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Lattice density-functional theory for quantum chemistry
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We propose a lattice density-functional theory for ab initio quantum chemistry or physics as a route to
an efficient approach that approximates the full configuration interaction energy and orbital occupations for
molecules with strongly correlated electrons. We build on lattice density-functional theory for the Hubbard model
by deriving Kohn-Sham equations for a reduced then full quantum chemistry Hamiltonian and demonstrate the
method on the potential energy curves for the challenging problem of modeling elongating bonds in a linear
chain of six hydrogen atoms. Here the accuracy of the Bethe-ansatz local-density approximation is tested for this
quantum chemistry system, and we find that, despite this approximate functional being designed for the Hubbard
model, the shapes of the potential curves generally agree with the full configuration interaction results. Although
there is a discrepancy for very stretched bonds, it is lower than when using standard density-functional theory
with the local-density approximation.
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I. INTRODUCTION

Efficient computational methods based on small correc-
tions to a single determinant of one-electron orbitals in
ab initio quantum chemistry and physics can give qualitatively
incorrect results if applied to electronically excited states,
molecules containing transition metals, or bond breaking,
for example, when elegant approximations in coupled-cluster
theory are used to model the dissociation of the nitrogen
dimer [1]. Such problems may require multiple determinants
as the starting point of a now computationally intensive cal-
culation and are often termed multireference or even strongly
correlated. Full configuration interaction (FCI) gives the most
accurate result for a given basis set of one-electron orbitals.
However, as the number of determinants scales factorially
with the size of the basis set, it is computationally prohibitive
for all but the smallest systems. If there are K basis functions
and N↑ + N↓ electrons, then the FCI wave function will
consist of

( K
N↑

)( K
N↓

)
determinants when there are no symmetries

to exploit. This means that for only 20 basis functions and
20 electrons with equal numbers of both spins, then there
are already ∼1010 configurations, and finding their coeffi-
cients in the FCI wave function by diagonalization of the
Hamiltonian matrix will be computationally intractable. By
using the electron density rather than the many-electron wave
function, density-functional theory (DFT) can, in principle,
efficiently describe even strongly correlated systems. How-
ever, in practice standard approximate functionals can per-
form poorly when confronted with multireference problems,
e.g., the dissociation of the hydrogen molecule [2] or spin gaps
in transition-metal complexes [3].

Yet lattice DFT (LDFT) [4–6] with, e.g., the Bethe-ansatz
local-density approximation (BA-LDA) [7] allows strongly
correlated lattice systems, such as Hubbard models, to be
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successfully and efficiently modeled [8] where the lattice
density or site occupation takes the role of the density in
standard DFT. Applications to Hubbard models have included
modeling the system with periodic modulations in the ex-
ternal potential and on-site repulsion [9], using a harmonic
potential to investigate the Luther-Emery phase [10], model-
ing ultracold repulsive fermions in one-dimensional optical
lattices [11] and then simulating experimental data of cold
atoms in optical lattices [12], and calculating the site en-
tanglement when external potentials are used [13]. Accurate
results for the local density and magnetization in spatially
inhomogeneous spin-polarized systems have been obtained
using an analytic parametrization for a Bethe-ansatz local-
spin-density approximation [14]. An adiabatic BA-LDA for
time-dependent LDFT has been created [15] and used to
model the Coulomb blockade in quantum dots [16]. The μ-
BA-LDA has been created, which uses the local chemical po-
tentials to enable convergence in LDFT when site densities are
close to 1 [17]. LDFT for the Hubbard model has been built
upon with a one-electron reduced density matrix functional
for the interaction energy [18], and the iBA-LDA was devel-
oped [19] for site-occupation embedding theory. The accuracy
of approximations in LDFT has also been appraised using
metric space approaches [20]. Similar to the Hohenberg-Kohn
theorems [21] providing the foundation of standard DFT,
LDFT depends on the result that the site density uniquely
determines the wave function [22–24], and it was recently
proven that for lattice systems, with certain caveats, the wave
function uniquely determines the external potential [25].

The quantum chemistry Hamiltonian in a basis set of
single-particle orbitals may be mapped to a lattice system
where sites represent orbitals when using the notation of
second quantization, which the Hubbard model approximates.
This has enabled the impressive use of the powerful approach
of the density matrix renormalization group (DMRG) [26]
for multireference problems in quantum chemistry [27]. A
DMRG calculation is systematically improvable by increasing
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the number of states (M), is variational, and can be successful
for molecules that are beyond other wave function meth-
ods [28]. However, the accuracy can depend on the orbital
ordering when mapped to a lattice system, and for K basis
orbitals the scaling [27] of the calculation as O(M3K3) +
O(M2K4) means it can become computationally intractable as
the system size increases if a large M is necessary for accurate
results.

We also consider the quantum chemistry Hamiltonian
mapped to a lattice system when using a basis set and use
this to create a quantum chemistry lattice DFT (QC-LDFT)
to approximate the FCI site density (orbital occupation) and
energy as an essential step towards an efficient approach to
model multireference problems in quantum chemistry. Al-
though the accuracy will depend on the choice of approximate
functional, only site densities from self-consistently solving
a noninteracting system are required, rather than a many-
electron wave function for the interacting system. This means
that for K basis orbitals one has to diagonalize only K × K
symmetric matrices, thereby incurring a computational cost
that scales as O(K3) [29].

In this paper we first briefly discuss LDFT and the BA-
LDA for the Hubbard model. Next, we derive the equations for
QC-LDFT for which we consider a reduced Hamiltonian with
interaction terms limited to those involving intersite densities
before considering the full quantum chemistry Hamiltonian.
The numerical procedures we employ to implement QC-
LDFT are then presented. We then go beyond the Hubbard
model and demonstrate QC-LDFT on the potential energy
curve for a linear chain of six hydrogens when using 12
basis functions, where we test the accuracy of the BA-LDA
functional [7]. We first use the reduced Hamiltonian before
considering the full quantum chemistry Hamiltonian for this
initial application of QC-LDFT. Despite using an approximate
functional designed for the Hubbard model (the BA-LDA) [7],
we capture the shapes of the FCI potential curves and, for
the full Hamiltonian, improve upon standard DFT results at
stretched bond lengths.

II. METHODS

A. Lattice density-functional theory

LDFT allows the efficient modeling of the Hubbard model
when inhomogeneity is introduced through an external poten-
tial vext,i. The Hamiltonian of this interacting system is

ĤHM = − t
∑
i,σ

(â†
i,σ âi+1,σ + â†

i+1,σ âi,σ )

+U
∑

i

n̂i,↑n̂i,↓ +
∑

i

vext,in̂i, (1)

where â†
i,σ creates a particle of spin σ at site i, while âi,σ

annihilates it, and the number operator or site density operator
is n̂i,σ = â†

i,σ âi,σ .
In the Kohn-Sham (KS) [30] approach to LDFT (see, e.g.,

Ref. [8]), the exact energy is written as a functional of the site
density or occupation,

E [n] = TNI [n] + EH [n] +
∑

i

vext,ini + Exc[n], (2)

where TNI is labeled the kinetic energy term for noninteracting
electrons, EH is the Hartree term, and Exc is the exchange-
correlation energy functional. As the exact form for this
latter quantity is unknown, approximations have to be used
in practice, and therefore the energy is approximate. The site
density or occupation ni is then found by self-consistently
solving the noninteracting KS Hamiltonian

ĤKS = T̂ +
∑

i

veff,i[n]n̂i, (3)

where T̂ = −t
∑

i,σ (â†
i,σ âi+1,σ + â†

i+1,σ âi,σ ) is labeled the ki-
netic energy operator for the Hubbard model and

veff,i[n] = ∂EH

∂ni
+ vext,i + ∂Exc

∂ni

= vH,i[n] + vext,i + vxc,i[n]. (4)

For N electrons when the spins are balanced, the first
N/2 eigenfunctions f j form the single Slater determinant,
which gives the site density as n = 2

∑N/2
j | f j |2, and TNI =

2
∑N/2

j 〈 f j |T̂ | f j〉, allowing E [n] to be computed. We empha-
size that although the occupation of f j cannot be fractional, as
these are the Kohn-Sham orbitals, the density or occupation
at a site is a continuous variable that would be identical to
that of the interacting system if the exact exchange-correlation
potential vxc were known.

B. Bethe-Ansatz local-density approximation

A LDA using the Bethe ansatz was first introduced for
LDFT in Ref. [22]; later, the BA-LDA [7] became a popular
and successful approximation to Exc in LDFT. The BA-LDA
interpolates three limiting cases (U → ∞ with n � 1, U =
0 with n � 1, and n = 1) of the exact Bethe-ansatz energy
results for the homogeneous Hubbard model, i.e., Eq. (1)
when vext = 0. The interpolation uses [7]

e(n, t,U ) = −2tβ(U/t )

π
sin

(
πn

β(U/t )

)
(5)

as the functional form for the energy per site when n � 1.
Here β(U/t ) is found by using a Newton-Raphson procedure,
so that the three limits are satisfied. The exchange-correlation
functional for the BA-LDA [7] is

EBA−LDA
xc =

∑
i

exc(ni, t,U ), (6)

where, analogously to standard DFT, a local functional is cre-
ated by subtracting the per site noninteracting kinetic energy
and Hartree energy for the homogeneous Hubbard model,

exc(ni, t,U ) = e(ni, t,U ) − e(ni, t, 0) − eH (ni,U )

= − 2tβ(U/t )

π
sin

(
πn

β(U/t )

)

+ 4t

π
sin

(πni

2

)
− Un2

i

4
. (7)

Other choices for eH (ni,U ) are possible, but this one is often
employed by considering that for balanced spins 〈n̂i,σ 〉 =
ni/2 [8]. For ni > 1 the particle-hole transformation for
the Hubbard model gives e(ni > 1, t,U ) = e(2 − ni, t,U ) +

165118-2



LATTICE DENSITY-FUNCTIONAL THEORY FOR QUANTUM … PHYSICAL REVIEW B 99, 165118 (2019)

U (ni − 1), which for all ni values can be succinctly accounted
for by using exc(1 − |ni − 1|, t,U ) [31]. This means that
vBA−LDA

xc (ni > 1, t,U ) = −vBA−LDA
xc (2 − ni, t,U ), and there

is a discontinuity at ni = 1 which, as noted in Ref. [31], can
cause convergence issues when self-consistently solving the
KS equation in this case.

C. Quantum chemistry lattice density-functional theory

For an orthonormal basis set of single-particle orbitals, the
quantum chemistry Hamiltonian can be written as a lattice
Hamiltonian using the notation of second quantization [32]
as

Ĥ =
∑
pqσ

hpqâ†
pσ âqσ + 1

2

∑
pqrsσσ ′

〈pr|qs〉â†
pσ â†

rσ ′ âsσ ′ âqσ , (8)

and it is this mapping that allows the powerful approach of
DMRG to be used for quantum chemistry. As orbitals are
mapped to sites, if we can calculate the exact site occupation
then we will find the orbital occupation for the FCI wave
function. Here σ and σ ′ label the spins, hpq are the one-
electron integrals for spatial orbitals φp and φq, while the
two-electron integrals are

〈pr|qs〉 =
∫∫

φ∗
p(�r1)φ∗

r (�r2)φq(�r1)φs(�r2)

|�r1 −�r2| d�r1d�r2, (9)

and atomic units are used. For K basis functions, the number
of two-electron integrals will scale as O(K4), but the evalu-
ation of them for Gaussian basis sets is fast, so this would
become a bottleneck only for very large basis sets. In this case,
by localizing orbitals, approximations could be employed to
consider only near orbitals and reduce the severity of this
scaling.

To create QC-LDFT we make Eq. (8) amenable to the con-
struction of a LDFT KS equation by using the fermionic an-
ticommutation relations {âiσ , â jσ ′ } = 0, {â†

iσ , â†
jσ ′ } = 0, and

{â†
iσ , â jσ ′ } = δi jδσσ ′ to give terms involving the site density

(orbital occupation) operator n̂i = â†
i âi.

1. Reduced Hamiltonian

We first consider the two-electron terms 〈pp|pp〉 and
σ �= σ ′ which would correspond to on-site repulsion
in the Hubbard model if all 〈pp|pp〉 were set to
U . Using the anticommutation relations, we have
â†

pσ â†
pσ ′ âpσ ′ âpσ = −â†

pσ â†
pσ ′ âpσ âpσ ′ = â†

pσ âpσ â†
pσ ′ âpσ ′ = n̂pσ

n̂pσ ′ . This means that the terms in the Hamiltonian can
be written as 1

2

∑
pσσ ′ 〈pp|pp〉n̂pσ n̂pσ ′ , which becomes

1
2

∑
p 〈pp|pp〉(n̂p↑n̂p↓ + n̂p↓n̂p↑) when summing over spins.

We then employ the approach from LDFT [8] of using
〈n̂i,σ 〉 = ni/2 when the spins are balanced to give

EH = 1

4

∑
p

〈pp|pp〉n2
p. (10)

The contribution to veff,i in the KS equation is then

vH,i = ∂EH

∂ni
= 1

2
〈ii|ii〉ni. (11)

For clarity we note that ni, the site density or occupation,
is the orbital occupation for the basis of orbitals that were

mapped to the sites in the lattice Hamiltonian [Eq. (8)]. It
is not the occupation of the eigenfunctions of the KS LDFT
Hamiltonian in its single-determinant wave function as, by
construction, their occupation cannot be fractional.

We next have the 〈pr|pr〉 terms where r �= p
and the anticommutation relations now lead to
1
2

∑
p,r,(p�=r)σσ ′ 〈pr|pr〉n̂pσ n̂rσ ′ . Using 〈n̂i,σ 〉 = ni/2 and

the fact that there are four spin combinations gives another
energy contribution in terms of the density that we denote as
the second Hartree term (H2),

EH2 = 1

2

∑
p,r,(p�=r)

〈pr|pr〉npnr, (12)

resulting in another contribution to veff,i of

vH2,i = ∂EH2

∂ni
=

∑
r,(r �=i)

〈ir|ir〉nr, (13)

where we have used that 〈ir|ir〉 = 〈ri|ri〉.
At this point we can write a KS LDFT equation for a

reduced quantum chemistry Hamiltonian where two-electron
integrals beyond 〈pp|pp〉 and 〈pr|pr〉 are neglected,

Ĥred,KS =
∑

p,q,(p�=q)

hpqâ†
pâq

+
∑

i

(vext,i + vH,i + vH2,i + vxc,i )n̂i. (14)

Here the first term is T̂ , while vext,i = hii, vH,i = 1
2 〈ii|ii〉ni,

and vH2,i = ∑
r,(r �=i) 〈ir|ir〉nr .

2. Full Hamiltonian

We now consider terms of the form 〈pr|ps〉 where r �=
s and the anticommutation relations give â†

pσ â†
rσ ′ âsσ ′ âpσ =

−â†
rσ ′ â†

pσ âsσ ′ âpσ = â†
rσ ′ âsσ ′ â†

pσ âpσ − â†
rσ ′δspδσσ ′ âpσ . So for

the contribution to the quantum chemistry Hamiltonian we
have

1

2

∑
p,r,s,(r �=s),σσ ′

〈pr|ps〉â†
pσ â†

rσ ′ âsσ ′ âpσ

= 1

2

∑
p,r,s,(r �=s),σσ ′

〈pr|ps〉â†
rσ ′ âsσ ′ n̂pσ

− 1

2

∑
r,s,(r �=s),σ

〈sr|ss〉â†
rσ âsσ . (15)

This does not have an expression in terms of only the site
density, but when the spins are balanced, we again use
〈n̂i,σ 〉 = ni/2 to give the contribution to the KS equation.
We take into account the sum over spins for the site density
to give 1

2

∑
p,r,s,(r �=s) 〈pr|ps〉â†

r âsnp − 1
2

∑
r,s,(r �=s) 〈sr|ss〉â†

r âs,
which due to the occurrence of â†

pâq terms becomes an addi-
tion to T̂ in the KS equation.

A similar procedure for the contribution of 〈pr|qr〉 where
p �= q results in the terms 1

2

∑
p,q,r,(p�=q) 〈pr|qr〉â†

pâqnr −
1
2

∑
p,q,(p�=q) 〈pq|qq〉â†

pâq being included in the KS Hamilto-
nian as an addition to T̂ .
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Finally, the only remaining integrals to consider are 〈pr|qs〉
where p �= q and r �= s. After rearranging the creation and an-
nihilation operators we have â†

pσ âqσ â†
rσ ′ âsσ ′ − â†

pσ δrqδσσ ′ âsσ ′ .
The first term cannot be rewritten using the site density and
is a pure two-electron term, so it does not occur in the KS
equation. This leaves − 1

2

∑
p,q,s,(p�=q,q �=s) 〈pq|qs〉â†

pâs as the
addition to T̂ when p �= s and to veff when p = s.

Combining these results with the reduced KS Hamiltonian
[Eq. (14)] gives the full KS Hamiltonian for QC-LDFT,

Ĥfull,KS = T̂ +
∑

i

veff,in̂i, (16)

where

T̂ =
∑

p,q,(p�=q)

hpqâ†
pâq + 1

2

∑
p,r,s,(r �=s)

〈pr|ps〉â†
r âsnp

− 1

2

∑
r,s,(r �=s)

〈rr|rs〉â†
r âs + 1

2

∑
p,q,r,(p�=q)

〈pr|qr〉â†
pâqnr

− 1

2

∑
p,q,(p�=q)

〈pq|qq〉â†
pâq

− 1

2

∑
p,q,s,(p�=q,q �=s,p�=s)

〈pq|qs〉â†
pâs (17)

and

veff,i = vext,i + vH,i + vH2,i + vH3,i + vxc,i. (18)

Here the contributions to veff,i are the same as for the reduced
Hamiltonian [Eq. (14)] except there is now a third Hartree
potential,

vH3,i = −1

2

∑
q,(q �=i)

〈iq|qi〉. (19)

D. Numerical procedure

For the BA-LDA in QC-LDFT we use exc(ni, ti,Ui ) in the
approximation for Exc [Eq. (6)] as approximate U and t values
are now site dependent. Through comparison of the quantum
chemistry Hamiltonian [Eq. (8)] with that of the Hubbard
model [Eq. (1)] we see that Ui = 〈ii|ii〉 and take the average
of the one-electron “hopping” integrals to calculate ti values,

ti = − 1
2 (hi,i+1 + hi−1,i ). (20)

We have periodic boundary conditions as all orbitals
can, in principle, interact, so that for K orbitals tK =
− 1

2 (hK,1 + hK−1,K ) and t1 = − 1
2 (h1,2 + hK,1). We generate

the one-electron and two-electron quantum chemistry inte-
grals using the program MOLPRO [33].

As the BA-LDA is exact for three limiting cases of the
homogeneous Hubbard model, it would be expected to work
best when site densities or occupations are not too different
from one another. In this case if substantially more orbitals
are used than electrons, then the chance that some ni are
close to 1 is also reduced. Furthermore, we would like the
ti values to be non-negligible and similar because if some
are close to zero, then the calculation of β(Ui/ti ) in the BA-
LDA expression for the energy per site [Eq. (5)] will become
unreliable. To make it more likely that the ti values are similar

and that the site densities or occupations are not too far from
homogeneity, we do not use Hartree-Fock molecular orbitals
but begin with K atomic orbitals and then orthogonalize them
in a balanced way by using symmetric orthogonalization [34].
This transforms the nonorthogonal orbitals

∫
φ∗

r φs = �rs to∫
φ̃∗

u φ̃v = δuv using φ̃u = ∑
i �

− 1
2

iu φi.
With the aim of making the self-consistent calculations

more robust and accelerating convergence we use a Newton-
Raphson approach to solve

�G(�n) = �O(�n) − �n = 0. (21)

Here �O(�n) is the site density from the KS eigenfunctions when
the site density �n is used in the KS equation. This gives the site
density for iteration i + 1 as

�n(i + 1) = �n(i) − J−1 �G(�n(i)), (22)

where J is the Jacobian matrix for �G. We calculate J numer-
ically with a step size of 0.01 as solving the KS equation
for given site densities is very fast. To also improve stability
we implement density mixing where �n(i + 1)mix = 0.2�n(i +
1) + 0.8�n(i). From the fourth iteration we check the average
difference between the input and output site densities for the
KS equation, which we denote as the error:

Error = 1

K

K∑
i=1

|Oi(�n) − ni|. (23)

We use a threshold of 10−7 for this to ascertain if conver-
gence has been reached when solving the KS equation self-
consistently.

III. RESULTS

We demonstrate QC-LDFT with the BA-LDA by calculat-
ing potential energy curves as the bond length is varied for
a linear chain of six hydrogen atoms. The 3-21G basis set is
employed, resulting in 12 single-particle orbitals. We use a
default ordering for the orbitals in the lattice, so sites 1 and 2
represent the symmetrically orthogonalized atomic orbitals of
the first hydrogen, sites 3 and 4 represent those of the second
hydrogen, and so on.

First, we investigate the reduced Hamiltonian when two-
electron integrals beyond 〈pp|pp〉 and 〈pr|pr〉 are neglected
and its corresponding LDFT KS equation [Eq. (14)]. We
see in Fig. 1 that a binding curve is recovered by the FCI
results despite using a reduced Hamiltonian. This fits in with
results [35] that a Hubbard model with intersite repulsion
could have parameters derived to reasonably describe poten-
tial curves of the hydrogen molecule. The FCI and QC-LDFT
potential curves are shifted in Fig. 1, so both have zero as their
minimum, and we see that QC-LDFT reproduces the shape of
the curve and is in good agreement with FCI except around
bond lengths of 3 Å or longer where the QC-LDFT results are
a little high.

We found that 48 400 determinants were needed for the
FCI calculation, and due to the use of symmetric orthonor-
malization of the atomic orbitals even at the equilibrium bond
length of 0.8 Å many determinants are important. We quantify
this using an indicator [36,37] of the FCI wave function’s
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FIG. 1. Reduced Hamiltonian energy results from FCI and QC-
LDFT with the BA-LDA for a linear chain of six hydrogens as
the bond lengths are varied, using the 3-21G basis and shifting the
potential curves so that both have their minimum at zero.

multireference character

MR =
∑

i

|ci|2 − |ci|4, (24)

where ci is the coefficient of determinant i and the wave
function is normalized so that

∑
i |ci|2 = 1. MR is zero for

a wave function consisting of a single determinant, while
the value approaches 1 as the number of important determi-
nants increases. Even at the equilibrium bond length we find
MR = 0.9999, which demonstrates the very strong multiref-
erence character when using atomic orbitals with symmetric
orthonormalization.

The full quantum chemistry Hamiltonian is now consid-
ered using FCI and QC-LDFT with the BA-LDA. For compar-
ison, results from standard DFT with the LDA are calculated
using MOLPRO [33]. We see in Fig. 2 that the general shape of

FIG. 2. Full Hamiltonian energy results from FCI, QC-LDFT
with the BA-LDA, and standard DFT with the LDA for a linear chain
of six hydrogens as the bond lengths are varied, using the 3-21G basis
and shifting the potential curves so that all have their minimum at
zero.

FIG. 3. Full Hamiltonian orbital occupancy results for FCI and
QC-LDFT with the BA-LDA for a linear chain of six hydrogens at a
bond length of 3.4 Å using the 3-21G basis.

the FCI binding curve is again captured by QC-LDFT, but the
discrepancy at large bond lengths is more apparent.

We speculate that this is due to the BA-LDA being based
on the Hubbard model, which means it does not include the
one-electron integrals beyond nearest neighbors or the extra
Hartree terms that occur in the quantum chemistry KS Hamil-
tonian [Eq. (18)]. This fits in with the difference with the exact
result being less pronounced for the reduced Hamiltonian in
Fig. 1 as there is only one additional Hartree term for the
KS equation in this case [Eq. (14)]. The minimum energy is
at 0.9 Å for both FCI and DFT, while QC-LDFT is close to
this at 1.0 Å. The DFT results are closer to FCI at shorter
bond lengths, but QC-LDFT performs better as the bonds are
elongated.

We quantify the overall error in the potential curves com-
pared with FCI using σ�E from Refs. [20,38], where

σ�E =
√√√√ 1

d

d∑
j=1

(�Ej − μ�E )2 (25)

is the standard deviation of the difference in energies �Ej =
EFCI

j − E approx
j for all d points in the potential energy curve

and μ�E is the mean value of �E . This takes into account
all of the points and that the curves can be shifted by a
constant. This gives 0.086 and 0.100 hartree for QC-LDFT
and DFT, respectively, showing that for these points QC-
LDFT is slightly more accurate by this measure. Again, the
orbitals used mean that the problem is strongly multireference
for FCI and QC-LDFT at all points considered. In addition the
values for Ui/ti are around 1 to 5 at both 1.0 and 3.4 Å. We
see in Fig. 3 that at 3.4 Å, where there is a more noticeable
difference between the FCI and QC-LDFT potential energy
curves, the orbital occupations calculated using QC-LDFT are
slightly different from the FCI results but have a very similar
pattern. This suggests that a functional designed specifically
for QC-LDFT should be able to correct the discrepancy in
energies for this region.
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IV. SUMMARY

We created a lattice density-functional theory for ab initio
quantum chemistry or physics by considering the quantum
chemistry Hamiltonian in the notation of second quantization
where orbitals are mapped to sites on a lattice and deriving
its LDFT Kohn-Sham equation. This represents an efficient
approach to approximate the energy and orbital occupation of
the full configuration interaction wave function as for K basis
functions the cost of solving the LDFT Kohn-Sham equation
then scales as O(K3). We demonstrated QC-LDFT on a linear
chain of six hydrogen atoms with a basis set of 12 orbitals
as the bond length was varied and tested the approximate
BA-LDA [7] functional for this case. Remarkably, despite
using this approximate functional designed for the Hubbard

model, QC-LDFT captured the shape of the FCI potential en-
ergy curves for both reduced and full Hamiltonians. In the lat-
ter case a discrepancy was more noticeable at stretched bond
lengths; however, there was an improvement over standard
DFT here. Future work will consider optimizing the orbital
ordering in the lattice, smoothing [39] of vxc around n = 1,
and going beyond the BA-LDA functional so that QC-LDFT
can be applied successfully to more complex multireference
or strongly correlated molecules.
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