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We develop a generalization of the Kohn-Sham density-functional theory (KS-DFT)+Hubbard U (DFT+U )
method to the excited-state regime. This has the form of Hubbard U corrected linear-response time-dependent
DFT, or “TDDFT+U .” Combined with calculated linear-response Hubbard U parameters, it may provide a
computationally light, first-principles method for the simulation of tightly bound excitons on transition-metal
ions. Our presented implementation combines linear-scaling DFT+U and linear-scaling TDDFT, but the
approach is broadly applicable. In detailed benchmark tests on two Ni-centered diamagnetic coordination
complexes with variable U values, it is shown that the Hubbard U correction to an approximate adiabatic
semilocal exchange-correlation interaction kernel lowers the excitation energies of transitions exclusively within
the targeted localized subspace by increasing the exciton binding of the corresponding electron-hole pairs.
This partially counteracts the Hubbard U correction to the exchange-correlation potential in KS-DFT, which
increases excitation energies into, out of, and within the targeted localized subspace by modifying the underlying
KS-DFT eigenspectrum. This compensating effect is most pronounced for optically dark transitions between
localized orbitals of the same angular momentum, for which experimental observation may be challenging,
and theoretical approaches are at their most necessary. Interestingly, we find that first-principles TDDFT+U
seems to offer a remarkably good agreement with experiment for a perfectly closed-shell complex on which
approximate TDDFT underperforms, but only when TDDFT+U is applied to the DFT eigenspectrum and not
to the DFT+U one. In tests on an open-shell, noncentrosymmetric, high-spin cobalt coordination complex, we
find that first-principles TDDFT+U again compensates for the DFT+U blueshift in 3d → 3d transitions, but
that using the DFT eigenspectrum is not viable due to the emergence of a singlet instability. Overall, our results
point to shortcomings in the contemporary DFT+U corrective potential, either in its functional form, or when
applied to transition-metal orbitals but not to ligand ones, or both.
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I. INTRODUCTION

Density-functional theory (DFT) [1,2] provides a computa-
tionally tractable means by which to investigate the quantum
mechanically derived properties of molecules and materials.
TDDFT [3] is its elegant extension to the dynamical, excited-
state regime. TDDFT is now widely used to investigate the
excitation spectra of extended solids and molecules alike
[4–6], due to its relatively low computational cost relative to
wave-function and Green’s function-based approaches. While
DFT and TDDFT are both exact in principle, their accura-
cies in practice are limited by the approximations currently
available for the exchange-correlation (xc) contribution to
the total-energy functional Exc and its derived interaction
kernel (by second functional derivatives), fxc. Common xc
functionals include local functionals such as the local density
approximation [2], semilocal functionals such as generalized
gradient approximations [7], and semiempirical functionals
such as hybrids [8–10]. In practice, an adiabatic, i.e., time-
averaged interaction approximation is made to construct the
xc kernels of contemporary applied TDDFT. The latter is
often also restricted, for expediency, to the linear-response
regime appropriate only to low-energy, low-oscillator-strength
excitations.

A. Self-interaction error in approximate DFT and its correction
by Hubbard U based methods

Perhaps the most transparent systematic error exhibited by
approximate functionals is the single-particle self-interaction
error (SIE) [11], i.e., the tendency of electrons to effectively
self-repel, and it has been demonstrated clearly in single-
electron systems such as the molecule H+

2 [12–15]. This error
becomes more complicated in the many-body case, and hence,
by necessity, there has emerged the more general concept of
many-body self-interaction error [16], also known as delo-
calization error [17–22], which has been developed to under-
stand the collective spurious self-interaction of approximated
electron densities. In a system with a continuously variable
occupation number, many-body SIE may be defined as the
deviation from piecewise linearity of the approximate DFT
total energy with respect to the total electron count [23].

The SIE is most problematic for systems comprising spa-
tially localized, partially filled frontier orbitals including those
of 1s and 2p but more canonically 3d and 4 f character, where
the qualitative failure of local and semilocal functionals has
been thoroughly analyzed [24–27]. First-row transition metal
systems thus can often benefit from corrective measures that
augment conventional closed-form density functionals. An
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approach that is very widely used at present is the compu-
tationally expedient DFT+U , which has been successfully
applied to both extended solids [24,26,28–33] and molecular
systems [34–39] alike.

DFT+U attains the status of a first-principles method
through the direct calculation of the requisite Hubbard U
parameters, and for which a number of methods have been
proposed [27,32,39–42]. We refer the reader to Ref. [43]
for a recent detailed analysis of Hubbard U and Hund’s J
(the analogous quantity for quantifying erroneous energy-
magnetization curvature in approximate DFT) calculation in
the case of open-shell systems. DFT+U is compatible with
linear-scaling methods [44,45] intended for spatially complex
systems, as well as with high-throughput materials discovery
approaches [46,47]. Beginning with Ref. [40], and continued
in Refs. [33,36,37,48], the concept of DFT+U as a corrective
method for SIE has been extensively developed, with the
Hubbard U parameters playing the role of localized error
quantifiers of SIE for the approximate functional applied to
the specific system at hand [27]. We invoke this interpretation
in what follows.

B. Self-interaction error in the excited-state regime

For the integer-occupancy systems routinely simulated,
the generalized Koopman’s condition [49] gives a unified,
practicable expression for the SIE-free condition, the noncom-
pliance with which is, in most cases, responsible for the un-
derestimated insulating gaps [22,50] emblematic of practical
DFT. When this cannot obviously be enforced, however, such
as in neutral excited states, it will be helpful to decompose SIE
into two contributions. The first is an overestimation of the
net self-repulsion of the electron density due to the spurious
self-interaction of individual electron densities, particularly so
for localized atomic orbitals, which gives rise to a positive
energy-occupancy curvature, over-delocalized of densities,
and inaccurate ground-state total energies. The second is the
lack of any distinction between the density due to electrons al-
ready existing in a system and that due to any newly removed
or added electrons, which results in the spurious absence of
derivative discontinuities in the energy-occupancy curve and,
consequently, the shallowing of electron removal and addition
levels and the underestimation of insulating gaps. Adiabatic
linear-response TDDFT inherits both components of SIE from
the underlying approximate DFT functional. In this work, we
will focus on the former component while treating the latter
only at the level available within first-principles DFT+U .
Technically, we use DFT+U in its simplified rotationally
invariant formalism (which does not introduce a derivative
discontinuity but emulates the effects of one in the Kohn-
Sham [2] eigenspectrum), with first-principles linear-response
Hubbard U and Hund’s J parameters.

The effect of SIE on electron dynamics and neutral
electronic excitations, such as those routinely studied using
TDDFT, has slowly attracted increasing investigation in recent
years [51–54]. It is a matter of central importance, for ex-
ample, in the first-principles simulation of out-of-equilibrium
nanoscale functionalities such as dynamical Coulomb block-
ade [55,56], and in the first-principles spectroscopy of
systems comprising transition-metal ions [57–62]. In the
realm of nonatomistic calculations, the TDDFT solution of

Hubbard-type models has also attracted attention [63–66], and
TDDFT has also been combined with dynamical mean-field
theory [67,68].

C. Motivation: Hubbard U correction
in the excited-state regime of TDDFT

Somewhat surprisingly, perhaps, given its relatively mod-
erate computational cost and conceptual simplicity, the error
correction of approximate TDDFT by means of DFT+U , in
the guise of adiabatic TDDFT+U , has received relatively
little attention to date. TDDFT+U is readily compatible
with linear-scaling DFT, as demonstrated in the present work
though the combination of linear-scaling DFT+U [44,45]
and linear-scaling TDDFT [69–71], as well as with high-
throughput materials screening techniques, where DFT+U
is commonplace [46]. Within its range of applicability,
TDDFT+U could potentially offer substantial efficiency ad-
vantages over more involved methods for calculating neu-
tral excitations in complex transition-metal molecules and
solids. These include hybrid TDDFT [72,73] and Green’s-
function-based methods such as GW +Bethe-Salpeter [74].
Recently, the optimally tuned, range-separated hybrid func-
tionals [75,76] within TDDFT have met with promising suc-
cess in the prediction of optical excitations, particularly in
the lowest excitations in organic molecules and third-row
transition-metal coordination complexes [77–79]. This latter
approach has not been applied to any first-row transition-metal
molecules yet, to our knowledge.

The role of DFT+U in calculated excitation energies,
particularly the explicit contribution from the Hubbard term,
has been explored in Ref. [80]. The first reported TDDFT+U
implementation was that of Ref. [81], combining real-time
propagation and a plane-wave basis, followed by Ref. [82],
which detailed the results of a linear-response implementa-
tion applied to bulk NiO. In that system, TDDFT+U was
shown to be capable of reproducing the experimentally ob-
served, tightly bound Frenkel excitons, but not their multiplet
structure. These are relatively exotic spectroscopic features
that neither the adiabatic LDA, nor the random phase ap-
proximation built from LDA+U , succeeded in recovering to
any extent. Recently, in Ref. [83], a real-time plane-wave
TDDFT+U implementation has been coupled with Ehrenfest
molecular dynamics to simulate both long- and short-ranged
dynamical charge transfer between alkali atom impurities and
conjugated carbon systems. This work revealed the tendency
for an increasing Hubbard U to promote the availability of
multiple low-energy states in such systems, as well as to
increase in energy and broaden the impurity-bath charge-
transfer resonances.

To date, however, information has been lacking on how the
Hubbard U correction affects the typical products of practi-
cal TDDFT calculations in simple transition-metal systems,
namely the low-energy excitation spectra and dipole-dipole
absorption spectra, for better or worse with respect to experi-
ment. Indeed, the precise effects of TDDFT+U have yet to be
systematically studied, and its resulting range of applicability
has yet to be mapped out in any sense. It is this knowledge
gap that we seek to begin to fill with the present exploratory
study.
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D. Outline of the paper: Systematic decomposition of the effects
of the Hubbard U correction in Kohn-Sham DFT

and linear-response TDDFT

We seek to systematically investigate the role of DFT+U
as it separately alters the Kohn-Sham eigenspectrum under-
lying a linear-response TDDFT calculation, and the TDDFT
interaction kernel itself. For this, following its detailed intro-
duction via an illustrative four-level toy model in Sec. II, we
uncover the effects of full TDDFT+U , in Sec. III, on two
representative diamagnetic nickel complexes (one perfectly
closed-shell, one less so), which were chosen for study due
to their relatively simple coordination chemistry. Since their
Ni 3d subshells are close to being fully filled, nominally,
the dominant errors in the description of these molecules
using an approximate semilocal xc functional [in this work
always Perdew-Burke-Ernzerhof (PBE) [7]] and xc kernel
(adiabatic PBE) may be ascribed primarily to SIE (electron
delocalization) rather than static (multireference) correlation
error [11,50]. For these systems, in Sec. IV, we show that first-
principles Hubbard U correction at the TDDFT level alone,
leaving the underlying Kohn-Sham eigenspectrum at its DFT
level, offers a far better agreement with available experimental
and quantum-chemical data when compared to either uncor-
rected DFT & TDDFT or consistent DFT+U & TDDFT+U .
Performing Hubbard U correction at the DFT level alone
meanwhile, leaving the TDDFT kernel uncorrected, leads to
very unreasonable results indeed. We will discuss some im-
plications and possible solutions to this intriguing asymmetry
in Sec. VI.

We will turn first, however, in Sec. V, to the techni-
cally challenging case of an open-shell system, a noncen-
trosymmetric, high-spin cobalt coordination complex. Here,
we will again find that a first-principles DFT+U correction
applied only to the Kohn-Sham eigenspectrum drastically
degrades the agreement between the singlet excitation and the
dipole-dipole absorption spectra and, respectively, high-level
quantum-chemical and experimental data. The agreement is
recovered to some degree when TDDFT+U is also used,
but a number of important spectral features remain poorly
described. In this case, we will show that the application
of first-principles TDDFT+U upon the DFT Kohn-Sham
eigenspectrum is not a viable workaround, as the implied
inconsistency leads to the emergence of a singlet instability.

II. HUBBARD CORRECTION OF THE
EXCHANGE-CORRELATION KERNEL: THEORY

AND NUMERICAL ILLUSTRATION

Let us now introduce the anatomy of the Hubbard U
correction to approximate TDDFT. Concerning ourselves only
with low-energy single-particle excitations, we will restrict
ourselves to the linear-response regime.

Here, the spin-unpolarized TDDFT problem may be ex-
pressed in the occupied-unoccupied Kohn-Sham eigenvector
product space via Casida’s equation [84,85], which is an
eigenequation for the vertical excitation frequencies ω, given
in its canonical notation by(

A B
B† A†

)(
X
Y

)
= ω

(
X

−Y

)
. (1)

The Hamiltonian matrix elements Acv,c′v′ = δvv′δcc′ωc′v′ +
Kcv,c′v′ and Bcv,c′v′ = Kcv,v′c′ correspond to excitation-
excitation pairs and excitation-relaxation pairs, respectively.
The neglect of coupling between these processes, that is,
the approximation B = 0, is known as the Tamm-Dancoff
approximation (TDA). The ground-state Kohn-Sham eigen-
values εv are those of occupied valence states, while the εc are
those of unoccupied conduction states. The coupling matrix
K incorporates all interactions between particle-hole pairs,
which is to say all effects beyond the many-body random-
phase approximation [Fermi’s golden rule (FGR)]. It is given,
within the valence-conduction (cv) product representation of
the interaction kernel f̂ , by

Kcv,c′v′ =
∫∫∫∫

dr dr′ dr′′ dr′′′ ψ∗
c (r)ψv (r′)

× f (r, r′, r′′, r′′′)ψc′ (r′′)ψ∗
v′ (r′′′), (2)

where the ψ are Kohn-Sham eigenvectors. The kernel ordi-
narily comprises Hartree and xc terms only, denoted by f̂H

and f̂xc, but if a DFT+U derived correction term f̂U is added,
the resulting TDDFT+U interaction kernel is given by f̂ =
f̂U + 2( f̂H + f̂xc). The underlying Kohn-Sham eigensystem is
also changed, typically. The factor of 2 here is conventional,
and it represents the sum of identical (in the unpolarized
case) like- and unlike-spin Hartree and xc interactions acting
on a given excitation. This factor of 2 does not, however,
pre-multiply f̂U , since DFT+U ordinarily acts explicitly only
on like-spin Kohn-Sham states. The rotationally invariant
DFT+U energy functional [26,28–31] used in this work falls
into this category, being given, for a SIE-affected subspace,
by

EU = Ueff

2

∑
σ

∑
m

(
nσ

mm −
∑

m′
nσ

mm′nσ
m′m

)
, (3)

where Ueff = U − J is the effective like-spin correction pa-
rameter expressed in terms of the Hubbard U and the Hund’s
J parameter. The index σ is for spin, and the subspace
occupancy matrix nσ

mm′ = ∑
v〈ϕm|ψσ

v 〉〈ψσ
v |ϕm′ 〉 is typically

defined in terms of localized orbitals (in our calculations,
orthonormal atomic nickel or cobalt 3d orbitals solved in
a norm-conserving pseudopotential), ϕm. The Hubbard U
kernel is the second functional derivative [3] of the DFT+U
energy EU with respect to the density matrix, and we find,
denoting the density-matrix for spin σ by ρσ (r, r′), that

f σσ ′
U (r, r′, r′′, r′′′)

= δ2EU [ρσ , ρσ ′
]

δρσ (r′′, r′′′)δρσ ′ (r, r′)

= −Ueff

∑
mm′

δσσ ′
ϕm(r)ϕ∗

m′ (r′)ϕ∗
m(r′′)ϕm′ (r′′′). (4)

The resulting Hubbard U contribution to K may be written,
using implicit summation of paired indices, as

KU
cv,c′v′ = − Ueff〈ψc|ϕm〉〈ϕm′ |ψv〉(〈ψc′ |ϕm〉〈ϕm′ |ψv′ 〉)∗

= − Ueff〈ψc|ϕm〉〈ϕm|ψc′ 〉
× 〈ψv′ |ϕm′ 〉〈ϕm′ |ψv〉, (5)
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whereafter we will use U rather Ueff for simplicity, except
where discussing our actual calculated Ueff. The resulting
“direct” term, in what can be seen as an effective exciton
self-interaction correction, is given by

KU
cv,cv = −U

∑
mm′

|〈ψc|ϕm〉|2|〈ψv|ϕm′ 〉|2. (6)

The form of KU hints at the behavior expected of the
TDDFT+U excitation spectrum as U is varied. For U > 0 eV,
the interaction correction due to one (cv) pair and acting
upon another is a sum over (typically) attractive direct Hartree
and exchange terms. Relative to the situation that holds in
hybrid-exchange TDDFT, however, the exchange terms are
expected to be more significant relative to direct Hartree ones,
since in TDDFT+U the same constant U premultiplies both
term types. It is instructive to examine the special case in
which the projecting orbitals ϕm are identical to a subset of
the underlying Kohn-Sham states ψ . There, the Hubbard U
contributions to B and A reduce considerably to

AU
cv,c′v′ = −Uδcmδmc′δv′m′δm′v = −Uδcc′δvv′ ,

(7)
BU

cv,c′v′ = −Uδcmδmv′δc′m′δm′v = 0,

leaving a fully diagonal contribution to the Casida Hamil-
tonian. If these Kohn-Sham states are also well separated
from all others energetically, the effect of the Hubbard U
on the underlying eigenstate differences εc − εv will simply
be an increase by U , whereupon the effects of DFT+U and
TDDFT+U fully cancel for excitations coupling states within
the target subspace.

This picture is complicated by Kohn-Sham state hybridiza-
tion, self-consistency, and the spillage of the localized or-
bitals, in practice. Nonetheless, the TDDFT+U correction
may be expected to increase the mixing of transitions between
states that overlap strongly with the selected subspace, and
to increase their exciton binding energy by compensating
for the underlying DFT+U eigenvalue correction. However,
the matrix elements of KU are quadratic in overlap integrals
of the form 〈ψc|ϕ〉〈ϕ|ψc〉, whereas the underlying Hubbard
U correction to the Kohn-Sham potential comprises terms
that are only linear in such integrals. Thus, we cannot gen-
erally expect the cancellation of the U correction to the
ground- and excited-state systems to be precise in practical
calculations.

A. Illustration of the effect of U correction in TDDFT
using a four-level toy model

For further insight, the effects of TDDFT+U in conjunc-
tion with DFT+U can be illustrated by means of a toy model
in conjunction with the TDA and full Casida equation. Let us
consider four independent-particle (KS-like) states, of which
two occupied and two unoccupied states are labeled with
{v, v′} and {c, c′}, respectively, with some arbitrary eigenen-
ergies as illustrated in Fig. 1. The pair {c, v} of states shown
by a dashed red line are targeted with a correction inspired by
DFT+U and TDDFT+U .

c εc′ = 6 eV

c εc = 2 eV

v εv = -2 eV

v εv′ = -8 eV

′

′

FIG. 1. A four-level toy model for independent-particle (Kohn-
Sham orbital emulating) states of arbitrarily assigned energies, com-
prising two levels affected by U corrections and illustrated with
dashed red lines and two bystander levels illustrated with black lines.

The block matrices A and B in the Casida equation become
4 × 4 matrices with elements given by

Aji, j′i′ =
[

(ε j′ − εi′ ) + UDFT

2
(δ j′c + δi′v )

− UTDDFTδ j′i′,cv

]
δi′iδ j j′ + KHxc

ji, j′i′ , (8)

Bji, j′i′ = KHxc
ji,i′ j′ , (9)

where j and j′ run over {c, c′}, while i and i′ run over
{v, v′}. The Hubbard parameter UDFT imitates the effect of
DFT+U by pushing the targeted states away from the Fermi
level via the term UDFT(δ j′c + δi′v )/2, whereas the Hubbard
parameter UTDDFT includes the effect of TDDFT+U via the
term −UTDDFTδ j′i′,cv . By making these two Hubbard param-
eters UDFT and UTDDFT independent, the individual effects
of the Hubbard corrections at the DFT and TDDFT levels
can be observed by setting one of them to zero at a time.
The Hartree+xc coupling matrix elements are assigned for
illustration here to the arbitrary values

KHxc
ji, j′i′ =

{
4.0 eV for δ ji, j′i′ ,

0.8 eV otherwise,

KHxc
ji,i′ j′ =

{
4.0 eV for δ ji,i′ j′ ,

0.8 eV otherwise, (10)

and the symmetric choice made here is a deliberate attempt to
simplify the contributions due to fHxc.

The Casida equation, both in its full form and within the
TDA, was solved using an eigenvalue solver over a range
of UDFT and UTDDFT values. Additionally, FGR excitations
energies are included and calculated as

ωFGR
ji (UDFT) = (ε j − εi ) + UDFT

2
(δ jc + δiv ). (11)

In Fig. 2, the principal effects of a positive UDFT (simu-
lating DFT+U ) and UTDDFT (simulating TDDFT+U ) in our
toy model are demonstrated via the amplitudes of normalized
electronic excitation spectra (EES) calculated using Eq. (13).
A Lorentzian lifetime broadening of 	 = 0.1 eV was used
here, together with a high-resolution grid of Hubbard U
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FIG. 2. Electronic excitation spectra (EES) calculated from our
illustrative four-level toy model, using Eq. (13) with 	 = 0.1 eV.
Subfigure captions indicate the analogous DFT-based approximation,
e.g., the +U in “DFT+U & FGR” indicates that the occupied (unoc-
cupied) localized level is lowered (raised) by UDFT/2 (with UTDDFT =
0 eV), while “FGR” indicates that the transitions are treated as
independent. On the other hand, “TDDFT” denotes that a repulsive
kernel given by Eq. (10) couples transitions, while “TDDFT+U”
indicates that said kernel is U -corrected by Eq. (8) with the Hubbard
U axis denoting UTDDFT. For “DFT+U & TDDFT+U ,” UDFT =
UTDDFT. TDA is the Tamm-Dancoff approximation.

parameters taken in 0.05 eV steps. Starting from the energy
levels shown in Fig. 1, a positive value of U = UDFT pushes
the targeted (red dashed line in Fig. 1) states (v, c) away
from the Fermi level, each by U/2, while the bystander states
remain intact. Consequently, in Fig. 2(a), the excitation from
v to c (v → c) increases simply by U , while the energies of
v′ → c and v → c′ increase by U/2, emulating the effects of
DFT+U . The remaining excitation v′ → c′ is not affected due
to a lack of interaction between exciton pairs within FGR.

Comparing next Figs. 2(b), 2(c), and 2(d) against the FGR
results of Fig. 2(a), each evaluated at U = 0 eV, a global shift
by TDDFT of ∼3–4 eV on the excitation energies can be
seen, as well as the avoided crossing of excitation energies
for U > 0 eV. This is due to the interactions between exciton

pairs, emulating TDDFT, that are introduced by the coupling
matrix KHxc

ji, j′i′ in Eq. (10). The global nature of the shift is
due to the invariance of the coupling matrix with respect to
the swapping of orbital indices. In Figs. 2(c) and 2(e), the
UTDDFT term (emulating TDDFT+U ) exclusively affects the
excitation v → c by pushing it down (linearly in the TDA
case) from ≈ 8 eV for increasing U = UTDDFT values. For
U = 4 eV (U = 8 eV for TDA), the excitation v → c be-
comes purely imaginary (negative in the TDA case), meaning
that the model becomes unphysical. In Fig. 2(d), the combined
emulated effects of DFT+U and TDDFT+U , when UDFT =
U = UTDDFT, are seen in the form of a total cancellation of the
effect of DFT+U on the excitation v → c by TDDFT+U . The
remaining three excitations are affected by DFT+U as before,
while the effect of TDDFT+U [comparing Figs. 2(b) and
2(d)] is relatively minor and mostly due to avoided crossing.

Comparing Fig. 2(d) with its TDA counterpart Fig. 2(f),
the excitations within this model show a similar qualitative
behavior irrespective of whether the TDA is invoked. The
TDA approximately shifts the excitations up in energy by
∼1 eV throughout the frequency range.

B. Implementation of the TDDFT+U kernel
within linear-scaling linear-response TDDFT

We have implemented the TDDFT+U kernel of Eq. (4)
in the ONETEP package [45,86,87]. This direct-minimization
DFT code maintains a linear-scaling increase in compu-
tational expense with respect to system size, while main-
taining an accuracy that is effectively equivalent to that of
a plane-wave code. It does this by expanding the Kohn-
Sham density matrix in terms of a minimal set of spa-
tially truncated nonorthogonal generalized Wannier functions
(NGWFs), which are variationally optimized in situ [88]. For
calculations involving excited states, the code is capable of
variationally optimizing a set of Wannier functions for the
unoccupied conduction bands in a postprocessing step that
follows conventional total-energy minimization [89]. With
this, and using the resulting joint basis of optimized valence-
and conduction-band Wannier functions, we used the linear-
scaling beyond-Tamm-Dancoff linear-response TDDFT func-
tionality available in ONETEP [69–71], which again uses iter-
ative minimization, as the basis for our implementation. The
central element in our combination of linear-scaling TDDFT
and DFT+U [45] is the change in DFT+U potential associ-
ated with the first-order change in Kohn-Sham density matrix,
ρ (1)(r, r′; ω), at each excitation energy ω, which is given by
the same expression for both singlet and triplet excitations
alike, specifically

V̂ σ (1)
U (ω) = −U

∑
mm′

|ϕm〉〈ϕm|ρσ (1)(ω)|ϕm′ 〉〈ϕm′ |. (12)

From this equation, it is clear that the occupancy de-
pendence of the DFT+U potential survives in TDDFT+U ,
insofar as, for U > 0 eV, a level within the target subspace
that is depopulated under excitation (typically a valence level
close to the gap) will be subject to a more repulsive DFT+U
potential, whereas a repopulated (e.g., conduction) level will
be subject to a more attractive DFT+U potential. TDDFT+U
thus tends to promote such excitations by increasing the
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FIG. 3. The molecular structures of two representative Ni-
centered closed-shell coordination complexes. Shown on the left is
the planar tetracyanonickelate anion Ni(CN)2−

4 , and shown on the
right is the tetrahedral nickel tetracarbonyl Ni(CO)4.

exciton binding between the associated levels. We emphasize
that the interaction in TDDFT+U remains entirely adiabatic
as it is presented here, since the kernel f̂U is constant in time,
and so it addresses only the time average of the self-interaction
error as it is measured in the ground state. As a result, it
lacks the ability to produce dynamical step features in the
potential that may result from occupancies passing through
integer values, which are dynamical manifestations of the
second aspect of self-interaction error previously discussed.
However, TDDFT+U does provide a convenient framework
in which to explore nonadiabatic self-interaction correction
kernels f̂U (ω) by means of an explicitly frequency-dependent
Hubbard U (ω).

III. THE HUBBARD U DEPENDENCE OF NEUTRAL
EXCITATION SPECTRA

Two small closed-shell Ni-centered coordination com-
plexes, namely the planar tetracyanonickelate anion Ni(CN)2−

4
and tetrahedral nickel tetracarbonyl Ni(CO)4 shown in Fig. 3,
were chosen for study. The Hubbard U dependence of molec-
ular spectra, in terms of both its individual effects on DFT+U
and TDDFT+U and on their combination, was investigated.
These systems provide a useful playground in which to inves-
tigate the effects of DFT+U and TDDFT+U , since they min-
imize any complex contributions from magnetic ordering and
large ligand-field splittings, as both systems are closed-shell
and centrosymmetric with strong ligands. Furthermore, these
systems have previously been studied experimentally [90–93]
and using numerous first-principles methods [94–97]. This is
not, however, to imply that these systems are ideal candidates
for treatment using DFT+U , let alone TDDFT+U , since they
are reasonably well described by conventional approximate
DFT.

A. Convention for visualizing spectra

At this juncture, we must introduce our conventions for
visualizing two essential molecular spectroscopies. Electronic
excitation spectra (EES) are constructed here by including
both optically allowed and forbidden excitations with the
same unit oscillator strength. They are calculated using the

formula

EES(ω) =
∑

i j

	/2

(ω − ω ji )2 + (	/2)2
, (13)

where ω ji denotes the energy of a transition from an occupied
(i) to an unoccupied ( j) molecular electronic state, and 	 is a
Lorentzian broadening factor.

Electric dipole-dipole absorption spectra are commonly
used to measure the optical response of molecules in the
low-energy spectral range. The contributions of the individual
excitations are weighted by oscillator strengths f j←i related to
the transition dipole moments. The formula relevant to optical
absorption is

ABS(ω) =
∑

i j

f j←i
	/2

(ω − ω ji )2 + (	/2)2
, (14)

and this type of spectrum is the one primarily used here for
comparing with experimental observations.

EES and ABS were constructed using Eqs. (13) and (14)
with a Lorentzian broadening 	 = 0.1 eV at integer values of
the Hubbard U parameters, and interpolated to intermediate
values in 0.01 eV steps. Our EES are scaled by setting the
global maximum of EES data across DFT & TDDFT, DFT+U
& TDDFT, DFT & TDDFT+U , and DFT+U & TDDFT+U
to unity. Similarly, our ABS are scaled by setting the global
maximum of ABS data across all of these four combinations
to unity. Such separate scaling factors enable us to compare
relative intensities within various methods as well as to main-
tain the comparability between EES and ABS within same
method. EES calculated within the FGR are scaled separately,
using their own maxima.

B. The square-planar tetracyanonickelate anion: Ni(CN)2−
4

The square-planar Ni(CN)2−
4 is a low-spin coordination

complex, with a Ni center of nominal charge 2+. (CN)− is
a strong-field π -acceptor ligand that leads to ligand-splitting
of the 3d levels of Ni, following dyz ≈ dxz < dxy < dz2 <

dx2−y2 , where 3d8 electrons occupy the first four levels and
the remaining 3dx2−y2 forms a dsp2-hybrid with the ligands
in the square-planar symmetry [98]. As a result, the low-lying
excitations are expected to be predominantly of a mixed 3d →
3d and metal-to-ligand 3d → π∗ character, as suggested by
previous studies [96].

The energy alignment of 3d states is shown as a function of
U in Fig. 4(a). For increasing U values, the occupied 3d states
move to deeper energies. The states close to the highest occu-
pied molecular orbital–lowest unoccupied molecular orbital
gap (shown with red, dashed lines), which strongly contribute
to low-lying excitations, combine with lower-energy states
at about U � 7 eV. Thus, low-lying excitations are pushed
upwards, and ultimately they combine with higher-energy
excitations of metal-to-ligand character, as seen in the EES
calculated using FGR in Fig. 4(b).

Up to this point, the Hubbard U has been used only to
modify the underlying KS-DFT states via DFT+U . In Fig. 5,
a more complete and consistent picture is provided by the EES
for the first 50 singlet excitations calculated using various
combinations of DFT+U and TDDFT+U . In Fig. 5(a), we
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FIG. 4. The Kohn-Sham DFT+U energy levels and singlet EES
spectra of Ni(CN)2−

4 calculated using the FGR, as functions of the
Hubbard U parameter. The Fermi level (dashed, blue line) is set to
0 eV. The states most strongly affected by DFT+U are shown with
dashed, red lines.

see that an increasing U value in DFT+U reduces the 3d →
3d character of the excitations, and combines them with
excitations from deeper states, similarly to the FGR case.
Beyond that, DFT+U is effective globally insofar as it pushes
other excitations to higher energies by means of modifying the
metal-to-ligand energy as seen in Fig. 4(a).

On the contrary, in Fig. 5(b), we observe that TDDFT+U
affects only the excitations of 3d → 3d character, while, as
anticipated, the remaining excitations remain largely unaf-
fected. Furthermore, the affected excitations become non-
physical for U � 7 eV in DFT & TDDFT+U , similarly to
what is observed in the four-level toy model. This situation,
known as a singlet instability, arises by virtue of exciton

FIG. 5. The singlet EES of Ni(CN)2−
4 , calculated using DFT+U

& TDDFT, DFT & TDDFT+U , and DFT+U & TDDFT+U , as
functions of the Hubbard U parameter.

overbinding, where for large values of U , the TDDFT+U
contributions to coupling matrix elements KU

cv,cv in Eq. (5)
overcompensate for the sums of energy differences ωcv and
the Hartree+exchange-correlation contribution to coupling
matrix elements, leading to unphysical complex eigenvalues.
In Fig. 5(c) we find that, when DFT+U and TDDFT+U
are combined consistently, TDDFT+U primarily cancels the
effects of DFT+U on 3d → 3d type excitations, which are
in the ∼3.5–4.5 eV range. This cancellation of DFT+U by
TDDFT+U gives rise to an approximately quadratic net de-
pendence on U within the full Casida equation, as opposed to
a rather linear net behavior with U when the TDA is invoked.
We can clearly observe this when comparing Fig. 5(c) and
TDA in Fig. 5(d). This again reflects what was previewed in
our four-level toy model.

Overall, on the one hand DFT+U is very efficient at
modifying the ABS as it pushes low-lying optical transitions
to higher energies, as seen in Figs. 6(a), 6(c), and 6(d). On the
other hand, TDDFT+U does not have any significant effect at
all on the ABS shown in Fig. 6(b), as TDDFT+U acts solely
on 3d → 3d excitations, which are optically perfectly dark in
Ni(CN)2−

4 here due to its idealized square-planar symmetry.

C. The tetrahedral nickel tetracarbonyl: Ni(CO)4

The tetrahedral Ni(CO)4 is another low-spin coordination
with a neutral Ni center, but it is not perfectly isoelectronic
with Ni(CN)2−

4 as it has an uncomplicated, full 3d subshell.
The (CO)− ion is a strong-field π -acceptor ligand, which
splits the 3d states of Ni into dz2 ≈ dx2−y2 < dxy ≈ dxz ≈ dyz

due to the tetrahedral symmetry present. The twofold- and
threefold-degenerate 3d splitting can be clearly distinguished
by the differing response to DFT+U seen in Fig. 7(a). In this

FIG. 6. The dipole-dipole absorption spectra of Ni(CN)2−
4 , cal-

culated using DFT+U & TDDFT, DFT & TDDFT+U , and DFT+U
& TDDFT+U , as functions of the Hubbard U parameter.
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FIG. 7. The Kohn-Sham DFT+U energy levels and singlet EES
spectra of Ni(CO)4 calculated using the FGR, as functions of the
Hubbard U parameter. The Fermi level (dashed, blue line) is set to
0 eV. The states most strongly affected by DFT+U are shown with
dashed, red lines.

system, the low-lying singlet excitations are necessarily of a
predominantly Ni 3d → π∗ character [93,99].

In Fig. 7(a), we observe that the twofold-degenerate dz2 ≈
dx2−y2 states (red, dashed line) at −2 eV and the threefold-
degenerate dxy ≈ dxz ≈ dyz states (red, dashed lines) at −3 eV
for U = 0 eV are pushed deeper with increasing U values
within DFT+U . In Fig. 7(b), these immediate effects of
DFT+U on the low-lying 3d → π∗ excitations at ∼4.0–
5.5 eV for U = 0 eV are reflected in upshifts in the FGR
singlet EES with increasing U values. Such shifts are larger
for excitations from the dz2 and dx2−y2 states, as these are
lowered more by DFT+U .

A complete picture of the behavior of the first 50 excita-
tions with DFT+U and TDDFT+U is presented in Fig. 8. The
increasing U parameter in DFT+U affects excitation energies

FIG. 8. The singlet EES of Ni(CO)4 calculated using DFT+U
& TDDFT, DFT & TDDFT+U , and DFT+U & TDDFT+U , as
functions of the Hubbard U parameter.

FIG. 9. The dipole-dipole absorption spectra of Ni(CO)4 calcu-
lated using DFT+U & TDDFT, DFT & TDDFT+U , and DFT+U &
TDDFT+U as functions of the Hubbard U parameter.

globally by pushing them to higher energies. In Fig. 8(a),
particularly, the excitations from the lower-lying 3d levels
(dz2/dx2−y2 → π∗) at ∼5–6 eV for U = 0 eV climb most
strongly and cross over with the excitations from the deeper
states at around U ≈ 4 eV, as was previewed in Fig. 7(b).
A similar trend is also present with DFT+U as it is more
effective on the excitations from the lower-energy 3d levels,
as seen in Fig. 8(b), where some crossover occurs with
the lower-energy group of excitations. The cancellation of
DFT+U effects by TDDFT+U is more subtle in Ni(CO)4

for the relevant excitations compared to the situation in
Ni(CN)2−

4 , and this [shown in Fig. 8(c)] is as expected due
to the weaker 3d → 3d character of the transitions. While
TDDFT+U shifts the lowest group of excitations as well as
splitting these excitations, it does not lead to the splitting-off
of distinct tightly bound excitons as observed in Ni(CN)2−

4 . As
the dominant optically allowed transitions are almost purely
of 3d → π∗ character, DFT+U naturally pushes bright exci-
tations up in energy, as seen in Fig. 9(a), whereas the effect
of TDDFT+U on these excitations is quite subtle, which can
be seen in Fig. 9(b). An important point to recall here is that,
while DFT+U is effective in proportion to the 3d character
of the KS manifold, TDDFT+U is proportional to the 3d
character of product space of occupied 3d-unoccupied 3d
subspaces.

IV. FIRST-PRINCIPLES SPECTRA OF TWO LOW-SPIN
NICKEL-CENTERED COMPLEXES

The EES and ABS of our two closed-shell coordination
complexes were generated using DFT+U and TDDFT+U
with their respective first-principles Hubbard Ueff parameters,

165120-8



TDDFT+U : A CRITICAL ASSESSMENT OF THE … PHYSICAL REVIEW B 99, 165120 (2019)

FIG. 10. The singlet EES of Ni(CN)2−
4 extracted from Fig. 5 by

taking a cross section at the first-principles Hubbard Ueff = 6.901 eV,
and shown with a Lorentzian broadening of 0.1 eV.

following the detailed procedure described in the Appendixes.
In particular, these spectra were obtained by evaluating, or
“slicing,” the interpolated data shown in the graphs presented
in Secs. III B and III C, at the corresponding first-principles
Hubbard U parameters summarized in Table V.

A. Excitation energies and spectra of Ni(CN)2−
4

The EES and ABS of Ni(CN)2−
4 are presented in Figs. 10

and 11 for the first-principles Ueff = U − J = 6.901 eV,
alongside experimental excitation spectra extracted from
Ref. [90]. In Fig. 11, the experimental excitation peak po-
sitions are shown with vertical gray lines, with heights in-
dicating their relative absorbance with respect to that of the
experimental maximum absorbance at 4.66 eV, which is set
to unity.

Excitation energies are listed in Table I along with the ex-
perimental results [90] and TDDFT results [96], with optically
bright excitations highlighted with a bold font. In particular,

FIG. 11. The singlet dipole-dipole ABS of Ni(CN)2−
4 extracted

from Fig. 6 by taking a cross section at the first-principles Hubbard
Ueff = 6.901 eV, and shown with a Lorentzian broadening of 0.1 eV.
The experimental absorption energies extracted from Ref. [90] are
shown with vertical gray lines that are scaled with respect to the
maximum absorbance of the highest energy peak at 4.66 eV.

our first-principles excitation energies were obtained from the
peak positions of Fig. 10, with smaller peaks and shoulders
removed, and the optically bright ones were assigned by
matching to the peaks of Fig. 11.

The previous TDDFT calculations of Ref. [96] were per-
formed using implicit solvation with a dielectric constant of
37.5, whereas ours were performed under vacuum conditions.
Nonetheless, the former data provide a useful benchmark for
testing the numerical validity of our TDDFT+U code. As
seen Fig. 10, DFT+U is effective throughout the spectral
range. It shifts excitation features to higher energies, as seen
by comparing DFT+U & TDDFT with DFT & TDDFT
(PBE). TDDFT+U , however, acts only in the low-energy
range, and it gives rise to the emergence of new peaks
surrounded by those already present in DFT & TDDFT. The
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TABLE I. Energies (in eV) of the singlet excitations of
Ni(CN)2−

4 , as obtained without symmetry assignment from the peak
positions of Fig. 10, with smaller peaks and shoulders removed. Co-
inciding peaks in Fig. 11 are assigned as optically bright excitations
and highlighted with a bold font.

Method

DFT & 3.37 3.42 3.78 3.85 3.91 4.03

TDDFT (PBE) 4.34 4.55 4.84 4.92 5.23 5.34

DFT+U& 4.94 5.17 5.24 5.33 5.57 5.74
TDDFT 5.98

1.50 1.67 2.11 3.24 3.36 3.68DFT & 3.76 3.88 4.00 4.15 4.30TDDFT+U 4.51 4.78 4.89 5.19 5.32

DFT+U & 3.66 4.09 4.29 4.93 5.17 5.24
TDDFT+U 5.33 5.57 5.75 5.98

DFT+U & 3.88 4.30 4.52 4.94 5.12 5.26
TDDFT+U (TDA) 5.59 5.73 5.98

Expt. [90] 2.85 3.35 4.00 4.36 4.66
TDDFT (PBE) [96] 3.99 4.19 4.48 3.76 4.12 4.53
TDDFT (LDA) [96] 3.98 4.17 4.46 3.78 4.13 4.55
TDDFT (B3LYP) [96] 3.29 3.57 3.92 4.75 5.07 5.59

combined effects of DFT+U and TDDFT+U prove to be
almost a simple combination of their respective individual
effects, as seen in EES with DFT+U & TDDFT+U , where
excitation energies are globally shifted and some additional
peaks emerge.

In Fig. 11 (also represented in Table I), regardless of its
flavor, TDDFT fails to capture the optically bright excitation
at 2.85 eV observed in experiment, and this is consistent with
previous TDDFT studies using the LDA and PBE functionals.
Hybrid TDDFT using the B3LYP functional performs better
than LDA or PBE in this regard, surely due to its better (more
spatially long-ranged) description of exciton binding via its
partial inclusion of the exact exchange interaction. In Fig. 11,
we see that DFT+U carries optically bright features to higher
energies and dramatically changes the overall appearance of
the spectrum. In fact, DFT+U clearly worsens the agreement
with experimental excitation energies. It pushes excitations
within DFT+U & TDDFT to higher energies such that the
lowest optically bright excitation is carried to a position
∼1.8 eV higher in energy compared to that of DFT & TDDFT.
We find that TDDFT+U has a relatively minor effect on the
optically bright excitations when applied upon DFT (PBE),
and no discernible effect when applied upon DFT+U . Thus,
TDDFT+U does not mitigate the harmful effects of DFT+U
on optically bright excitations in this system. TDA and RPA
predict spectra in close mutual agreement, with slightly higher
energies emerging within TDA for both spectra.

B. Excitation energies and spectra of Ni(CO)4

The EES and ABS of Ni(CO)4 are presented in Figs. 12
and 13, respectively, for first-principles Ueff = 9.849 eV.
Shown alongside, for comparison, are the corresponding
spectra generated using the experimental excitation energies
and oscillator strengths extracted from Ref. [93]. In this

FIG. 12. The singlet EES of Ni(CO)4 extracted from Fig. 8 by
taking a cross section at the first-principles Hubbard Ueff = 9.849 eV,
and shown with a Lorentzian broadening of 0.1 eV. The EES (gray,
dashed line), constructed from INDO/S quantum-chemical excita-
tion energies extracted from Ref. [93], is shown with a Lorentzian
broadening of 0.1 eV.

molecule, due to its less-than-full 3d manifold and hence
increased 3d character of the valence-conduction transition
space, we will see that TDDFT+U is rather more effective
than it is in the case of Ni(CN)2−

4 . However, it is still not
enough to compensate for the inaccuracy that the contempo-
rary DFT+U potential introduces, and, intriguingly, DFT &
TDDFT+U performs by far the best among the combinations
tested.

In Fig. 13 (also in Table II), we observe that DFT &
TDDFT overestimates the lowest optically bright excitation
by ∼1.1 eV compared to in vacuo INDO/S (the intermedi-
ate neglect of differential overlap model adapted for spec-
troscopy) quantum-chemical calculations. DFT+U worsens
this overestimation to ∼1.4 eV, while arguably also worsen-
ing the line-shape agreement. TDDFT+U applied upon this
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FIG. 13. The singlet dipole-dipole ABS of Ni(CO)4 extracted
from Fig. 9 by taking a cross section at the first-principles Hubbard
Ueff = 9.849 eV, and shown with a Lorentzian broadening of 0.1 eV.
The ABS (gray, dashed line), constructed from INDO/S quantum-
chemical excitation energies and oscillator strengths extracted from
Ref. [93], is shown with a Lorentzian broadening of 0.1 eV.

(DFT+U & TDDFT+U ) makes relatively little difference,
and the effect of invoking the TDA is approximately that of a
small, rigid blueshift. It is difficult to make a clear comparison
against the large spread of experimental values, meanwhile.
The agreement between the peak positions and line shapes
(we do not attempt to compare physical magnitudes here)
given by DFT & TDDFT+U and INDO/S, both for EES
and ABS, is remarkable, however, with the first bright energy
agreeing to ∼0.04 eV (albeit with a splitting in INDO/S that
is absent in TDDFT+U ). The ABS peak positions are also in
reasonable agreement with some of the experimental values
given in Table II, though again interpretation is challenging
here due to the spread of values. We now digress to consider
these results.

TABLE II. Energies (in eV) of the singlet excitations of Ni(CO)4,
as obtained without symmetry assignment from the peak positions of
Fig. 12, with smaller peaks and shoulders removed. The coinciding
peaks in Fig. 13 are assigned as optically bright excitations high-
lighted with a bold font.

Method

DFT & 4.26 4.50 4.67 4.75 5.17 5.27
TDDFT (PBE) 5.42 5.60 5.75 6.16 6.54 6.91

DFT+U & 5.03 5.26 5.48 5.57 6.15 6.85
TDDFT 7.14 7.37 7.57 8.00

DFT & 3.63 3.91 4.03 4.19 4.38 4.75
TDDFT+U 5.19 5.32 5.74 6.15 6.38 6.91

DFT+U & 4.72 4.91 5.02 5.39 5.45 5.59
TDDFT+U 6.01 6.55 6.91 7.17 7.57 7.92

DFT+U & 4.75 4.93 5.04 5.45 5.62 6.12
TDDFT+U (TDA) 6.57 6.86 6.99 7.18 7.56 8.03

Exp. (solvent) [91] 5.24 5.52 6.02
Exp. (matrix) [92] 4.54 5.17
Exp. (gas) [93] 4.5 5.4 6.0

3.93 3.98 4.05 4.15 4.36 4.39INDO/S [93] 4.55 4.64 4.79 4.91 4.95 5.11
5.29 5.36 5.71 6.20

4.36 4.60 4.62 4.70 4.82 4.95TDDFT (LDA) [95] 5.37 5.84 6.01

4.52 4.53 4.79 4.97 5.25 5.41SAC-CI [101] 5.51 5.72 5.76 6.07 6.28

3.58 3.72 4.04 4.34 4.88 5.14CASPT2 [94] 5.15 5.20 5.22 5.57 6.00 6.01

C. The use of a single Hubbard U parameter
in DFT+U and TDDFT+U

The improvement of DFT & TDDFT by a first-principles
Hubbard U correction to the kernel but not to the potential,
if INDO/S can be taken as a benchmark, may be understood
as a possible consequence of the following. The Hubbard U
parameter is a measure of spurious interaction, one that is cal-
culated as the derivative of an averaged potential that, in turn,
is a measure of the derivative of an energy. On the one hand,
therefore, U is well suited to measure the magnitude required
for correction of the interaction kernel. On the other hand, it
is not necessarily a good measure of the magnitude required
for correction of the Kohn-Sham potential. More specifically,
it has recently been shown by one of the present authors that
very different parameters U1 and U2 may be needed for the
constant and linear terms in the density, respectively, of the
DFT+U corrective potential [100]. Put another way, the linear
and quadratic terms in Eq. (3) may benefit from different Ueff

prefactors.
Dubbed DFT+U1+U2, this generalization of DFT+U

allows for the approximate enforcement of Koopmans’ con-
dition on the DFT+U subspace, which is a condition that is
implied by the assumptions underpinning the calculation of
U . In other words, while the Hubbard U may successfully
measure the self-interaction strength, and possibly open the
correct fundamental gap via the quadratic energy term, a sin-
gle parameter does not carry enough information to correctly
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position the targeted subspace energetically with respect to
the background (also known as bystander) states, a task for
which the linear term is better equipped. Put yet another way,
the double-counting correction used in the derivation of the
contemporary DFT+U functional is arguably too simple, for
certain system types, and could gainfully by given its own
separate premultiplicative parameter. The TDDFT+U kernel
does not suffer from this complication, however, since only
the usual parameter associated with the quadratic energy term
survives in the kernel. In this sense, contemporary methods
for calculating a single U parameter may actually be better
suited to TDDFT+U than to DFT+U . This is reflected by
the apparent, paradoxical superior performance of DFT &
TDDFT+U over DFT+U & TDDFT+U in the aforemen-
tioned system Ni(CO)4, albeit that this is a rather extreme
test of DFT+U insofar as the uncorrected PBE functional
already performs well, and the relevant subspace is very far
from half-filling.

Indeed, any ill effects of conventional DFT+U on the
potential are expected to be most strongly felt when applying
DFT+U to spin-unpolarized 3d spaces that are almost full
(or empty) such as in Ni(CO)4, since then the conduction
(or valence) band edge is of predominantly background-
orbital character. The Kohn-Sham gap is neither of 3d → 3d
character nor reliably determined by the familiar U in such
cases. A workaround alternative (albeit not equivalent) to
DFT+U1+U2 may be the application of DFT+U to other
orbital types, e.g., O 2p, C 2p, and possibly Ni 4s, but this
has not been explored in the present work. A complete coun-
terexample to this, where DFT+U is very effective, is next
provided by an open-shell complex, where the Kohn-Sham
gap is strongly affected by a varying Hubbard U parameter.

V. FIRST-PRINCIPLES SPECTRA OF A HIGH-SPIN
COBALT-CENTERED COMPLEX

CoL2Cl2 (L = 2-aminopyrimidine: C4H5N3) is a Co-
centered, distorted pseudo-tetrahedral complex with two types
of ligands, as illustrated in Fig. 14. The central Co atom has
a nominal charge of 2+, with a 3d subshell containing 7
electrons. Cl− is a π -donor weak-field ligand, which leads to
a splitting of the 3d subshell of the Co atom into a high-spin
configuration in a pseudo-tetrahedral symmetry [98,102]. In
its high-spin configuration, the 3d orbitals at higher energies
contain unpaired electrons, resulting in a total spin of 3μB.
The fully and partially filled molecular orbitals at higher
energies are predominantly hybrids comprised of Co 3d and
Cl 3p orbitals. Moreover, further splitting of the energy levels
by 3d-3p hybridization occurs by means of the distortion due
to the tilted L-ligands. The low-lying excitations are expected
to have strong 3d → 3d character in this molecule.

Experimental values for the low-lying, spin-allowed op-
tically bright excitations of CoL2Cl2 are presented in
Table III. Also provided are prior predictions from high-
level quantum-chemistry methods, i.e., complete active space
self-consistent field (CASSCF) and CASSCF improved fur-
ther by second-order N-electron valence perturbation theory
(NEVPT2) [103–106], which were extracted from Ref. [107].
Our own TDDFT calculations invoke the TDA for this
spin-polarized system, due to technical limitations of the

FIG. 14. The molecular structure of CoL2Cl2 (L = 2-
aminopyrimidine: C4H5N3).

implementation. Two different first-principles effective pa-
rameters were tested in our DFT+U and TDDFT+U calcu-
lations, and these were generated following the procedures
described in detail in Ref. [43]. Briefly, the like-spin Ueff =
U − J results from a treatment of the spin channels as forming
an effective two-site model in the “scaled 2 × 2” method,
and this is expected to yield results (in this case 5.724 eV)
comparable to those from any correct method that separately
calculates the Hubbard U and Hund’s J . The less canonical

TABLE III. Energies (in eV) of the singlet excitations of
CoL2Cl2, as obtained without symmetry assignment from the peak
positions of Fig. 15(a), with smaller peaks and shoulders removed.
Coinciding peaks in Fig. 15(b) are assigned as optically bright
excitations, highlighted with a bold font. Experimental peak energies
extracted from Ref. [107] are accurate to the nearest 0.05 eV,
approximately.

Method

DFT & 1.19 1.38 1.74 1.94 2.04
TDDFT (TDA) 2.28 2.68 2.92

Ueff = 5.724 eV (scaled 2× 2 [43])
DFT+U & 2.80 2.99 3.24 3.31 3.49
TDDFT (TDA)
DFT+U & 1.35 1.41 1.80 2.12 2.86
TDDFT+U (TDA) 2.99 3.08

Ueff = 3.798 eV (averaged 1× 1 [43])
DFT+U & 2.16 2.45 2.71 2.85 2.98
TDDFT (TDA) 3.06
DFT+U & 0.20 0.35 0.56 0.90 1.02
TDDFT+U (TDA) 2.64 2.85 2.93 3.00
Expt. (solvent) [107] 1.10 2.00 2.15 2.45

0.35 0.43 0.56 0.72 0.87CASSCF [107]
1.06 2.76 2.80 2.84

CASSCF 0.49 0.58 0.75 0.95 1.13
+ NEWPT2 [107] 1.36 2.67 2.72 2.75
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“averaged 1 × 1” method calculates the like-spin Ueff as the
average of the U parameters calculated individually for the
two spin channels when decoupled (each forming part of
the bath for the other), and it may be a more reasonable
assumption when an explicit J correction term is not used (as
in the present work, where Ueff = 3.798 eV).

In Fig. 15(a), we see that DFT+U & TDDFT push excita-
tion features at lower energies higher, compared to DFT+U
& TDDFT, by ∼1.6–2.0 eV (∼1.0 eV) in the 2 × 2 (1 × 1)
case. In both cases, an aggregate of excitations forms at
∼2.8 eV, and in neither case does DFT+U & TDDFT provide
a promising agreement with prior experiment or CASSCF-
based results. Meanwhile, the alternate combination, DFT
& TDDFT+U , which performed rather well in the case of
Ni(CO)4, was found to be not at all viable here, for either
Ueff value, as it gives rise to unphysical, negative-valued
excitation energies (a single instability). The interaction of
DFT+U & TDDFT+U in this system is nontrivial, and the
net result cannot be well described as a linear combination
(a cancellation) of the two method’s effects, in general. The
linear combination picture holds to a greater degree for the
higher-valued, more canonical (2 × 2) prescription for Ueff,
counterintuitively. With this, we find that uncorrected DFT
& TDDFT does a better job of reproducing the experimental
absorption curve in Fig. 15(b), and that the absent low-lying,
tightly bound exciton features predicted by CASSCF are no
better recovered. Here, referring to Fig. 15(b), we emphasize
that all curves are independently normalized so that their
maximum peak reaches a value of unity, and that it is not
necessarily the case that DFT & TDDFT recovers the experi-
mental maximum absorption cross section by any means.

Conversely, with the lower-valued (1 × 1) prescription for
Ueff, we find that the linear combination picture breaks down
completely. With this Ueff, it appears that the effect of DFT+U
is insufficient to eradicate the strong 3d → 3d character of the
low-lying excitations. Then, when TDDFT+U is applied on
top of this, a very strong exciton rebinding effect (of ∼2.0 eV)
occurs, yielding a net exciton binding effect of ∼1.0 eV with
respect to DFT & TDDFT. Ultimately, DFT+U & TDDFT+U
within the 1 × 1 prescription for Ueff does yield a group
of tightly bound ligand-field excitations that can be said to
be in qualitative agreement with the CASSCF predictions
of Ref. [107]. The accuracy improvements for lower-energy
excitations offered by DFT+U & TDDFT+U are seen in
Table III. Specifically, both DFT & TDDFT and DFT+U
& TDDFT fail to capture the lowest threefold-degenerate
excitation (highlighted with light pink) between ∼0.50 and
0.75 eV predicted at the level of CASSCF+NEWPT2. More-
over, DFT+U & TDDFT also overestimates the second group
of threefold-degenerate excitations (highlighted with light
blue) at around ∼0.90–1.40 eV, either when compared against
the experimental value of 1.12 eV or the CASSCF+NEWPT2
prediction of ∼0.95–1.13 eV. DFT+U & TDDFT+U de-
termines the lowest optically bright excitation energy with
a relatively high accuracy at 0.56 eV, comparing to both
CASSCF and CASSCF+NEWPT2. Furthermore, it performs
well by locating the second group of threefold-degenerate
excitations (highlighted with light blue) at 0.90 and 1.02 eV.
However, DFT+U & TDDFT performs better, without a
doubt, for the third group of threefold-degenerate excitations

FIG. 15. The singlet EES and ABS of CoL2Cl2 calculated us-
ing first-principles like-spin Hubbard Ueff values calculated as de-
scribed in Appendix B, shown with a Lorentzian broadening of
0.1 eV. The experimental absorption spectrum (gray, dashed line)
was extracted from Ref. [107] and scaled by setting the global peak
to unity. The optically bright excitation energies calculated using
CASSCF+NEWPT2 in Ref. [107] are shown in the form of vertical
lines with colors matching their values presented in Table. III.
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(highlighted with light purple) at 2.45 eV, when comparing
to the experimental value. Overall, we can conclude that
first-principles (1 × 1 prescription) DFT+U & TDDFT+U
performs better for low-lying excitations than DFT & TDDFT,
but this comes at the expense of completely removing the
prominent absorption peak at ∼2.0 eV where experiment
and DFT & TDDFT agree. None of the available methods
(including CASSCF), therefore, offer reliable correction of
the spectra for both 3d → 3d and higher-energy excitations,
and this is as expected given the spatially localized nature
of Hubbard U corrections when applied to metal 3d orbitals
only.

VI. CONCLUSION

In this work, we carried out a systematic investigation of
the extension of Hubbard U corrected approximate Kohn-
Sham DFT to the excited-state regime, namely TDDFT+U .
For this, a linear-scaling, linear-response implementation of
TDDFT+U was developed within the ONETEP code by com-
bining existing linear-scaling DFT+U [44,45], conduction-
band optimization [89], and beyond Tamm-Dancoff TDDFT
[69–71] methods. Our implementation has allowed us to
decouple and analyze the separate and combined effects of
Hubbard U correction at the DFT (potential) and TDDFT
(kernel) levels, offering insights into the performance and
potential range of useful applicability of TDDFT+U . A four-
level toy model has proved invaluable to our interpretation
of TDDFT+U and the numerical results that support this
picture, particularly in two representative low-spin (spin-
unpolarized but nonisoelectronic) Ni-centered complexes. In
these systems, we first treated the Hubbard U as a free
parameter in order to understand in detail the exciton binding
effect of TDDFT+U , as well as the tendency for the effects
of DFT+U and TDDFT+U to approximately cancel. We
also analyzed in detail the differing effects of Hubbard U
on TDDFT depending on whether the Tamm-Dancoff ap-
proximation is invoked. Including also a challenging Co-
centered open-shell, high spin coordination complex, we
calculated first-principles Hubbard U and Hund’s J param-
eters for all three systems, following the spin-polarized,
minimum-tracking [108] linear-response approach introduced
in Ref. [43]. This has enabled us to generate fully first-
principles excitation and absorption spectra for each of these
elusive systems and to compare with prior experimental and
quantum chemical findings.

Physically, our analysis shows that TDDFT+U can be
thought of as a self-interaction correction for excitons, acting
to enhance the exciton binding. Indeed, quite apart from
TDDFT+U being mandated in principle when TDDFT is
applied upon a DFT+U Kohn-Sham eigensystem, we find that
TDDFT+U can be very effective in rebinding well-defined
strongly localized, optically dark ligand-field excitations. The
Hubbard U dependence of this rebinding is illustrated nicely,
we think, in Fig. 5(c). Our study has identified examples of
such ligand-field excitations that are predicted at low energies
by quantum-chemistry methods but pushed to unrealistically
high energies by first-principles DFT+U . TDDFT+U can ad-
dress this effectively, to some extent, but only if the localized

character of those excitations has not already been eradicated
by DFT+U , however, as illustrated in Fig. 15(a). In general,
while DFT+U shifts excitation energies of transitions into,
out of, and within the targeted localized subspace by modify-
ing the underlying Kohn-Sham energy levels in proportion to
the effective Hubbard U parameter, approximately speaking,
TDDFT+U only directly affects transitions within that sub-
space. This gives rise to an incomplete cancellation of the ef-
fects of DFT+U and TDDFT+U , and as a result we conclude
that while the combination of DFT+U and TDDFT+U may
often give rise to something of a linear combination of the
two method’s effect, the interaction between them may also
be nontrivial, with multiple U -dependence regimes potentially
emerging.

Existing approaches for calculating the adiabatic limit of
the Hubbard U and Hund’s J within DFT (or more precisely
generalized Kohn-Sham DFT, in practice), such as the linear-
response method, already calculate the necessary parameters
for TDDFT+U by construction. Indeed, our results suggest
that these parameters may be more suited to TDDFT+U than
to DFT+U , in the sense that U (and J) exists at the same
energy-derivative order as the kernel correction f σσ ′

U , whereas
the DFT+U correction to the potential retains a somewhat ar-
bitrary constant (in the sense that a choice of double-counting
correction must be made). Furthermore, our results add to
the growing body of literature that suggests that DFT+U
should be used with caution on closed-shell, or more generally
low-spin systems, as discussed in Ref. [43] and references
therein. Our findings on the closed-shell complex Ni(CO)4,
for example, where DFT & TDDFT+U performs rather well
when judged against the INDO/S quantum-chemistry method
(see the third panel of Fig. 13), suggest a basic failure of the
DFT+U corrective potential in combination with the first-
principles Ueff = U − J .

An interesting avenue for future investigation in problem-
atic systems such as those studies is the use of a second
Hubbard U parameter to enforce Koopmans’ condition to
the targeted subspace [100], as discussed in Sec. IV C. This
idea effectively fixes the arbitrary constant in DFT+U , or
locates the double-counting correction from first principles,
but its effect in nontrivial systems is yet to be investigated.
Overall, notwithstanding, a picture emerges in the present
work whereby the application of Hubbard U correction to
a single localized subspace alone (with first-principles pa-
rameters [43]) may be advantageous and expedient for the
qualitative description of optically dark 3d → 3d excitations
that are difficult to otherwise recover. This description can
come, however, at the expense of considerably worsening
the description of less localized excitations that are well
described by standard, semilocal approximations to TDDFT.
Further research is warranted, therefore, on generalizations to
the contemporary DFT+U functional such as to incorporate
further chemical information. More basically, perhaps, but no
less interestingly, more research is needed on the effects of
DFT+U , DFT+U+J [33], and DFT+U+V [109] (and their
potential respective TDDFT+U extensions) to more delocal-
ized subspaces centered on ligand atoms (see, for example,
the oxygen 2p treatment in Ref. [43]) or even bond-centered
ones.
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APPENDIX A: COMPUTATIONAL DETAILS

First-principles simulations were performed using our
implementation of the TDDFT+U method in the ONETEP

linear-scaling package [45,86,87]. All calculations used the
Perdew-Burke-Ernzerhof (PBE) [7] generalized gradient ap-
proximation as the underlying exchange-correlation func-
tional. Norm-conserving scalar-relativistic PBE pseudopo-
tentials were generated in-house for neutral Ni, Cl, O, C,
N, H, and Co2+ using the OPIUM code [110]. Ground-state
simulations are referred to here as single-point (SP), and the
subsequent procedure of variationally optimizing the second
set of NGWFs to represent the unoccupied manifold [89] is
referred to as conduction (COND). Initial ionic geometries
were adopted from a prior first-principles study [111] in the
case of Ni(CN)2−

4 , and from experimental data [112] in the
case of Ni(CO)4. These molecular geometries were optimized
iteratively until they fulfilled three convergence criteria: on
the maximum atomic displacements (0.005a0), total energy
per atom (10−6 Ha), and total atomic force (0.002 Ha/a0),
by means of the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm [113,114]. In the case of CoL2Cl2, the molecular
geometry was directly adopted from Ref. [115] for the sake
of preserving with comparability the spectra of Ref. [107],
where the authors used the same geometry. The molecules
were then positioned into smaller cuboidal simulation boxes
centered on their respective metallic atoms, with the available
minimum dimensions needed to satisfy the requirements of
the Martyna-Tuckeman periodic boundary correction (PBC),
which was applied with its dimensionless parameter set to 7
as recommended in Ref. [116].

A series of convergence tests were performed to safeguard
the quality of excited-state simulations, while maintaining a
reasonable computational cost at the SP, COND, and TDDFT
levels (recalling that the effective U is treated as a param-
eter, which significantly multiplies the total computational
demand of the study). The resulting common set of parameters
used in this study is summarized in Table IV. The effective
plane-wave kinetic energy cutoff (Ecut) and the cutoff radius
(RNGWFs) of the variationally optimized nonorthogonal gen-
eralized Wannier functions NGWFs, a minimal basis gener-
ated by ONETEP, were converged at values of 1200 eV and
12a0, respectively, yielding an energy error per atom within
1 meV in SP calculations. The value of RNGWF was separately
tested in COND calculations and found to be adequate for
describing the virtual orbital eigenenergies. A total of 9(18)
spin-degenerate NGWFs were used for Ni atoms in order
to complete the period up to Kr, and a total of 4 NGWFs

TABLE IV. The converged run-time parameters used for
Ni(CN)2−

4 , Ni(CO)4, and CoL2Cl2. Here, Ecut is the kinetic energy
cutoff, RNGWF is the atom-centered nonorthogonal generalized Wan-
nier function (NGWF) spherical cutoff radius, and NNGWF is the
number of NGWFs per atom to be variationally optimized in situ.

Parameter Stage Value

Ecut All 1200 eV

RNGWF All 12a0

NNi
NGWF SP (COND) 9 (18)

NCo
NGWF SP (COND) 9 (18)

NCl
NGWF SP (COND) 4 (13)

NC
NGWF SP (COND) 4 (8)

NN
NGWF SP (COND) 4 (8)

NO
NGWF SP (COND) 4 (8)

NH
NGWF SP (COND) 1 (2)

for each of C, O, and N were used to complete the period
up to Ar. These were optimized at the SP (COND) level
in our Ni-centered complexes, whereas for the Co-centered
complex 9 (18), 4 (13), 4 (8), and 1 (2) NGWFs, they
were variationally optimized for Co, Cl, C, N, and H atoms
during SP (COND) simulations. As CoL2Cl2 is an open-shell
system, spin-polarized calculations were performed with a
fixed total spin of 3μB, and the initial configuration of Co
for the pseudoatomic solver (which affects both the NGWF
initial guess and the 3d pseudo-orbitals defining the DFT+U
subspace) was set to the theoretical high-spin configuration of
[Ar]4s03d7, with a 3μB total spin. The occupied-unoccupied
Kohn-Sham eigenvector product spaces were constructed by
using full valence manifolds, which are represented by 24 and
25 spin-degenerate NGWFs in Ni(CN)2−

4 and Ni(CO)4, re-
spectively, and 49 and 46 NGWFs for spin-up and spin-down,
respectively, in CoL2Cl2. For the conduction manifolds, 20
(10 per spin channel), 16 (8 per spin channel), and 11 (4 for
up and 7 for down) KS conduction orbitals were optimized in
Ni(CN)2−

4 , Ni(CO)4, and CoL2Cl2, respectively. These param-
eters were selected on the basis of KS eigenvalues, providing
sufficiently many bound states for the targeted spectral range
in TDDFT calculations. The first 50 singlet excitations for
Ni-centered complexes and 20 singlet excitations for CoL2Cl2

were calculated by variational minimization, within the larger
valence-conduction product space spanned by the optimized
NGWF basis. We do not place a strong emphasis on the
higher-energy excitations shown in our plots, being more in-
terested and confident in the lower-energy excitations affected
by the Hubbard U correction. In particular, in many of our
figures the EES and ABS appear gapped at high energy, but
this is nothing more than an artefact of the limited number of
excitations calculated.

APPENDIX B: FIRST-PRINCIPLES CALCULATION
OF HUBBARD U AND J PARAMETERS USING THE

MINIMUM-TRACKING LINEAR-RESPONSE METHOD

The efficiency and robustness of the DFT+U (+J) method
is essentially dependent on the determination of the Hubbard
parameters. A common approach is to use linear response to
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TABLE V. Hubbard and Hund parameters (in eV) calculated
using the scaled 2 × 2 method of Ref. [43].

Interaction Ni(CN)2−
4 Ni(CO)4

f σσ , f σ σ̄ 6.901, 8.456 9.849, 11.388
U , J 7.678, 0.777 10.618, 0.769
Ueff 6.901 9.849

determine them [27,32]. In this work, we employ the recently
introduced minimum-tracking variant of linear response as
implemented in the ONETEP code [108], and in particular its
spin-polarized extension introduced in Ref. [43]. In this, the
“scaled 2 × 2” method can be used to evaluate the Hubbard U ,
Hund’s J , and effective Hubbard U parameter (Ueff = U − J)
for all three systems using the formulas

U = 1

2

λU ( f ↑↑ + f ↑↓) + f ↓↑ + f ↓↓

λU + 1
, (B1)

J = −1

2

λJ ( f ↑↑ − f ↓↑) + f ↑↓ − f ↓↓

λJ − 1
, (B2)

where

λU = χ↑↑ + χ↑↓

χ↓↑ + χ↓↓ and λJ = χ↑↑ − χ↑↓

χ↓↑ − χ↓↓ . (B3)

The spin-dependent interaction strengths f σσ ′
are calculated

by incrementally varying subspace-uniform perturbing poten-
tials δvσ

ext, relaxing fully to the ground state on each step, and
then measuring the resulting small changes in the subspace
occupancies nσ and subspace-averaged Kohn-Sham potentials
vσ

KS. The projected interacting response matrices are given by
χσσ ′ = dnσ /dvσ ′

ext. When the interaction strengths f σσ ′
are

calculated using a 2 × 2 matrix equation indexed by spin, we
arrive at the “scaled 2 × 2” model, which reproduces con-
ventional formulas for U and J . Indeed, for spin-unpolarized
systems such as the Ni-centered complexes studied in this

TABLE VI. Hubbard and Hund parameters (in eV) calculated
using the scaled 2 × 2 (top panel) and the averaged 1 × 1 methods
(bottom panel) of Ref. [43] for CoL2Cl2.

Interaction CoL2Cl2

f ↑↑, f ↓↓ 13.711, 15.268
f ↓↑, f ↑↓ 7.650, 6.029
λU , λJ −0.039, −0.195
U , J 6.529, 0.805
Ueff 5.724

U ↑, U ↓ 3.503, 4.093
Ueff 3.798

work, λU = 1 and λJ = −1, and as a result we have U =
( f σ σ̄ + f σσ )/2, J = ( f σ σ̄ − f σσ )/2, and, simply but reassur-
ingly, Ueff = f σσ .

When spin-off-diagonal elements are neglected, instead,
we have the “averaged 1 × 1” model, in which Ueff = (U ↑ +
U ↓)/2, where U σ = d (vσ

KS − vσ
ext )/dnσ . This model effec-

tively decouples the spin populations into distinct sites, re-
flecting the form of the canonical DFT+U functional. Each
spin channel, for a given localized subspace, then forms part
of the screening bath for the other, and the effects of Hund’s J
are then already incorporated into Ueff at an approximate level.

In practice, a discrete logarithmic grid of perturbation
strengths, {−0.10, −0.01, 0.00, 0.01, 0.10} eV, was used
in this work to calculate the U and J parameters, resulting
in excellent linear fits. For the spin-unpolarized Ni-centered
complexes, it was necessary only to perturb one spin channel,
since half of the spin-indexed matrix elements could be filled
using symmetry. The resulting parameters are summarized in
Table V.

As CoL2Cl2 is a spin-polarized system, the responses of
each spin channel were measured by perturbing the respective
spin channels, separately, one at a time. The resulting first-
principles parameters for the Co 3d subspace are summarized
in Table VI.
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