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Metal-insulator transition in the ground state of the three-band Hubbard model at half filling
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The three-band Hubbard model is a fundamental model for understanding properties of the copper-oxygen
planes in cuprate superconductors. We use cutting-edge auxiliary-field quantum Monte Carlo (AFQMC) methods
to investigate ground state properties of the model in the parent compound. Large supercells combined with
twist averaged boundary conditions are employed to reliably reach the thermodynamic limit. Benchmark quality
results are obtained on the magnetic correlations and charge gap. A key parameter of this model is the charge-
transfer energy � between the oxygen p and the copper d orbitals, which appears to vary significantly across
different families of cuprates and whose ab initio determination is subtle. We show that the system undergoes a
quantum phase transition from an antiferromagnetic insulator to a paramagnetic metal as � is lowered to 3 eV.
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I. INTRODUCTION

It is widely believed that the physical mechanism under-
lying high-temperature superconductivity in the cuprate ma-
terials lies in the quasi-two-dimensional physics of the CuO2

planes. A significant amount of the theoretical studies of such
planes (see, e.g., Refs. [1,2] for some recent reviews) have
relied on the celebrated Hubbard Hamiltonian [3,4], which is a
minimal low-energy effective model that assumes the explicit
contribution of the oxygen degrees of freedom can be ne-
glected. Although impressively accurate results [5] have been
obtained on the one-band Hubbard model and very interesting
magnetic and charge orders have emerged [6,7] which are rel-
evant to some important experimental results, it is still unclear
whether the model can support long-range superconducting
correlations in the ground state. While this answer in the
one-band Hubbard model (or perhaps the closely related t-J
model which could contain different physics [8–11]) is clearly
important and of fundamental value, it is timely, based on
current results, to revisit what the effect of additional realism
is and what might be a more accurate minimal model of the
CuO2 plane.

With the advent of modern computing platforms and
progress in the development of numerical methods, it is
now possible to reach beyond the one-band model in fa-
vor of the more realistic, although still minimal, three-
band Hubbard model, also called the Emery model [12],
and obtain computational results of high accuracy and suf-
ficiently close to the thermodynamic limit. In this work,
we perform an extensive study of the ground state of this
model for the parent compounds, employing the cutting-edge
constrained-path auxiliary-field quantum Monte Carlo (CP-
AFQMC) method [13,14], together with recently developed
self-consistency loops [15] to systematically improve the ap-
proximation needed because of the fermion sign problem. The
method maintains polynomial computational complexity, and
we study large supercells under twisted boundary conditions
to determine properties at the thermodynamic limit.

The three-band Hubbard model includes the Cu 3dx2−y2 or-
bital together with the O 2px and 2py orbitals. Most parameter
values of the Hamiltonian can be derived by ab initio methods
for real materials with reasonable reliability. Among these the
charge transfer energy � has been found to vary substantially
across different families of cuprate materials, as illustrated in
Fig. 1. Furthermore, it is known that ab initio computations
to determine its value often have difficulties [16,17]. This
parameter is important because it directly controls the hole
density on the Cu sites, which is seen to be anticorrelated with
the superconducting critical temperature [18–21]. Here we
investigate the ground-state properties of the parent compound
as a function of �, using state-of-the-art quantum Monte
Carlo calculations. The calculations reach an accuracy and
predictive power well beyond previously possible, and bench-
mark quality results are obtained on the magnetic correlations
and charge gaps in the ground state. We find that a quantum
phase transition occurs at � ∼ 3 eV between a paramagnetic
metal and an antiferromagnetic insulator.

II. BACKGROUND AND METHODOLOGY

The Hamiltonian of the three-band Hubbard model is

Ĥ = εd

∑

i,σ

d̂†
i,σ d̂i,σ + εp

∑

j,σ

p̂†
j,σ p̂ j,σ

+
∑

〈i, j〉,σ
t i j
pd (d̂†

i,σ p̂ j,σ +H.c.)+
∑

〈 j,k〉,σ
t jk
pp( p̂†

j,σ p̂k,σ +H.c.)

+ Ud

∑

i

d̂†
i,↑d̂i,↑d̂†

i,↓d̂i,↓ + Up

∑

j

p̂†
j,↑ p̂ j,↑ p̂†

j,↓ p̂ j,↓.

(1)

A pictorial representation of the CuO2 plane is given in Fig. 1.
We will measure lengths in units of the distance between
nearest neighbors Cu sites. In Eq. (1), the label i runs over the
sites rCu of a square lattice Z2 of Cu atoms. The labels j and
k run over the positions of the O atoms, shifted with respect to
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FIG. 1. (Left) Schematic view of the CuO2 plane of the cuprates.
Cu 3dx2−y2 orbitals are represented in blue, and O 2px and 2py

orbitals in green. The curve connectors represent the hopping, and
the labels define the sign rule. (Right) Density of holes around the d
and the p sites (nd + 2np = 1) as a function of �. Results computed
from AFQMC are given by blue circles. The green boxes indicate the
typical values observed (or extrapolated from) in families of cuprate
materials [19,20]: nd � 0.83 for La-based, �0.7 for Y-based, and
�0.5 for Bi- and Hg-based cuprates.

the Cu sites, rO = rCu + 0.5 l, where the unit vector l is x̂ for
the 2px and ŷ for the 2py orbitals. The model is formulated in
terms of holes: e.g., d̂†

i,σ creates a hole on the 3dx2−y2 orbital at
site i with spin σ= ↑ or ↓. The first two terms define a charge
transfer energy � ≡ εp − εd , representing the energy needed
for a hole to move from a 3dx2−y2 to a p orbital. The second
two terms describe hopping between orbitals; the hopping
amplitudes |t i j

pd | = tpd and |t jk
pp| = tpp, with sign convention as

illustrated in Fig. 1. Finally, the last two terms represent the
on-site repulsion energies, double-occupancy penalties, as in
the Hubbard model.

At half filling, when there are equal numbers of holes
and Cu atoms in the lattice, the model describes the parent
compound, which is known from experiments to be an insu-
lating antiferromagnet. Adding (removing) holes corresponds
to hole (electron) doping. Experimentally, with hole doping,
the magnetic order rapidly melts and superconductivity arises
which competes or cooperates with several forms of spin
and charge order. Naturally, before addressing the topic of
superconductivity in the underdoped regime, it is important
to determine the behavior of the model at half filling.

The Emery model has been studied using several dif-
ferent numerical approaches: exact diagonalization [22,23],
cluster perturbation theory [24], generalized random phase
approximation [25], quantum Monte Carlo [26–28], density
matrix renormalization group [29], and dynamical mean field
theory or its cluster generalizations [30]. Here we use the
CP-AFQMC method [13,14], which controls the fermion sign
problem with a CP approximation that can be systemati-
cally improved via a self-consistency procedure [15]. This
approach, which has demonstrated consistently high accuracy
[5,6], represents the state-of-the-art many-body computational
technology for such a system. Our results provide a detailed
characterization of the ground state properties and reference
data on this model. Our calculations establish unambiguously
the existence of a metal-insulator transition as a function of
the charge transfer energy.

Most parameters in the Hamiltonian in Eq. (1) have
“canonical” values obtained from band structure or other

calculations. We will use a set of parameters obtained for
La2Cu O4, the parent compound of the lanthanum family of
cuprates: εp = −3.2, εd = −7.6, tpd = 1.2, tpp = 0.7, Up =
2, and Ud = 8.4 (all in units of eV). The charge transfer
energy, however, entails more uncertainty. The set above
gives � = 4.4 eV, but theoretical arguments based on double
counting corrections [16] would imply a significant reduc-
tion to this value. Within generalized Hartree-Fock (GHF),
a strong dependence of the ground-state magnetic properties
on � is seen [31]. Moreover, in real materials, significant
variations have been observed in �, which can be broadly
tuned through chemical substitution and strain [32]. Recent
nuclear magnetic resonance experiments [20] have shown
that, as a result, the hole densities on Cu vary, which in turn
affects the critical superconducting transition temperature. In
this study, we scan the value of the charge transfer energy from
� = 4.4 to 1.5 eV.

We study systems of N holes in an M = L × L lattice,
i.e., a supercell of CuMO2M . Calculations are performed on
systems as large as L = 12, containing 432 atoms in the
supercell. Special care was taken in the extrapolations to
the thermodynamic limit. Several checks were carried out,
with rectangular supercell shapes and with different boundary
conditions (periodic and twisted). Additionally, calculations
with a pinning field to break translational symmetry were also
done in order to verify the robustness of the long-range order.

To compute properties of the ground state |�0〉 of the
model, we use the CP-AFQMC method, which relies on a
projection from an initial or trial wave function:

|�0〉 ∝ lim
β→+∞

exp(−β(Ĥ − E0)) |ψT 〉 , (2)

where E0 is the ground-state energy which is estimated adap-
tively in the process. The method realizes the projection with
a stochastic dynamics in the manifold of wave functions of
independent particles embedded in random external auxiliary
fields. The trial wave function |ψT 〉 plays an important role
in the methodology. It is used to impose an approximate con-
straint to the random walk, in order to control the fermion sign
problem and keep the computational complexity at O(N3). To
maximize the accuracy and predictive power of the approach,
we use a self-consistent scheme [7] to encode the informa-
tion from the CP-AFQMC as feedback in generating a new
|ψT 〉. We measure the order parameter of a broken-symmetry
solution of the many-body Hamiltonian with pinning fields.
A trial wave function is generated using GHF [31]. The
CP-AFQMC calculation with this |ψT 〉 obtains the density
matrix, which is then fed into another GHF calculation with
renormalized Hamiltonian parameters (� and Ud ) that are
tuned to minimize the difference between the density matrix
it produces and that from the CP-AFQMC. The new GHF
solution is then used in a new CP-AFQMC calculation and the
process is iterated until convergence. This approach has been
shown to give very accurate results in a variety of correlated
systems including the one-band Hubbard model [5–7].

III. RESULTS

In Table I we show the computed ground-state energy per
unit cell as a function of �. The results are obtained as an
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TABLE I. Energy per unit cell as a function of the charge-transfer
energy. The values are based on calculations in 12 × 12 supercells
with twist averaging.

� (eV) 1.9 2.8 3 3.3 4.4

E/M (eV) −10.082(8) −9.639(2) −9.556(2) −9.437(2) −9.071(6)

average over twist angles in the boundary conditions. The
complex phase arising from the twist boundary condition is
handled straightforwardly [33]. The computed energy is ro-
bust with respect to |ψT 〉; the mixed estimate [34] is used and
no self-consistency iteration is necessary for these results. The
system is large enough such that any residual finite-size effects
are expected to be comparable to the statistical error bar. This
was estimated by select calculations with even larger supercell
sizes. These results should provide a valuable benchmark in
future studies of the Emery model.

Magnetic properties are presented in Fig. 2. We mea-
sure spin correlation functions of the form CS (r) = 〈Ŝ(0) ·
Ŝ(r)〉, where the spin operator is defined as usual: Ŝ(r) =
1
2

∑
σ,σ ′ σσ,σ ′ d̂†

i,σ d̂i,σ ′ , with σσ,σ ′ denoting elements of the
Pauli matrices, and the expectation 〈· · · 〉 is with respect
to the many-body ground state |�0〉, which requires back
propagation [34]. The upper panel is a color plot of CS (r)
for � = 4.4 eV. The correlation function is seen to vanish on
the p sites, where no magnetism is observed. On the other
hand, long-range antiferromagnetic (AFM) order is evident
on the Cu atoms. The lower panel shows the order parameter
|S(r)| ≡ |CS (r)|1/2 for |r| � 3 as the values of the charge
transfer energy � is varied. A nonzero AFM order parameter
is seen for � � 3 eV, which becomes compatible with zero
for � � 2.8 eV, signaling the presence of a phase transition at
� ∼ 3 eV. The asymptotic value of the AFM order parameter
(taken as an average over |r| � 3) is plotted as a function of
� in the upper panel of Fig. 3.

To further examine the properties of the system as �

becomes smaller, we probe the electrical conductivity in the
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FIG. 2. Computed ground-state magnetic properties. The upper
panel shows a color plot of the spin correlation function at � =
4.4 eV for a 12 × 12 supercell. The lower panel shows the order
parameter at asymptotic distances for a sequence of � values.
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FIG. 3. Metal-insulator transition as a function of the charge
transfer energy �. Three different signatures are computed: anti-
ferromagnetic order parameter |S(r)| (upper panel), charge gap �C

as defined in Eq. (4) (middle panel), logarithm of the localization
measure in Eq. (3) (lower panel). The values of −ln|ζ | for � <

3 eV are compatible with +∞. The shaded area indicates the phase
transition region.

ground state. Following Resta and Sorella [35], we compute
the complex-valued localization measure of the holes:

ζ = 〈�0 |ei 2π
L X̂ | �0〉 , (3)

where, without loss of generality, we have chosen the quantum
mechanical position operator X̂ = x̂1 + · · · + x̂N to be along
the x direction. The quantity ζ , which is related to the quantum
metric tensor, has a geometrical interpretation and plays an
important role in the modern theory of electric polarization.
A nonzero value of |ζ | for a large number of holes implies
a localized many-body ground state and thus an insulator,
while a vanishing |ζ | indicates a delocalized ground state and
a conductor. The dependence of |ζ | on � is shown in the
lower panel of Fig. 3. The result is consistent with a phase
transition from an antiferromagnetic, insulating ground state
at � � 3 eV to a nonmagnetic metal at smaller values of
the charge-transfer energy. To our knowledge, our calculations
here represent one of the first computations of Eq. (3) with an
advanced many-body method in a strongly correlated physical
system whose ground state is unknown.

We also compute the charge gap of the system

�C = E (N + 1) + E (N − 1) − 2E (N ) , (4)

where E (N ) is the ground-state energy at half filling, while
E (N ± 1) denotes the ground-state energies of the system
with one hole added/removed. In Ref. [36] Eq. (4) was com-
pared with the standard definition in terms of Green functions
in the Hubbard model, and it was shown numerically that
they lead to identical gaps. (For a superconducting system,
this definition would give the pairing gap. An alternative to
Eq. (4) would be to compute the two-particle gap [37,38],
where N ± 1 is replaced by N ± 2. The latter can be an impor-
tant property to address in future studies, in particular when
transitions from insulators to superconductors are expected.)
The gap is a central quantity which can be directly measured
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in photoemission spectroscopy experiments. Its calculation
can be challenging because of finite-size and shell effects
arising from the noninteracting part of the Hamiltonian. We
use a scheme [36] utilizing twist averaging to accelerate
convergence to the thermodynamic limit. We find that the
dependence on the twist parameter is rather weak here, al-
lowing converged results with only a handful of twist angles
in our measurement. A subtlety also exists in the choice of
trial wave functions for the (N ± 1) systems. As mentioned
before, we build |ψT 〉 through a self-consistent procedure
providing a GHF Hamiltonian with renormalized parameters.
By using the same mean-field Hamiltonian to generate the
|ψT 〉’s for (N − 1), N , and (N + 1) systems, we see better
error cancellation in tests on smaller systems and adopt this
procedure in the calculation of gaps. The result is shown in
the middle panel of Fig. 3. A finite charge gap is seen for � �
3 eV, which vanishes at smaller �. The experimental gap for
La2CuO4 is 1.5–2 eV [39–42], while, for Bi-based materials,
a value of 1–1.5 eV [18] is found. The experimental trend is
consistent with our data, showing the gap decreasing as �,
and thus nd , decreases. However, the experimental values are
higher than our corresponding results, which is likely due to
the much simplified nature of the model and the uncertainty
in the parameter choices.

The three independent signatures shown in Fig. 3, the AFM
correlation function, the localization measure, and the charge
gap, all point to a consistent picture of the ground state, with a
phase transition from an insulating to a metallic ground state
at a charge transfer energy of � ∼ 3 eV.

We also investigate the charge density and correlation
functions and the d-wave pairing correlations. In the right
panel of Fig. 1, the computed hole densities on the Cu and O
sites are shown for four different � values spanning the tran-
sition. Similar to the spin correlation function, we define the
charge correlation: CC (r) = 〈n̂(0)n̂(r)〉/〈n̂(0)〉〈n̂(r)〉, where
the density operator is, for Cu sites, n̂(r) = ∑

σ d̂†
i,σ d̂†

i,σ , and
similarly for the O sites. The pairing correlation function is
defined as: C�(r) = 〈�̂(0)�̂†(r)〉 where the d-wave pairing
operator �̂(r) is defined as in Ref. [27]. The results are shown
in Fig. 4.

It is clear that there is no charge and pairing long-range
order in the system at half filling, as expected. The density
correlation function displays only a very short-range repulsive
exchange-correlation hole. As � is increased, the correlation
between nearest-neighbor d and p orbitals decreases while
the nearest-neighbor d-d correlation increases, another clear
signature of AFM. For the smallest �, the nearest neighbors
d-p correlation is almost identical to the noninteracting result,
while the nearest neighbor d-d is slightly higher.

Observing the distance dependence of the pairing correla-
tion, we see that, at very short range, the correlations increase
with �, likely due to the tendency for antiferromagnetic cor-
relations. At longer range, the opposite tendency is seen, with
the pairing correlations increasing as � is decreased. This
result is consistent with the experimental evidence [18–21]
that the charge-transfer energy is anticorrelated with the su-
perconducting critical temperature. It suggests a picture of
local tendency towards AFM order which allows the system
to build d-wave pairs that become more correlated once the
holes become more delocalized.

FIG. 4. (Left panel) Distance dependence of the d-wave pairing
correlation function C�(r) for a few values of the charge transfer
energy. (Right panel) Density correlation function CC (r) plotted
along the Cu-O bond. We denote x the coordinate along the bond,
as in Fig. 1. We use open symbols for correlations involving one
d orbital and one px , while solid symbols indicate d-d correlations.
The noninteracting result, which does not depend on �, is also shown
(black dotted line) for reference. The inset is a zoom in, for x > 0.5.

IV. DISCUSSION AND SUMMARY

Before drawing our conclusions, we provide a brief dis-
cussion of the results in the broader context. As we have
mentioned, there are a number of studies of the Emery model
already in the literature. At present no numerical methods
can reach the thermodynamic limit free of any bias. We
have emphasized that the CP-AFQMC approach is not exact
because of the control on the sign problem. We should also
emphasize that it has consistently demonstrated, via many
applications and extensive collaborative benchmark projects
[5,43], an outstanding balance of accuracy and the ability
to scale reliably to the thermodynamic limit. The numerical
results in this paper reflect a kind of state of the art, and
residual effect from CP is expected to be minimal. Clearly
it would be very desirable to apply a similar level of compu-
tational technologies to tackle the many remaining questions
in the Emery model, including magnetic and superconducting
properties upon doping. Here recent progress in computing
dynamical Green functions and excitation information [36,44]
can provide crucial additional capabilities.

In summary, we performed an extensive study of the
ground state of the Emery model at half filling using cutting-
edge AFQMC calculations. The favorable computational scal-
ing of the algorithm allowed us to study supercells as large
as 12 × 12 which, together with twist averaging, makes it
possible to access properties at the thermodynamic limit.
We investigated the role of the charge transfer energy �,
whose value varies across different families of cuprate ma-
terials. Accurate results on the spin correlation functions,
the localization or conductivity measure, and the charge gap
are computed versus � for a set of canonical Hamiltonian
parameters. Ground-state energies, charge densities and corre-
lation functions, and pairing correlations are also determined.
The tendency of d-wave pairing is seen to increase as �

decreases. Our results establish unambiguously a quantum
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phase transition in the ground state of this fundamental model
connecting an antiferromagnetic insulator to a nonmagnetic
metal as � is decreased to ∼3 eV.
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