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Energy scales of the doped Anderson lattice model
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This paper explores the energy scales of the doped Anderson lattice model using dynamical mean-field theory
(DMFT), using a continuous-time quantum Monte Carlo (CTQMC) impurity solver. We show that the low
temperature properties of the lattice cannot be scaled using the single ion local Kondo temperature TK but instead
are governed by a doping-dependent coherence temperature T ∗ which can be used to scale the temperature
dependence of the spectral function, transport properties, and entropy. At half-filling T ∗ closely approximates
the single ion TK , but as the filling nc is reduced to zero, T ∗ also vanishes. The coherence temperature T ∗ is
shown to play a role of effective impurity Kondo temperature in the lattice model, and physical observables
show significant evolution at T ∗. In the DMFT framework we showed that the hybridization strength of the
effective impurity model is qualitatively affected by the doping level, and determines T ∗ in the lattice model.
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I. INTRODUCTION

The Kondo effect was first observed as a resistivity mini-
mum in dilute magnetic alloys [1]. Kondo accounted for the
resistivity minimum as a consequence of an antiferromagnetic
superexchange between the magnetic impurity and conduc-
tion electrons [2]. This antiferromagnetic coupling was later
revealed to be a relevant coupling, renormalizing to strong
coupling at a characteristic energy scale called the Kondo
temperature [3–6]. Based on a strong-coupling expansion,
Nozières showed that the ground state of a magnetically
screened Kondo impurity is described by a local Fermi liquid
[7]. After that, a slave-particle mean-field theory showed
that Kondo physics can be understood as the residue of a
symmetry-breaking transition that occurs in the large N limit
of the spin degeneracy, in which the Kondo temperature plays
the role of a critical temperature for the phase transition [8,9].

In a large class of f -electron intermetallic materials called
“heavy electron” compounds, such as the family of 115
compounds, CeMIn5 (M=Co,Rh,Ir), the localized f electrons
form a periodic lattice of magnetic moments whose low
energy physics is described by a Kondo lattice model [10]. A
generic phase diagram of the Kondo lattice was proposed by
Doniach [11], who argued that if the Kondo coupling is weak
the magnetic Rudermann-Kittel-Kasuya-Yosida (RKKY) in-
teraction overcomes the formation of Kondo singlets, giving
rise to an ordered magnetic ground state [10,12,13]. This
state has a small Fermi surface because only the conduc-
tion electrons contribute to the charge transport. However,
if the Kondo coupling is strong, it gives rise to a param-
agnetic ground state which resembles the Nozières Fermi
liquid state of the Kondo impurity model. Such “heavy

Fermi liquids” (HFL) display carrier effective masses up
to ∼103 times larger than in conventional metals. In the
HFL state, the localized moments bind to electrons, forming
composite f quasiparticles which hybridize with the conduc-
tion sea, giving rise to an enlarged Fermi surface of heavy
quasiparticles.

One of the long-standing questions concerns how the HFL
phase evolves upon raising the temperature, and in particular,
whether additional scales, beyond the single-ion Kondo tem-
perature, are required to describe the gradual loss of coherence
in the HFL [14–18]. Theoretically, the slave-boson approach
showed that an additional low energy Fermi-liquid energy
scale (TFL) develops in HFL [19]. Later numerical studies
using the dynamical mean-field theory (DMFT) confirmed
that this Fermi-liquid energy scale exists, identifying it as the
temperature at which resistivity develops a maximum [20].
However, there is still no final consensus between these differ-
ent studies on the precise relationship between the coherence
temperature scale and the evolution of the large Fermi surface
[19–22]. These considerations motivate an integrated study of
thermodynamic, transport, and spectroscopic properties of the
Kondo lattice model, with the goal of connecting experimen-
tal, analytic, and numerical studies.

In this article we report on a detailed study of Anderson lat-
tice model in the Kondo lattice regime using DMFT [23–26],
with a continuous-time quantum Monte Carlo (CTQMC) im-
purity solver [27]. The study varied the hybridization strength,
temperature, and the doping level to cover a wide range
of the phase diagram and investigate the scaling properties.
Maximum-entropy methods were used to analytically con-
tinue from imaginary to real time to obtain dynamical spectral
functions [28,29].
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FIG. 1. Local static spin susceptibility of the Anderson lattice
model scaled (a) by TK and (b) by T ∗, computed at chemical potential
μ = −0.8, for a range of hybridization between V = 0.18 (red)
and V = 0.54 (purple). The dashed lines are the best fit and the
error bars show the mismatch between the best-fit line and actual
data. (c) Schematic phase diagram showing the variation of T ∗ with
chemical potential, and the regions where the data scales with TK

(red) and with T ∗ (blue). The dashed line is a guide to the eye.

II. MODEL HAMILTONIAN

The single-orbital Anderson lattice model is written as

H =
∑

iσ

ε f f †
iσ fiσ + U

∑
i

n f
i↑n f

i↓ − t
∑
〈i j〉σ

(c†
iσ c jσ + H.c.)

+V
∑

iσ

(c†
iσ fiσ + H.c.) − μ

∑
iσ

(
n f

iσ + nc
iσ

)
, (1)

where f †
iσ ( fiσ ) is a creation (annihilation) operator of the f

electron with spin σ at site i, c†
iσ (ciσ ) is a creation (annihila-

tion) operator of the conduction electron with spin σ at site i,
and nα

iσ = α
†
iσ αiσ (α = f , c).

For convenience, all energy scales are written in units
of D, the half-bandwidth of the conduction band, and the
Boltzmann constant kB is set to unity. We considered a two-
dimensional square lattice with half-bandwidth D = 4t . To
achieve the Kondo lattice regime, we place the f level at the
bottom of the band, choosing ε f = −1.0 and U = 2.0, so that
the energy of the doubly occupied state ε f + U = 1.0 lies at
the top of band. The hybridization V , chemical potential μ,
and inverse temperature β were varied from 0.18 to 0.54, −0.8
to 0.8, and 80.00 to 200.00, respectively.

III. SCALING BEHAVIOR

Figure 1(a) shows the local spin susceptibility χloc(ω = 0)
for μ = −0.8, for a variety of hybridization values V , scaled
by the single-impurity Kondo temperature TK evaluated with

the same parameters, defined by

TK =
√

2JKρ exp

[
− 1

2JKρ

]
, (2)

where ρ is the density of states per spin of the conduction
band at the Fermi level and JK = (|ε f − μ|−1 + |ε f − μ +
U |−1)V 2 is the Kondo exchange [30]. Because the undoped
model (μ = 0.0) is particle-hole symmetric, electron and hole
doped cases behave identically [31]. The scaling collapse
of the susceptibility curves at high temperatures χloc(T ) ∼
1
T f (T/TK ) shows that the high temperature physics of the
Anderson lattice model is scaled by the single-ion Kondo
temperature, regardless of the doping level [31], implying that
the high temperature physics at T > TK is that of a single
impurity model.

However the local susceptibility [Fig. 1(a)] does not scale
with the single-ion Kondo temperature at low temperatures.
To scale the low-T regime, we define a coherence temperature
T ∗, parametrized as

T ∗ =
√

2J lattρ exp

[
− 1

2J lattρ

]
, (3)

where J latt = jJK is an effective Kondo lattice exchange
strength. The unique fitting parameter j is adjusted at each
doping level to collapse the low temperature susceptibilities
onto a single curve [31]. Figure 1(b) shows that the low-T
susceptibilities are successfully scaled by T ∗ with j = 0.3.
The emergence of the temperature scale T ∗ indicates that the
Kondo lattice model behaves differently in the fundamental
level at low-T regime.

Figure 1(c) shows how T ∗ varies as the chemical potential
is changed. When nc is close to 0, T ∗ is suppressed towards
zero while when nc is close to half-filling, T ∗ tends towards
the single-ion Kondo temperature TK , a result that agrees with
previous studies [20].

Figure 2(a) shows the calculated momentum- and energy-
resolved total spectral function

A(�k, ω) = 1

π
Im[G f (�k, ω − iδ) + Gc(�k, ω − iδ)] (4)

at μ = −0.5 case. At high temperatures, only the coherent
conduction band is observed near the Fermi level. Lowering
the temperature, an incoherent f -electron spectrum develops
at the Fermi level as a sign of Kondo singlet formation.
It is notable that the spectral function starts to change far
above the local Kondo temperature. It agrees well with recent
ARPES measurement on the Ce-115 heavy fermion com-
pound [21,32]. Crossing through TK , the spectra near the
Fermi level becomes incoherent, and the velocity of the ill-
defined quasiparticles gets smaller as the f electron develops
near the Fermi energy. The spectrum is maximally incoherent
at T = T ∗, and the quasiparticle band only re-establishes its
coherence below T ∗.

Figure 2(b) shows the evolution of the Fermi surface. Start-
ing from a coherent small Fermi surface at high temperatures,
it continuously evolves into an incoherent large Fermi surface,
which sharpens well below the coherence temperature T ∗.
This continuous, but nonmonotonic evolution of the Fermi
surface gives a hint for nature of the non-Fermi liquid phase
observed in the quantum critical region.
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FIG. 2. Intensity plots showing the momentum and energy re-
solved conduction electron spectral function (a) as a function of
momentum and (b) at fixed E = 0, showing the evolution of the
Fermi surface with temperature, for μ = −0.5.

Figure 3 shows the area of the Fermi surface [Figs. 3(a) and
3(b)] and imaginary part of the T matrix (T = V 2G f ) of the
conduction band at the Fermi level [Figs. 3(c) and 3(d)] scaled
by TK and T ∗. Even though TK scales the high-T behavior
of both observables, there is no significant feature in both
observables at T = TK . For example, the small Fermi surface
of the μ = −0.8 case does not evolve to the large Fermi
surface phase until far below T = TK . In contrast, both Fermi
surface area and the f -electron DOS at the Fermi level evolve
rapidly around T = T ∗, regardless of the chemical potential.
The coherence temperature T ∗ also plays a significant role in
the transport properties. Figure 4 shows the resistivity of μ =
−0.2,−0.5,−0.8 cases. In the high-T regime, the temper-
ature dependence of the resistivity at different hybridization
strengths can be scaled with the local Kondo temperature TK

as Fig. 4(a). As the temperature is reduced, the resistivity
reaches a maximum and decreases forming a coherent HFL
state. Figure 4(b) shows that the low-T resistivity is scaled
by the coherence temperature T ∗. In addition, the calculated
resistivity develops its maximum value at temperatures T ∼
T ∗ which lie below the single ion TK . This suggests that
experimentally observed resistivity maxima are related to T ∗
and can be used to estimate this quantity.

To investigate the screening of the local moments more
directly, we also calculated the entropy of the impurity de-
gree of freedom S. In Figs. 4(c) and 4(d) the high temper-
ature entropy approaches ln 2 per site, corresponding to the

FIG. 3. Area of the Fermi surface (a) and (b) and imaginary part
of the T matrix of the conduction electrons at the Fermi level (c) and
(d) scaled by TK and T ∗.

unscreened local moments of the f electrons. It is remarkable
that the entropy remains of order ∼ ln 2 even at T < TK in
the heavily doped case (μ = −0.8) in Fig. 4(c), indicating
that the local moments are largely unscreened around T = TK .
Instead, as shown in Fig. 4(d), the entropy starts to drop
around T = T ∗ regardless of the doping level, although the
amount of suppressed entropy depends on the doping level.
The difference in the amount of suppressed entropy derives
from the conduction electron occupancy nc. Previous studies
of the strong-coupling limit of the Kondo lattice model sug-
gest that an entropy of order nc ln(2) is lost on passing through
the Kondo temperature TK [33]. However, our results show
that the suppression of magnetic entropy SM ∼ nc ln(2) occurs
at temperatures around T ∗, rather than TK . T ∗ thus sets the

FIG. 4. Resistivity (a) and (b) and entropy (c) and (d) scaled by
TK and T ∗.
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FIG. 5. Ratio between effective hybridization strength of the
lattice model (�latt

0 ) and hybridization strength of the impurity model.

characteristic scale at which the moments become entangled
with the conduction sea in the lattice.

In the DMFT framework, the Anderson lattice is treated
as an effective impurity embedded in cavity with a self-
consistently determined conduction electron bath. Figure 5
shows the self-consistent hybridization strength �latt.

0 ≡
Im�eff.(z = 0), normalized by the bare hybridization strength
of the model �0 ≡ Im�(z = 0). In the lightly doped cases
(μ = −0.2), the effective hybridization function is enhanced
at intermediate temperatures, but regardless of doping, as the
temperature decreases, the effective hybridization strength is
significantly suppressed. This is due to the formation of a
pseudogap structure in the cavity electronic density of states.
As the pseudogap structure arises, the bath electron density of

states at the Fermi level ρ decreases. This reduces the coupling
constant JKρ and the effective lattice Kondo coupling J latt

which determines the coherence scale

T ∗ =
√

2J lattρ exp

[
− 1

2J lattρ

]
, (5)

becomes smaller as a result.

IV. CONCLUSION

In conclusion, we have studied the temperature scales
of the doped Anderson lattice model using single-site dy-
namical mean-field theory. The local Kondo temperature TK

defined by the Kondo exchange coupling JK governs the high-
temperature regime, but a new scale T ∗, defined by a modified
Kondo lattice exchange coupling J latt., governs the low-T
regime. T ∗ has clear doping dependency, and it approaches
zero as nc goes to zero, but tends to the single-ion TK as nc

approaches half-filling. Various physical observables such as
spectral function and transport properties are scaled by TK at
high-T regime, and T ∗ at low-T regime.

We have also confirmed that most observables show a
significant change at T ∗, which is always significantly smaller
than TK . The DMFT self-consistency determines the suppres-
sion and magnitude of T ∗.
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