TLL

Within HF, the gapless-gapless transition is a Lifshitz
transition [see schematic Fig. 3(b)]. Our central charge cal-
culations from DMRG suggest that the Lifshitz transition for
finite φ from c = 1 CFT (TLL with two Fermi points) to
c = 2 CFT (TLL with four Fermi points) is a sudden one
when compared to the BKT transition. However, crucially
there is no local real space order parameter based description
for this quantum phase transition which then requires careful
examination regarding its nature. The HF band structure sug-
gests that the low energy modes near this transition contains
the linearly dispersing left ψL and right ψR fermions along
with quadratically dispersing holes of the central lobe ψc (see
Fig. 3).

At φ = 0, these modes are noninteracting and hence the HF
theory is exact and the transition at t2/t1 = −0.5 is given by
a dynamical exponent z = 2 theory where changing t2 has the
primary effect of changing the hole chemical potential leading
to finite density of holes. For φ �= 0, even within HF theory
the there is renormalization of the Fermi velocities of both ψL

and ψR, but these modes do not couple to ψc. Assuming that
the above three-mode picture holds for at least finite but small
φ �= 0, we now can add fluctuations within the bosonization
framework where we bosonize the left and right fermions to
get the following effective low energy Hamiltonian H = H +
H ′, where where H is given by Eq. (19) and

H ′ =
∫

dx ψ†
c

[
∂2

x

2m∗ − μ

]
ψc +

∫
dx(g1∂x� + g2∂x
)ψ†

c ψc.

(24)

The first term in H ′ is the free action of the quadrati-
cally dispersing fermionic holes with effective mass m∗ and
chemical potential μ which is zero at t2/t1 = −0.5 and in-
creases (decreases) for t2/t1 < −0.5 (> −0.5) and thereby
capturing the HF phase transition. The advantage of this
formulation is by bosonizing the left and right fermions we
have been able to take into account their mutual interactions

through the forward scattering channel by renormalizing the
Luttinger parameter and the Fermi velocity as before. g1 and
g2 are two symmetry allowed coupling constants, which are
given in terms of the microscopic parameters as

g1 = −4t2[{cos(φ + 2kc) − cos(2kc)}
− {cos(φ + 2ko) − cos(2ko)}], (25)

g2 = − 8t2[sin(ko + kc + φ) − sin(ko + kc)]. (26)

Note that near φ = 0, g1 ∼ −8t2φ{ko − kc} and g2 ∼ −8t2φ
and |(ko − kc)| ∝ t2φ. Hence, at φ = 0, as is expected, ko =
kc = 0 and g1 = g2 = 0 leading to the free fermionic descrip-
tion. Also, the microscopic symmetry of combination of parity
(P) and time reversal (T ) together, remains intact in this
description (P : � → −�,
 → 
 and T : � → �,
 →
−
).

The effective Euclidean action is

S = 1

2v f Kπ

∫
dxdτ

{[
�̇ − i

W

2
∂x� + ig2πψ†

c (x)ψc(x)

]2

+ v2
f (∂x�)2

}
+ g1

∫
dxdτ [ψ†

c (x)ψc(x)∂x�]

+
∫

dxψ†
c

[
∂2

x

2m∗ − μ

]
ψc − λ

∫
dxdτ cos(4�). (27)

Redefining a boosted field such that �̇ ≡ �̇ − iW
2 ∂x�, ∂x� =

∂x�,

S = 1

2v f Kπ

∫
dxdτ

{
[�̇ + ig2π�†

c (x)�c(x)]2 + v2
f (∂x�)2

}

+ g1

∫
dxdτ [�†

c (x)�c(x)∂x�]

+
∫

dxψ†
c

[
∂2

x

2m∗ − μ

]
ψc − λ

∫
dxdτ cos(4�). (28)

In Fourier space the above action becomes

S = S� + Sc + Sint, (29)

where

S� = 1

2πv f K

∫
dq dω

[
ω2 + v2

f q2
]|�(q, ω)|2, (30)

Sc =
∫

dq dω

[
iω +

(
k2

2m∗ − μ

)]
ψ†

c (k, ω)ψc(−k,−ω),

(31)

Sint = ig
∫

dω1dq1dω2dq2 [iω1 − αq1]

×�(q1, ω1)ψ†
c (q2, ω2)ψc(q1 + q2, ω1 + ω2), (32)

where g = g2/(v f K ) and α = g1v f K/g2. Similar field the-
ories are suggested in the context of multimode wires
[56,80,81].

The short range four fermion term for the central mode
(ψc) are irrelevant at this critical point which is understand-
able due to the paucity of the phase space for such density-
density scatterings.
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ψc(k + q, ω + ω′)

ψ†
c(k, ω′)

Φ(q, ω) = ig(iω − αq)

FIG. 13. Scattering vertex: The scattering vertex between the
bosonized modes and the central fermions when the HF solution
shows a Lifshitz transition.

The scattering vertex between the bosonized modes and
the central fermions is shown in Fig. 13. Also, the chemical
potential is always a relevant perturbation for the ψc fermions
at the μ = 0 fixed point.

Perturbative one-loop RG calculations around the μ =
g1 = g2 = 0 yields the β function for the Luttinger parameter

dK

dl
= Cμ

[(
g1K

g2

)2

− 1

]
, (33)

where C ∝ g2
2

2v f
. We find that near φ → 0 this term does

not lead to a run-away flow signaling a stable phase within
this approximation. However, a full characterization requires
further studies. Remarkably just tuning the statistical phase of
pseduofermions can mediate this transition between two non-
Fermi liquids neither of which has low energy quasiparticles.

V. SUMMARY AND OUTLOOK

To summarize, we have shown that a simple quadratic
system of pseudofermions hopping on 1D lattice with nearest-
and next-nearest-neighbor hopping following fractionalized
algebra [Eq. (1)], has a rich phase diagram with gapless
TLL phases and gapped BO phases which can be accessed
by solely tuning the statistical parameter. The tunability of
statistics can be accomplished in two ways: pseudobosons
and pseudofermions. While the former has an infinite Hilbert
space per site and requires strong on-site repulsion to have
hard-core constraint, in the latter such hard-core exclusion
is natural. Our study has illustrated the rich physics behind
a simple pseudofermionic model and hence provides a new
direction to further explore the intervening phases and phase
transitions between many body phases which are otherwise
understood for fermions and spin models.

An alternate view point closer to the context of solid-state
materials is that the above pseudofermion hopping model
is equivalent to a correlated hopping problem, where ow-
ing to interactions, the single particle kinetic energy can be
quenched leading to correlated motion. It is known that in
two dimensions such constrained kinetic energy can lead to
novel phases such as integer quantum Hall effect of hard-core
bosons [65] as well as superconductivity [50,51,62,63]. The
rich phase diagram arising out of our calculations then makes
the above model a minimal starting point to understand a
host of interesting questions in correlated quantum many-
body systems in one dimension. In particular, apart from the
BKT phase transition, the possibility of a continuous Lifshitz
transition between two TLLs with central charges c = 1 and 2

is extremely interesting. While normally Lifshitz transition in
Fermi liquids allows for a nominal quasiparticle description,
we note that in the present case, once fluctuations are taken
into account over the HF theory, there are no quasiparticles
at lowest energies. Thus this serves as an example of an
unconventional quantum phase transition between two ro-
bust metallic phases (devoid of quasiparticle excitations) that
cannot be captured within an order-parameter based Landau-
Ginzburg theory.

At this point we would like to emphasise that both the
transitions can be engendered by solely tuning the statistical
angle φ. Moreover, while the BO phase disappears away
from half-filling due to the absence of Umpklapp scattering,
the Lifshitz transition is robust. Furthermore, the effect of
third (or higher) neighbor hopping terms are expected to
be irrelevant showing that these phases and phase transi-
tions are not fine-tuned points, but rather robust and ex-
pected to be generically present in pseudofermionic phase
transitions.

While the model we have discussed does not pertain to a
particular experimental setup at present, some of the recent
proposals [13,82,83] of generating off-site correlated hopping
in fermionic ultracold atoms are extremely promising. In par-
ticular the recent experimental realizations of the Creutz lad-
der [47] and the chiral ladder [48] comprises of an interesting
setup where the effective ‘Wannier orbitals” of the potential
wells of an optical lattice act as on-site orbitals which are
further coupled via resonantly tuned lasers to produce tunable
hopping strengths. This setup can be effectively converted to
a our setup of a zigzag ladder (see Fig. 1) by introducing a
tilt in one of the directions thereby increasing the intersite
hopping strength. The intensity of tilt could be potentially
used to modulate the hopping parameters to access the Lifshitz
transitions which will correspond to the φ = 0 limit of our
phase diagram (see Fig. 2). A recent proposal to introduce
correlated hoppings, albeit presently realized in a 40K setup
[38], can also be promising. Finally, the connection of the
present model and its relevance to understand the edge physics
of both quantum Hall ribbons, particularly in context of recent
advancements with experiments on synthetic Hall ribbons
[44], forms promising future directions.
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APPENDIX A: DETAILS OF THE SYMMETRIES OF THE
MICROSCOPIC HAMILTONIAN

The one-dimensional chain with nearest- and next-nearest-
neighbor coupling can be alternatively thought of as a zigzag
ladder (Fig. 1) with the following symmetries at generic
values of φ:

(1) Lattice translation by unit lattice spacing of the one
dimensional chain Tx.

(2) Combination of time-reversal (T ) and parity (P ) as
Q = PT .

Under Tx, the fermions transform as

T1ciT1
−1 = ci+1 T−1ciT−1

−1 = ci−1,

T1cLT1
−1 = c1, T−1c1T−1

−1 = cL. (A1)

Note that we have we have L sites labeled {1 · · · L} where L is
taken to be an even number. Thus on the pseudofermions ai,
translations act as

T1aiT1
−1 = T1K†

i ciT1
−1 = e−iφn1 K†

i+1ci+1 = e−iφN1 ai+1,

T−1aiT−1
−1 = T−1K†

i ciT−1
−1 = eiφnL K†

i−1ci−1 = eiφNL ai−1.

(A2)

Similarly, under T and P , the fermion operators transform in
the following way:

T ciT −1 = ci, T c†
i T −1 = c†

i , (A3)

PciP−1 = cL−i+1, Pc†
i P−1 = c†

L−i+1. (A4)

This results in the following transformation for the pseud-
ofermion operators ai:

T aiT −1 = T K†
i ciT −1 = Kici,

PaiP−1 = PK†
i ciP−1 (A5)

= eiφN KL−i+2cL−i+1 = eiφN KL−i+1cL−i+1, (A6)

where N = ∑
i Ni = ∑

i ni. Thus, under the combination of
these symmetries Q, the ai transform as

QaiQ−1 = e−iφN aL−i+1,

Qa†
i Q−1 = a†

L−i+1eiφN . (A7)

APPENDIX B: FREE FERMIONIC LIMIT: BAND
STRUCTURES, FERMI VELOCITY, AND FERMI POINTS

1. Band structures

The free fermion dispersion at any value of t2 is given by

E (k) = −2t1 cos k − 2t2 cos 2k. (B1)

The dispersions for few representative values of t2 (keeping
t1 = 1) are shown in Fig. 14.

FIG. 14. Free fermion limit: Single particle dispersion for the
fermion problem in φ = 0 limit (we have set t1 = 1 throughout).
For t2 > 0 depending on the value of t2 we can either have two (for
|t2| < 1

2 ) Fermi points (at ±π/2) or four (for |t2| > 1
2 ) Fermi points.

The Fermi level corresponds to that for half-filling. Note that the
system undergoes a Lifshitz transition as a function of t2/t1.

2. Fermi points

At 1/2-filling, for −1/2 < t2 < 1/2, there are two Fermi
points at k = ±π/2. For |t2| > 1/2, there are four Fermi
points (kR±

F , kL±
F ) given by

For t2 > 1/2 :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

kR+
F = arccos

(
−1

2
√

2t2

)
− π

4 ,

kL+
F = kR+

F + π
2 ,

kR−
F = −kL+

F ,

kL−
F = −kR+

F ,

(B2)

For t2 < 1/2 :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

kR+
F = arccos

(
1

2
√

2|t2|

)
+ π

4 ,

kL+
F = kR+

F − π
2 ,

kR−
F = −kL+

F ,

kL−
F = −kR+

F .

(B3)

Therefore at φ = 0, as a function of t2, we have Lifshitz
transition for finite filling.

3. Fermi velocity

The Fermi velocity can be determined by the slope of
the dispersing band at the Fermi points. For |t2| < 1

2 the
Fermi points remain pinned at kF = ±π

2 at half-filling due
to Luttinger theorem and the corresponding Fermi velocities
continue to be

vF = ∂E (k)

∂k

∣∣∣∣
k=kF

= ±2t1. (B4)

For |t2| > 1
2 the Fermi velocities at the four Fermi points

depend on t2 and are given by(
2t1 sin kR/L±

F + 4t2 sin 2kR/L±
F

)
, (B5)

respectively.
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FIG. 15. Fermi velocities: The right and left Fermi velocities (vR
f and vL

f ) as a function of φ for t2 = −0.01, t2 = −0.1, and t2 = −0.3.
Notice that the right and left velocities are different. The rightmost figure shows the comparison of shifted center of the Fermi sea ≡ko from
both HF and the DMRG study for various values of t2 and as a function of φ.

APPENDIX C: HARTREE-FOCK THEORY

The Hartree-Fock decomposition of the interactions in
Eq. (8) is obtained as

c†
k1

c†
k2

ck3 ck4 → − 〈
c†

k1
ck3

〉
c†

k2
ck4 − c†

k1
ck3

〈
c†

k2
ck4

〉
+ 〈

c†
k1

ck4

〉
c†

k2
ck3 + c†

k1
ck4

〈
c†

k2
ck3

〉
. (C1)

Keeping only the density mode 〈nk〉 = 〈c†
kck〉 gives us the

Hartree-Fock Hamiltonian

HHF =
∑

k

{ε0(k) + A(k) + B + C(k)}c†
kck, (C2)

where

A(k) = 2t2
∑

k′
{(eiφ − 1)ei(k+k′ ) + H.c.}〈n(k′)〉, (C3)

B = −2t2
∑

k′
{cos(φ + 2k′) − cos(2k′)}〈n(k′)〉, (C4)

C(k) = −2t2

{∑
k′

〈n(k′)〉
}

{cos(φ + 2k) − cos(2k)}. (C5)

Solving this self-consistently for 〈n(k)〉 = 〈c†
kck〉 produces the

renormalized single particle dispersion for different values of
the parameters.

The Hartree-Fock dispersion as a function of {t2, φ} shows
Lifshitz transitions which closely follow the phase transition
between the c = 1 and c = 2 TLLs (see Fig. 2).

In the c = 1 phase, HF calculation illustrates that the center
of the Fermi sea is shifted and the occupied states have
momenta ko − π

2 � k � ko + π
2 where the shift of the center

ko is given by

sin(ko) = 4t2
π

sin

(
φ

2

)
cos

(
φ

2
+ 2ko

)
. (C6)

In this phase the HF Hamiltonian can be linearized about the
two Fermi points by introducing the left and right moving
fermion fields �L and �R, respectively, to get the linearized
Hamiltonian in real space as given in Eq. (13). Due to break-
ing of the time-reversal symmetry for general φ, the Fermi
sea center gets shifted from k = 0 (≡ ko) and the two Fermi
velocities at the Fermi points can in general be different.
The variation of Fermi velocities and ko as a function of few
parameters is shown in Fig. 15.

APPENDIX D: ENTANGLEMENT ENTROPY AND
CENTRAL CHARGE

In DMRG we work with open-boundary condition—here
it is known from the Cardy-Calabrese formula that entangle-
ment entropy of a subsystem size l as a function of l/L can be
fitted to the following form [67]:

S(l ) = c

6
ln

[
L

π
sin

(
π l

L

)]
+ · · · (D1)

to estimate c, the central charge.
Behavior of central charge across the BKT transition is

shown in Fig. 16 for a few parameters where central charge
changes from 1 to zero where the same for the gapless-gapless
transitions are shown in Fig. 17. Note the abrupt change in c
in contrast to the smooth variation in c for the gapless-gapped
transition.

(a) (b) (c)

FIG. 16. Entanglement entropy and central charge: (a) Entanglement entropy for three different parameters of t2, φ as a function of bond
length l/L for L = 300. The central charge (c) is estimated using the Cardy-Calabrese formula. Variation of c for four different system sizes
as a function of φ for t2 = −0.60 (b) and as a function of t2 for φ/π = 0.891 (c).

165125-12



STATISTICS-TUNED PHASES OF PSEUDOFERMIONS IN … PHYSICAL REVIEW B 99, 165125 (2019)

FIG. 17. Transition in central charge: The variation of central charge c as a function of t2 for φ/π = 0.159 (a) and φ/π = 0.18 (b) showing
a gapless-gapless transition between the c = 1 and c = 2 phases. (c) and (d) Comparison of c evaluated using DMRG and correlation matrix
at the free fermionic limit (φ = 0) as a function of t2 for different system sizes. (d) Dependence of c evaluated at t2 = −1, φ = 0 for different
system sizes and bond dimension. Even at the free fermion limit, to capture the c = 2 phase one needs to have a significantly large bond
dimension.

The behavior of c near the φ = 0 limit can be understood
by comparing the results of DMRG with that obtained by
calculating entanglement entropy using the correlation matrix
[84–87] (Ci j = 〈c†

i c j〉) where the expectation is taken over the
occupied states. The value of central charge calculated using
this is shown in Fig. 17.

APPENDIX E: DETAILS OF THE BOSONIZATION

The interaction term is given by

H̃int = −t2
∑

k1,k2,k3,k4

δk1+k2−k3−k4 (eiφ − 1)ei(−k2+k3+2k4 )

× [
: c†

k1
ck4 :: c†

k2
ck3 : − : c†

k1
ck3 :: c†

k2
ck4 :

] + H.c.,

(E1)

where the normal ordering is done about the HF ground state.
Identifying the slow modes, one finds two essential scattering
contributions: (i) Forward scattering and (ii) Umklapp scatter-
ing. Defining

ρR(q) =
∑

q1

: c†
q1Rcq1+qR :, (E2)

ρR(x) =
∑

q

eiqxρR(q), (E3)

forward scattering contribution is

H̃Fow
int = V

∫
dx[(ρR + ρL )2 − (ρR − ρL )2]

= V
∫

dx[(∂x�)2 − (∂x
)2], (E4)

where V = 4t2[cos(φ + 2ko) − cos(2ko)]. For the Umklapp
process the contribution is

H̃Ump
int = −λ

∫
dx cos 4�, (E5)

with λ = −2V , which is the characteristic doubled vortex
tunneling process at half-filling.

1. Characterisation of the phases in the bosonic language

While most of our discussion of the gapless phases has
been in terms of TLL, a quantity worth investigating is the
expectation value of 〈nb

k〉 ≡ 〈b†
kbk〉 which is expectation of

each of the occupancy of the kth mode in bosonic language.
Figure 18 shows this for various values of φ and t2 [〈nb(k)〉 =
〈b†(k)b(k)〉 = 1

L

∑
i, j exp ik(i − j)〈S+

i S−
j 〉]. Clearly the TLL

phase is equivalently a power-law superfluid as pointed in
the main text. The shifted center of the Fermi sea in TLL
manifests as again a shifted k point where the superfluid
〈nb(k)〉 peaks.

2. Characterization of the c = 1 TLL phase: Luttinger
parameters from DMRG study

To characterize the c = 1 TLL, it is particularly useful
to calculate the fermion-fermion correlation function in this
system. In the regime when the 〈n(k)〉 shows “two” Fermi
surfaces, i.e., c = 1 TLL,

C(r) = 1

L

∑
i

〈c†
i ci+r〉 = 1

2π

∫ π

−π

dk〈n(k)〉e−ikr . (E6)

FIG. 18. Bosonic occupancy: Bosonic 〈nb(k)〉 as a function of k and t2 for different values of φ = 0.0, 1.0, 2.0, and 3.0 (L = 62).
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FIG. 19. Fermionic correlator: C(r) has a function of r for φ = 0 for different values of t2. The numerical values from DMRG are the
points. The continuous lines are the expressions shown near Eq. (E8) for the appropriate parameters.

For the case when φ = 0 and −0.5 � t2 � 0.5, such that there
is a filled Fermi sea between −π

2 � k � π
2 ,

C(r) = sin(πr/2)

πr
. (E7)

For |t2| � 0.5, C(r) shows an oscillating behavior due to new
Fermi wave vectors. In particular, for t2 < −0.5 we have
two Fermi seas, one between kL+

F � k � kR+
F and the other

between kL−
F � k � kR−

F . In this regime

C(r) =
2 cos

(
arccos

( t1
2
√

2|t2|
)
r
)

sin
(

π
4 r

)
πr

. (E8)

Similar calculations can be done for for t2 > 0.5 (see
Fig. 19). In the presence of the interactions (φ �= 0) the long

wavelength scaling of the correlation function changes from
∼ 1

r to 1
rη where η can be related to the Luttinger parameter

[75]. In c = 1 TLL, which is the region of −0.5 < t2 < 0.5
and when φ �= 0, we fit C(r) to a functional form

C(r) ∼ cos(kox) sin
(

π
2 x

)
πxη

, (E9)

where both η and ko are fitting parameters. The intention is
to capture the shift in the Fermi sea (ko) and the Luttinger
parameter (K) where K is related to η via η = 1

2 (K + 1
K ).

A comparison of ko obtained by above and the Hartree-Fock
solution is shown in Fig. 15 for bench marking.
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