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Local magnetic moments and electronic transport in closed loop quantum dot systems:
A case of quadruple quantum dot ring at and away from equilibrium
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We apply the nonequilibrium functional renormalization group approach treating flow of the electronic self-
energies, to describe local magnetic moment formation and electronic transport in a quadruple quantum dot
(QQD) ring, coupled to leads, with moderate Coulomb interaction on the quantum dots. We find that at zero
temperature depending on parameters of the QQD system, the regimes with zero, one, or two almost local
magnetic moments in the ring can be realized, and the results of the considered approach in equilibrium agree
qualitatively with those of a more sophisticated functional renormalization group approach treating also flow of
the vertices. It is shown that the almost formed local magnetic moments, which exist in the equilibrium, remain
stable in a wide range of bias voltages near equilibrium. The destruction of the local magnetic moments with
increasing bias voltage is realized in one or two stages, depending on the parameters of the system; for the
two-stage process the intermediate phase possesses fractional magnetic moments. We present zero-temperature
results for current-voltage dependencies and differential conductances of the system, which exhibit sharp features
at the transition points between different magnetic states. The occurrence of the interaction-induced negative
differential conductance phenomenon is demonstrated and discussed. For one local moment in the ring and finite
hopping between the opposite quantum dots, connected to the leads, we find suppression of the conductance for
one of the spin projections in infinitesimally small magnetic field, which occurs due to destructive interference
of different electron propagation paths and can be used in spintronic devices.
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I. INTRODUCTION

Quantum dots are nanoscale crystals that have a discrete
energy spectrum and for this reason are often referred to as ar-
tificial atoms. Systems based on quantum dots are potentially
important for nanoelectronic applications. Due to different
kinds of topologies of these systems, the multidot systems can
show nontrivial interplay of fundamental effects (e.g., Fano
and Kondo effects [1,2]). An especially rich physics emerges
when the geometry of the system allows electron tunneling
through closed loop geometries. Many fundamental effects
such as Fano resonances [3–6], Aharonov-Bohm oscillations
[6–9], Kondo behavior [1,10–12], and corresponding quantum
phase transitions (QPTs) [13–20] have been found in these
systems.

The simplest system of this kind is the parallel double
quantum dot (DQD) system [4,13–17,21–26]. It was shown
that this system even for moderate values of Coulomb interac-
tion may demonstrate the interaction-induced QPTs to the so
called singular Fermi liquid (SFL) state, associated with the
presence of the local magnetic moment in one of the states (so
called “odd” state), which is weakly hybridized or decoupled
from the conduction bands (leads). The SFL state remains
stable in a wide range of gate voltages near half filling and at
some critical gate voltage undergoes QPT into the paramag-
netic state without local moments. The type of the QPTs and
peculiarities of the electron transport at the transition strongly
depend on the type of the system symmetry, as well as on
the number of energy levels. In particular, for the parallel

double quantum dot system it was found that depending on the
symmetry of the system it can demonstrate either a first-order
QPT to the SFL state, accompanied by a discontinuous change
of the conductance, or a second-order QPT, in which the
conductance is continuous and exhibits Fano-type asymmetric
resonance near the transition point [25]. In both cases, the
conductance reaches the almost unitary limit in the SFL phase.
Therefore, the QPTs to the SFL state have a significant impact
on the electron transport.

The SFL state may occur also in other closed loop geome-
tries of atoms or quantum dots, appearing in larger nanoscopic
systems, e.g., organic molecules [27–31], quantum networks
[32–34], quantum junctions [35], etc., where the interference
of different paths of electron propagation may yield nontriv-
ial quantum phase transitions and transport properties. The
electron-electron interaction plays an important role in these
systems. At the same time, numerically exact methods such
as the numerical renormalization group experience serious
difficulties for large number of interacting sites.

As a simplest multidot system with closed loop geometry,
in the present paper we study the quadruple quantum dot
(QQD) ring system [6,11,20,36–39]. This system appears as
a building block of quantum network devices [32–34]. This
system can be also viewed as a prototype of cyclobutadiene
organic molecule, discussed some time ago from the view-
point of electronic transport [40]. The QQD system demon-
strates a rather rich phase diagram with the possibility of
controlling spin states of electrons [41], making it promising
for the development of spintronic devices. It was shown that
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spin-polarized electron transport [34,42–44], e.g., generated
by tuning the energy levels or hopping levels in an external
magnetic field [34,42], can be achieved in this structure.

Various spin states found for the isolated QQD system [41]
imply a possibility of different magnetic moment states in
this system connected to the leads even in the absence of
the (or in the infinitesimal) magnetic field. In this respect,
study of the possibility of the formation of spin-split (in
vanishingly small magnetic field) phases, corresponding to the
presence of local magnetic moments, their connection with
the transport properties of the system, and evolution under
the nonequilibrium conditions opens a way to model larger
systems, including quantum networks and organic molecules.
Although paramagnetic solution self-energies of QQDs were
studied in [42,45,46], these self-energies do not give sufficient
information on the formation of local magnetic moments.

Only a limited number of studies have been done on
the nonequilibrium effects in the QQD systems and mainly
focused on the effects of the spin polarization, magnifica-
tion, and circulation of the persistent current [47,48], as well
the current oscillation phenomena. The current-voltage (J-V)
characteristics have been investigated in some particular cases
[43,46,49], including the possibility of negative differential
conductance (NDC) effects [46], analogous to those previ-
ously found for parallel quantum dots [12,26,50–52]. These
studies however did not investigate in detail the possibility
and effects of local moment formation, e.g., away from equi-
librium. From a practical point of view, it is also interesting to
consider whether it is possible to obtain highly spin-polarized
current due to the energy difference of the spin-up and -
down states, caused by the transition to the magnetic moment
state in an infinitesimal magnetic field without the spin-orbit
interaction.

To study the above mentioned aspects of electronic and
transport properties of the QQD system we use the functional
renormalization group (fRG) approach [53–56]. This ap-
proach (after introducing the appropriate counterterm, which
corresponds to switching off or decreasing magnetic field dur-
ing the flow) was able to describe both normal and SFL phases
of the DQD system and was found to be in good agreement
with the numerical renormalization group data for a parallel
quantum dot system in equilibrium up to intermediate values
of the Coulomb interaction [24,25]. However, generalization
of this approach to larger systems is not straightforward, since
it yields electron interaction vertices, which number increases
as the fourth power of the number of quantum dots, which are
also difficult to treat numerically.

In the present paper we exploit the fRG method, which
neglects flow of the electron interaction vertices, to describe
one of the simplest systems of quantum dots, forming closed
loops. The considered method represents a generalization of
the fRG approach [53,54] to the Keldysh space [55,56] and
allows one to reformulate an interacting problem in terms
of coupled differential equations for flowing self-energies,
which, after several approximations, can be easily inte-
grated even for complex systems. Among other methods, the
nonequilibrium fRG approach has some advantages: it does
not require significant computational resources and results
of its implementation are consistent with the ones obtained
through more elaborate methods dealing with nonequilibrium

situations [57]. Recently, this method has been successfully
applied to several quantum dot systems [57–61], and compar-
ative study to other numerical and semianalytical methods has
been done [57,62]. Its application to systems with closed loop
geometries formed by quantum dots has not, however, been
performed so far.

We argue that the considered method is able to describe
various aspects of electronic properties of quantum dot or
molecular systems with closed loop geometries, which are
exemplified by the QQD system. In particular, we consider
both equilibrium and nonequilibrium regimes of the QQD
system in the zero-temperature limit T = 0. In equilibrium,
we show that depending on the geometry of the QQD system
the regimes with zero, one, and two almost local magnetic
moments can be realized. Moreover, adding hopping between
the opposite quantum dots, attached to the contacts, allows
one to use this system as a spin filter even in the absence of the
spin-orbit coupling: for sufficiently large hopping in a certain
range of gate voltages we find zero conductance for one of
the spin projections (oriented along the infinitesimally small
magnetic field).

We find that the magnetic moments, existing at zero bias
voltage, remain stable in a wide range of bias voltages near
equilibrium. At the same time, at higher bias voltages the
destruction of the magnetic moments occurs and proceeds in
one or two stages, depending on the parameters of the QQD
system. We present results for the current-voltage character-
istic and the differential conductance of the system, which
exhibit sharp features at the transition points between different
magnetic phases. The occurrence of interaction-induced NDC
phenomena is demonstrated. The presented method may be
therefore used to describe electronic transport in larger sys-
tems: quantum networks and organic molecules.

The paper is organized as follows. In Sec. II we introduce
the model and briefly discuss the nonequilibrium fRG method.
In Sec. III we present the results of the fRG calculations in
equilibrium and analyze the possibility of the local moment
formation (Sec. IIIA) and differential conductance (Secs. IIIB
and IIIC). In Sec. IVA we discuss the nonequilibrium regime,
and in Sec. IVB we present the J-V characteristics of the QQD
system and discuss the appearance of the NDC phenomenon.
Finally, in Sec. V we present conclusions.

II. MODEL AND METHOD

We consider the QQD system as depicted in Fig. 1. The
corresponding model is defined by the following Hamiltonian:

H = HQQD + Hleads + HT. (1)

The term HQQD in Eq. (1) describes the isolated QQD cluster,

HQQD =
∑

σ

4∑
j=1

[(ε j − σH − Uj/2)d†
j,σ d j,σ (2)

+ (Uj/2)n j,σ n j,σ̄ ] −
∑

σ

[(t12d†
1,σ d2,σ + t24d†

2,σ d4,σ

+ t13d†
1,σ d3,σ + t34d†

3,σ d4,σ + t14d†
1,σ d4,σ ) + H.c.],
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FIG. 1. Schematic representation of quadruple quantum dot
structure (QD1–QD4) connected to left (L) and right (R) leads.

where d†
j,σ (d j,σ ) are the creation (annihilation) operators for

electrons with spin projection σ ∈ {↑ (1/2),↓ (−1/2)} (σ̄ =
−σ ) on the jth quantum dot, n j,σ = d†

j,σ d j,σ . The parameters
ε j are the level positions, H is the magnetic field, which
produces Zeeman splitting of the energy levels (we assume in
the following that QQD structure is not affected by magnetic
flux), and Uj and ti j denote the on-site Coulomb interaction of
the jth dot and tunnel matrix elements between the nearest-
neighbor quantum dots, respectively. In the following we
assume that the quantum dots are equal; hence Uj = U and
ε j = ε.

The second Hleads and third HT terms in Eq. (1) describe
the noninteracting leads and the tunneling of electrons be-
tween the leads and dots, respectively,

Hleads = −
∑

α=L,R

∞∑
k=0

∑
σ

[μαc†
α,k,σ

cα,k,σ

+ τ (c†
α,k+1,σ

cα,k,σ + H.c.)], (3)

HT = −
∑

σ

[(tLc†
L,0,σ d1,σ + tRc†

R,0,σ d4,σ ) + H.c.], (4)

where c†
α,k,σ

(cα,k,σ ) is the corresponding creation (annihi-
lation) operator for an electron on the k lattice site of the
left α = L or right α = R lead, τ denotes nearest-neighbor
hopping between the sites of the leads, μα is the chemical
potential, and tα is the dot-lead coupling matrix element.

In the absence of the electron-electron interaction U for
hopping symmetry t12/t13 = t24/t34 one of the states (the so

called odd state), obtained by an appropriate canonical trans-
formation of the states on QD2,3 to the even-odd basis (see
Appendix A; cf. Ref. [25]), can be completely disconnected
from the other quantum dots (and, consequently, from the
leads). Even in the presence of the Coulomb interaction, this
state remains weakly hybridized with the leads, which yields
formation of the local moment in that state in the vicinity
of half filling (ε j = 0); see Sec. IIIA below. In this respect,
the QQD system at t14 = 0 is similar to the double quantum
dot system, where the presence of the odd, weakly hybridized
with the leads, state provides the possibility for formation of
a correlation-induced local magnetic moment in the system
[13,16,24,25]. However, as will be shown in Sec. IIIC below,
apart from the tunneling through the even energy level, which
takes place in the DQD system, in the QQD system the reso-
nant tunneling from QD1 to QD4 is possible. This difference
becomes especially prominent when switching on t14 hopping,
which will be also discussed in Sec. IIIC.

The simplest asymmetry, which allows one to focus on
the effect of the (local) magnetic moment formation under
equilibrium and nonequilibrium conditions and its influence
on the electron transport, is the so called diagonal hopping
asymmetry [25] t12 = t34 = t, t13 = t24 = γ t , where the pa-
rameter γ varies from zero to unity. This choice of the
geometry allows us to study the evolution of the system from
the case of γ = 1, when all hopping matrix elements are
equal and the local moment is formed in the odd state in the
equilibrium, to the case of γ = 0 for which the system splits
into the two subsystems, each of which hybridized to only
one of the leads, and the local moments are present in both
even and odd states for small hybridization to the leads, or
absent otherwise. We do not consider hopping between the
QD2,3 because it does not change qualitatively conductivities
for small hoppings, and for large hoppings simply destroys
local moments (if they were present without this hopping) due
to mixing of even and odd states.

By using the Dyson equation and the projection technique
the bare Green’s function of the system in the Keldysh space
can be written as

G =
(G−− G−+

G+− G++

)
= [

G−1
dots − �bath

]−1
, (5)

where

[
G−1

dots

]kk
′

j j′ ;σ = −kδkk′

⎛
⎜⎜⎜⎝

ω − ε1,σ t12 t13 t14

t12 ω − ε2,σ 0 t24

t13 0 ω − ε3,σ t34

t14 t24 t34 ω − ε4,σ

⎞
⎟⎟⎟⎠

j j′

, (6)

where ε j,σ = ε j − σH is the Green’s function of the isolated QQD cluster and

[�bath]kk
′

j j′ ;σ = −iδ j j′
∑

α


α
j �α

(
1 − 2 f (ω − μα ) 2 f (ω − μα )

−2 f ( − (ω − μα )) 1 − 2 f (ω − μα )

)
kk′

= −iδ j j′
∑

α


α
j �α[(2δkk′ − 1)sgn(ω − μα ) + k(δkk

′ − 1)] (7)

incorporates effects of the coupling between the dots and leads, where 
α
j = δαLδ j1 + δαRδ j4. In the above equations

�L(R) = π |tL(R)|2ρlead is an energy-independent hybridization strength, where ρlead represents the local density of states at
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the last site of the left or right lead (the leads are equivalent),
and f (ω − μα ) = θ (μα − ω) is the Fermi-Dirac distribution
function of the lead α with the chemical potential μα at
zero temperature T = 0 [θ (x) is the Heaviside step function].
Throughout this paper we use the notation for the Keldysh
indices k (k

′
) = ± corresponding to k (k

′
) = ±1. Finally, the

out of equilibrium regime of the system is set by applying the
bias voltage V between the leads and choosing μL = −μR =
V/2.

In order to approximately determine the self-energy �,
which accounts for the effects of the electron interaction U ,
and the corresponding Green’s function G, which is consid-
ered to be a matrix (8 × 8 for each spin projection) in the
Keldysh-dots space, we use the the functional renormalization
group method in the Keldysh formalism [54–56]. This method
yields an infinite hierarchy of differential flow equations
for the cutoff-parameter �-dependent self-energy ��, and
two-particle and higher-order interaction vertices, which have
similar structure to the fRG on the Matsubara frequency axis
[53,54]. In the present study we consider only the flow of
the self-energy and neglect the frequency dependence of the
self-energy and the flow of the two-particle and higher-order
vertex functions. It was shown that neglecting frequency de-
pendence of the self-energy allows one to describe both equi-
librium [53] and nonequilibrium properties [55,56], as well as
to access the SFL state [24,25]. On the other hand, neglecting
flow of two-particle and higher-order vertices is sufficient to
reproduce the Kondo behavior of the linear conductance of a
single quantum dot [53]; this approach demonstrates an excel-
lent agreement with the density matrix renormalization group
(DMRG) and the numerical renormalization group results for
the interacting resonant level model [57] and allows us to
fulfill exactly charge conservation, which is typically violated
in higher-order truncations [55].

At the considered level of truncation the above described
approximations lead to the closed zero-temperature fRG flow
equation for the self-energy ��, which has the form [55]

∂��kk
′
;�

j j′ ;σ
= −ikUδkk′ δ j j′

∫
dω

2π
Skk;�

j j;σ̄ (ω), (8)

where Skk
′
;�

j j′ ;σ
= −∑

ii′
∑

qq′ Gkq
′
;�

ji′ ;σ
∂�[��

cut]
q

′
q

i′ i;σ
Gqk

′
;�

i j′ ;σ
is the

single-scale propagator and G� = [G−1 − ��
cut − ��]−1 is

the �-dependent propagator, where

[
��

cut

]kk
′

j j′ ;σ = −i�δ j j′ [(2δkk′ − 1)sgn(ω) + k(δkk′ − 1)] (9)

introduces the � dependence of G through the reservoir cutoff
scheme [57]. For some quantities in the equilibrium we also
compare results to those from the fRG approach considering
flow of the vertices (the corresponding fRG equations can be
found, e.g., in Refs. [55,56]).

By solving the differential equation (8) with the initial
condition ��ini = 0, where �ini is some initial scale, which is
chosen to be much larger than all energy scales of the quantum
dot system [note that we have included the term U/2 in the
quadratic part of the Hamiltonian in Eq. (2)], at the scale � =
0 we obtain the energy-independent approximation to the
self-energy � = ��→0. To induce small initial spin splitting,
which can be further enhanced by correlation effects during

fRG flow (and therefore allows us to obtain local moments),
we apply small magnetic field H/max(�L,R) = 0.001. Due to
use of truncation (8) of the fRG hierarchy at first (self-energy)
instead of second order (vertices), the counterterm technique
suggested in previous studies [24,25] is not necessary, and
does not change the obtained results.

III. LOCAL MOMENTS AND CONDUCTANCE IN THE
EQUILIBRIUM REGIME (V = 0)

Let us first consider the results of the application of the
outlined fRG approach in the equilibrium (V = 0). This case
was intensively studied within equilibrium fRG for the DQD
system (see, e.g., Refs. [24,25]), where good agreement with
numerical renormalization group (NRG) results was obtained.
As in the previous study of two parallel quantum dots [24,25],
it is convenient to perform transformation of the electronic
states on QD2,3 to the even (e) and odd (o) orbitals; see
Appendix A. In numerical calculations, we set �L = �R =
�, U/� = 2, T = 0 and use � as the energy unit.

A. Local magnetic moments

To analyze the presence of the magnetic moment in the
system we consider the ε = 0, t14 = 0 case (the results at
finite small ε and finite small or moderate t14 are qualita-
tively similar) and calculate the average square of the spin
〈S2

e/o〉, corresponding to the even and odd orbitals, where
Sp = (1/2)

∑
σ,σ

′ d†
p,σ σσσ

′ dp,σ ′ is the spin operator and σ is
the vector of the Pauli spin matrices.

Figure 2 shows the dependence of 〈S2
e/o〉 on the parameter

γ for various values of t . As one can expect, for small t
(see, e.g., the t = 0.05 case) the average 〈S2

e/o〉 ≈ 3/4, which
(together with the filling 〈ne(o),↑〉 ≈ 1 and 〈ne(o),↓〉 ≈ 0) means
that the electron is almost localized on both the odd and
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FIG. 2. The average square of a magnetic moment 〈S2
e/o〉 in

the even (dashed black lines) and odd (solid red lines) states as a
function of γ for t = 0.05 (upper panel) and t = 0.5 (lower panel),
and t14 = ε = 0. Dashed-dotted-dotted blue and dashed-dotted green
lines show 〈S2

e〉 and 〈S2
o〉, respectively, in the fRG approach with the

flow of the two-particle vertex (the corresponding curves are almost
indistinguishable for t = 0.05).
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even orbitals (〈ne/o,↑ne/o,↓〉 ≈ 0) due to weak connection of
these orbitals with quantum dots QD1,4, namely tpq � U (p ∈
{1, 4}, q ∈ {e, o}). The corresponding square of the spins on
quantum dots QD2 and QD3 〈S2

2,3〉 ≈ 3/4. The average 〈S2
o〉

monotonically increases up to a maximum value of 〈S2
o〉 =

3/4 at γ = 1 due to decrease of the coupling t4o between the
odd orbital and quantum dot QD4 (for our definition of the odd
orbital t4o = 0 for γ = 1 and t1o = 0 for any γ ). In contrast,
both hopping parameters t1e and t4e, associated with the even
orbital, increase with γ , which leads to a smooth decrease
of 〈S2

e〉. It is important to note that in this and the following
cases we find 〈S2

1(4)〉 close to its free-electron value 3/8, which
indicates that there are no local magnetic moments in quantum
dots QD1 and QD4.

Increase of the hopping strength t leads to delocalization
of the electronic states, which yields a gradual decrease of
the γ = 0 value of 〈S2

e/o〉. Starting with some sufficiently
large value of t , we find that 〈S2

e/o〉 → 3/8 for γ → 0, which
means that there are no magnetic local moments present in the
even/odd states. At the same time, as shown in Fig. 2, with the
increase of γ from γ = 0 to γ = 1, 〈S2

o〉 increases from 3/8
to the value 3/4, showing the presence of the local magnetic
moment in the odd state at γ � 0.6 (in this case 〈no,↑〉 ≈
1, 〈no,↓〉 ≈ 0, 〈ne,σ 〉 ≈ 0.5). This corresponds to the so called
singular Fermi liquid state [13,24,25] and is explained by
the fact that, regardless of the choice of t , the odd state is
almost disconnected from the leads at γ → 1 (in particular,
the hopping matrix element t4o associated with the odd states
decreases to zero) and hence, the local magnetic moment on
the odd orbital is always well defined when γ → 1. At the
same time, 〈S2

e〉 ≈ 3/8 remains almost unchanged with the
variation of γ , since this orbital remains strongly coupled
to the quantum dots QD1 and QD4, which, in turn, have a
direct hybridization with the leads; cf. Ref. [25]. Thus, in
contrast to the cases considered above, in this case only the
odd orbital is responsible for the appearance of an unscreened
local magnetic moment in the system.

In order to analyze the role of the neglected vertex correc-
tions, we compared the obtained results with those from fRG
calculations that account for the flow of the two-particle vertex
functions, which for the DQD system yielded agreement with
the NRG approach. To eliminate the problem of the diver-
gences of the vertices in the fRG flow, we use the counterterm
extension of the fRG approach (related discussion can be
found in Refs. [24,25]) with initial magnetic field H̃/� =
0.02, which is switched off linearly with � starting from the
scale �c/� = 0.02. It turns out that for intermediate and large
hopping parameters between the quantum dots min(ti j ) �
U, �(i, j ∈ {1, 2}), the renormalization of the two-particle
vertex produces only small quantitative changes to the self-
energy, obtained from the first-order fRG scheme (see, e.g.,
the results for 〈S2

e/o〉 for t = 0.5 shown in the lower panels of
Fig. 2). In the regime of small hopping strength max(ti j ) �
U, � the energy splitting between the spin-up and spin-down
components of the self-energy in the fRG approach taking
account of the flow of the two-particle vertex is somewhat
larger in comparison with that obtained in the first-order fRG
approach, and taking account of the flow of the two-particle
vertex leads to enhancement of the magnetic moments in the
QQD system (see upper panel of Fig. 2). However, even in

this case, the physical picture of the formation of the magnetic
moment in the quantum dot system remains unchanged.

Note that in the cases when we obtain 〈S2
e/o〉 ≈ 3/4, the

obtained values of the local moments suggest that they are not
screened by conduction electrons in the considered case of
the QQD system (the same applies to the DQD system). This
can be attributed to the presence of the effective hopping be-
tween even and odd states via QD4 and strong ferromagnetic
correlations between even and odd states, which originate
from ferromagnetic correlations between QD2,3 (see Fig. 12
below). These ferromagnetic correlations, together with the
charge transfer between the leads, preclude also the formation
of the two-channel Kondo effect (see, e.g., Ref. [63]).

We have verified that the same fRG approach for a sin-
gle quantum dot leads to a spin unpolarized solution for
H → 0, which mimics screening of the local moment at
T = 0. This approach also describes aspects of Kondo
physics, in particular, the Kondo plateau of conductance, and
as well it can properly estimate Kondo temperature from the
fRG calculation in a finite magnetic field [53]. Thus, the
considered fRG approach does not lead to an unphysical mag-
netic solution (even for the first-order truncation of the fRG
equations), as it takes place in the mean-field approximation,
and hence in our case the appearance of the (unscreened) local
magnetic moment phase at γ close to one is not an artifact of
the fRG approach.

B. Total conductance

In Fig. 3 we present the results for the gate voltage
dependence of the zero-temperature linear conductance
G = ∑

σ Gσ (where Gσ = (4e2/h)�L�R|Gr
14;σ (ω = 0)|2,

Gr = G−−;0 − G−+;0 is the retarded Green’s function in the
end of the fRG flow), obtained by numerical integration
of Eq. (8) for various hopping parameters (t, γ ) ∈ {(0.05,

0.9), (0.5, 0.9), (0.5, 0.1)}, t14 = 0; the case of finite t14 is
considered in the next subsection. We use here the Landauer
expression for conductance, since we consider the T = 0 case
and we have a vanishing imaginary part of the self-energy ��

in our truncation, which implies physically that we map the
interacting system onto the renormalized noninteracting one.

It can be seen that in the cases (t, γ ) = (0.05, 0.9) and
(t, γ ) = (0.5, 0.9), which are characterized by the presence of
the almost local magnetic moment(s) in the quantum dots at
ε = 0, the gate voltage dependence of the linear conductance
shows abrupt changes in the narrow vicinity of some gate
voltage. This behavior of the conductance is associated with
the quantum phase transitions at some critical gate voltage
εc from the local magnetic moment to the “paramagnetic”
regime of the system analogous to the ones that take place
in the parallel double dot system [13,24,25]. The occupation
numbers 〈ne,o〉 and squares of the local moments 〈S2

e,o〉 are
close to their ε = 0 values at |ε| < εc, and correspond to the
paramagnetic state at |ε| > εc. The dependence of the linear
conductance on the gate voltage exhibits near |ε| = εc the
presence of the asymmetric Fano-like resonance for (t, γ ) =
(0.5, 0.9), when for ε = 0 the spin-half local magnetic mo-
ment is present and the sharp peak of the conductance for the
(t, γ ) = (0.05, 0.9) case, which in turn corresponds to two
spin-half local magnetic moments in the quantum dot ring at
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FIG. 3. Upper/middle panels: The gate voltage dependence of
the zero-temperature linear conductance G for (t, γ ) = (0.05, 0.9)
(dashed red line), (t, γ ) = (0.5, 0.9) (solid black line), and
(t, γ ) = (0.5, 0.1) (dashed-dotted blue line) in the fRG approach
without/with the flow of the two-particle vertex. Lower panel:
The conductance in the first-order perturbation theory (solid green
line) and in the mean-field approach (dashed-dotted purple line) for
(t, γ ) = (0.5, 0.9). t14 = 0 for all plots.

zero gate voltage. For the case (t, γ ) = (0.5, 0.1), when no
magnetic moments exist in the quantum dots, G(ε) is a smooth
nonmonotonic function of ε.

The corresponding results for the linear conductance with
account of the vertex flow are presented in the middle panel of
Fig. 3. One can see that the conductance obtained within the
scheme, which does not include the flow of the two-particle
vertex functions, qualitatively reproduces the general patterns
and the overall features of the corresponding results with the
flow of the vertex. It is also necessary to note that although

in all cases the general behavior of the conductance remained
the same in the vicinity of the quantum phase transition after
accounting for the flow of the two-particle vertex functions,
the quantum phase transition point εc shifts toward a lower
gate voltage.

To emphasize the importance of using the fRG approach,
which yields nontrivial results already in the truncation, ne-
glecting flow of the two-particle vertex, we also show in the
lower panel of Fig. 3 the results for the linear conductance
in the first-order perturbation theory (PT) and mean-field ap-
proach (MF) for (t, γ ) = (0.5, 0.9). Within the MF approach,
the conductance is strongly suppressed near ε = 0 compared
to the fRG results. This is mainly due to the overestimation
of the splitting between the spin-up and spin-down states
in the MF approach, which does not allow us to approach
even approximately unitary value of conductance at small
ε. At the same time, the MF approach, yielding substantial
spin splitting at small ε, is able to predict the existence of
the phase with the local magnetic moment. In contrast, the
PT theory predicts only the symmetric phase without local
moments for all ε, although the conductance near ε = 0 in the
PT approach is larger than in the MF and somewhat closer to
the unitary limit. Note that the resonance near ε ≈ 0.8� in the
PT approach is not related to the transition between different
magnetic regimes and arises solely due to the interaction-
induced dependence of the perturbation theory energy levels
of the QQD system on the gate voltage.

C. Spin-resolved conductances

In Fig. 4 we consider spin-resolved conductances Gσ (ε)
in the case of a single local moment (t, γ ) = (0.5, 0.9) that
is most interesting for practical applications, since in this case
strong difference between the transport of two spin projections
is expected (we still assume vanishingly small magnetic field
that orients the local moment along the z axis and therefore
creates finite spin splitting of the states; cf. Ref. [24]). At
t14 = 0 we find finite spin-up and spin-down conductances,
except the narrow resonance region. While at finite t14 the de-
pendence of conductance G↓(ε) for minority spin projection
remains qualitatively similar to that for t14 = 0, the conduc-
tance for the majority spin projection G↑(ε) is suppressed with
respect to the t14 = 0 case, and above a certain value of t14

vanishes at some gate voltage, forming a plateau with a small,
almost vanishing conductance. This vanishing of conductance
occurs due to destructive interference of different paths of
propagating of spin-up electrons (note that the dependence
on the spin occurs due to preferred orientation of the spin of
electrons along the field in the even state, which is favored by
ferromagnetic correlations between even and odd orbitals and
orientation of the local moment along the field).

To get further insight into the mechanism of the con-
ductance in the QQD system and its suppression for the
majority spin projection, we consider partial contributions
to the conductance through various states of the system, in
which energies λm (including imaginary parts corresponding
to the damping due to connection to the leads), m = 1 . . . 4,
are determined from the diagonalization of inverse Green’s
function [Gr

σ (0)]−1 in the end of the flow [due to frequency
independence of the self-energy these eigenvalues provide
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FIG. 4. The gate voltage dependence of the spin-up (σ =↑,
solid red lines) and spin-down (σ =↓, dashed black lines) zero-
temperature linear conductance Gσ for (t, γ ) = (0.5, 0.9) and t14 =
0 (a), t14 = � (b), and t14 = 2� (c) in the fRG approach without the
flow of the two-particle vertex.

also poles of the analytically continued Green’s function
Gr

σ (ω) in the lower half plane]. The obtained eigenstates can
be approximately represented as

|es1〉 ≈ |1〉 − |4〉,
|es2〉 ≈ α(|2〉 + |3〉) − (|1〉 + |4〉),

(10)
|es3〉 ≈ |2〉 − |3〉,
|es4〉 ≈ α(|1〉 + |4〉) + (|2〉 + |3〉)

(α depends on the parameters of the system and the spin
projection, |i〉 denotes the state with the considering spin
projection σ on QDi). Note that the approximations given by
Eq. (10) become exact in the limit γ → 1. As it is shown
in Appendix B, the states |es1,2,4〉 are similar to those in the
three quantum dots chain, which corresponds to QD1 ↔ (even
state of QD2,3) ↔ QD4 subsystem of QQD. In particular, the
state |es1〉 describes the resonant tunneling between QD1,4;
the states |es2,4〉 describe sequential tunneling through the

FIG. 5. Conductances G↑,11 (solid black line), G↑,st = G↑,22 +
G↑,44 + 2G↑,24 (dashed red line), and the interference contribution
G↑,if = 2(G↑,12 + G↑,14) (dashed-dotted blue line) as a function of
gate voltage ε for (t, γ ) = (0.5, 0.9), t14 = 0 (upper panel), and
t14 = 2� (lower panel).

even state, as well as the tunneling via the hopping t14 (when
present). Finally, the state |es3〉 is the odd state of QD2,3,
discussed above. By representing Gσ = ∑

mm′ Gσ,mm′ , where

Gσ,mm′ = (4e2/h)�L�RRe
[
Pσ

m

(
Pσ

m′
)∗]

, (11)

we individuate the contributions to the conductance through
individual eigenstates (m = m′) and their interference (m �=
m′), Pσ

m = U σ
1m[U σ ]−1

m4/λ
σ
m, where U σ

im is the matrix of the
eigenvectors of the Green’s function [Gr

σ (0)]−1. We find that
the odd state |es3〉 does not contribute to the conductance, ex-
cept for the narrow region of gate voltages near the resonance.

The other contributions G↑,mm′ are shown in Fig. 5, where
we group together the contributions of states |es2,4〉. One
can see that for t14 = 0 the biggest contribution to the con-
ductance G↑ in the region of the gate voltages below the
resonance comes from the resonant tunneling (G↑,11); for
σ =↑ the sequential tunneling contribution Gσ,st = Gσ,22 +
Gσ,44 + 2Gσ,24 and its interference Gσ,if = 2(Gσ,12 + Gσ,14)
with the resonant tunneling path are small, similarly to the
conductance of the three-dot chain (see Appendix B). With
switching on hopping t14 the situation changes drastically:
the resonant tunneling contribution G↑,11 is suppressed due to
the shift of the energy levels and it becomes comparable to the
contribution from the sequential tunneling G↑,st . At the same
time, these two contributions strongly interfere with each
other, such that the total conductance vanishes near ε = 0.8�.
For another spin projection (σ =↓, not shown) we find the
same resonant tunneling contribution G↓,11 ≈ G↑,11, but for
t14 = 2� much smaller sequential G↓,st and interference G↓,if
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FIG. 6. The average square of a magnetic moment 〈S2
e(o)〉 in the

even (dashed black line) and odd (solid red line) states as a function
of bias voltage V for (t, γ ) = (0.05, 0.9) (a), (t, γ ) = (0.5, 0.9) (b),
and (t, γ ) = (0.5, 0.1) (c).

contributions than the corresponding contributions for σ =↑;
the interference contribution G↓,if is also positive for t14 =
2�. These effects show the possibility of using even a single
QQD system as a spin filter in spintronic devices and they
can be further enhanced in quantum networks (cf. Ref. [34]),
which, however, will be studied elsewhere. We have verified
that for the DQD system in a similar geometry (with direct
hopping between the leads included) the suppression of the
majority conductance is much smaller than for QQD system,
which is due to absence of resonant tunneling eigenstate |es1〉;
see Appendix C.

IV. NONEQUILIBRIUM REGIME (V �= 0)

A. Local magnetic moments

Let us consider the impact of nonequilibrium zero-
temperature conditions with a finite bias voltage V applied
on the local magnetic moments. We again consider in this
subsection the case t14 = ε = 0 (with small finite ε and finite
t14 yielding qualitatively similar results) and focus on the
quantum dot systems with the hopping parameters (t, γ ) ∈
{(0.05, 0.9), (0.5, 0.9), (0.5, 0.1)}, which in the equilibrium
case V = 0 correspond to three different physical situations,
discussed in previous subsection: an almost local magnetic
moment in both even and odd states (or, equivalently, on the
quantum dots QD2 and QD3), the moment in the odd state
(i.e., distributed between the QD2 and QD3 quantum dots),
and the absence of a local magnetic moment in the system,
respectively.

The dependencies of the average square of the spin 〈S2
e/o〉

in the even and odd orbitals on bias voltage V for the first
case (t, γ ) = (0.05, 0.9) are shown in Fig. 6(a). One can
see that increasing bias voltage suppresses the equilibrium
value of 〈S2

e/o〉, leading to a double-step behavior, which is

-0.5

0

0.5

e/
o,

/

0 1 2 3 4
V/

0

0.5

1

t e
o/

FIG. 7. Upper panel: The renormalized energy levels of the odd
states εo,σ [thick solid (red) line for σ =↑ and thin solid (black) line
for σ =↓] and the even states εe,σ [thick dashed (green) line for σ =↑
and thin dashed (blue) line for σ =↓] as a function of bias voltage
V . Lower panel: The renormalized hopping matrix element tσ

eo (solid
black/dashed red line for σ =↑ / ↓) as a function of bias voltage V
for (t, γ ) = (0.05, 0.9).

related to the strong nonlinear change of the renormalized
system parameters with the bias voltage. In Fig. 7 we plot
the renormalized energy levels of the even/odd orbitals εe/o,σ

and hopping parameters tσ
eo (the other system parameters are

not renormalized) as a function of V . We can see that at not
too large V < 0.5� the increase of the bias voltage does not
lead to a significant change of the renormalized parameters
relative to their equilibrium (V = 0) values and tσ

eo is pinned
to zero as shown in the lower panel of Fig. 7. Therefore,
all nonzero hopping parameters are proportional to t and
small because of the initial choice of t (t/� = 0.05). In this
case, the energy levels of the isolated quantum dot system
(eigenvalues of the effective noninteracting Hamiltonian) Ej,σ

( j = 1, 4) can be roughly estimated as a set of one-particle
energy levels {Ej,σ } ≈ {ε j,σ }. This approximation, and the
observation that within the considered bias voltages range
εe/o,↑ < μR = −V/2 and εe/o,↓ > μL = V/2 (see Fig. 7), al-
lows us to conclude that 〈ne/o,↑〉 ≈ 1 and 〈ne/o,↓〉 ≈ 0 for
these values of V , which reflects formation of local magnetic
moment with the spin, aligned along infinitesimally small
magnetic field.

With further increase of the bias voltage the renormalized
energy levels εe/o,σ corresponding to different spin projections
approach each other (see Fig. 7), and, therefore, the spin
splitting decreases with V . It is important that the spin splitting
does not collapse completely even for sufficiently large values
of the bias voltage. In Fig. 7 we observe the region of the
intermediate voltages 0.5 � V/� � 2.1 for which the splitting
of the energy levels is still significant. In contrast to the
above considered case, the bias voltages in this range lead
to the appearance of a nonzero hopping amplitude between
the even and odd orbitals tσ

eo � t , which increases monoton-
ically with increasing bias voltage, does not depend on the
spin orientation, and provides additional hybridization of the
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FIG. 8. The occupation numbers in the odd orbitals 〈no,σ 〉 [thick
solid (red) line for σ =↑ and thin solid (black) line for σ =↓] and
the even orbitals 〈ne,σ 〉 [thick dashed (green) line for σ =↑ and
thin dashed (blue) line for σ =↓] as a function of bias voltage
V for (t, γ ) = (0.05, 0.9) (a), (t, γ ) = (0.5, 0.9) (b), and (t, γ ) =
(0.5, 0.1) (c).

even/odd states due to the appearance of new possible paths
between these states and the leads. The combined effect of
sharp increase of this amplitude and decrease of of the energy
levels splitting results in an abrupt drop of 〈S2

e/o〉 as seen in
Fig. 6(a). The value of the square of the moment 〈S2

e/o〉 in the
range 0.5 � V/� � 2.1 is different from the noninteracting
value 3/8 due to correlations. This intermediate state can
be considered as obeying a fractional quasilocal magnetic
moment in even and odd orbitals, whose appearance is possi-
ble entirely due to the considered nonequilibrium conditions.
In the regime of high bias voltage V � 2.1� the even/odd
spin-up and spin-down states are only slightly split and tσ

eo
practically does not change with increasing V [see Fig. 7(a)].
Such a small splitting in the spin space results in the absence
of the magnetic moments in the system and we find 〈S2

e/o〉 ≈
〈S2

j〉 ≈ 3/8.
The calculation of the average occupation numbers con-

firms the results, obtained above [see Figs. 8(a) and 9(a)]. In
the range V � �/2 for the quantum dots QD1 and QD4 we
find 〈n1(4),σ 〉 ≈ 0.5 (the corresponding bias voltage dependen-
cies are not presented here). Consequently, we have 〈n↑〉 ≈ 3
and 〈n↓〉 ≈ 1 for the total occupation number of the states
with spin-σ projection 〈nσ 〉 = ∑

j 〈n j,σ 〉 (〈n2,σ 〉 + 〈n3,σ 〉 =
〈ne,σ 〉 + 〈no,σ 〉), and therefore, 〈n↑〉 − 〈n↓〉 ≈ 2 for these bias
voltages (note that we consider only the half-filling case ε =
0 and H → 0, which implies that 〈n〉 = 〈n↑〉 + 〈n↓〉 = 4).
Thus, one can conclude that at bias voltages V � �/2 the
values of the occupation numbers and spin-spin correlation
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FIG. 9. The total occupation number of the spin-up states 〈n↑〉
(solid red line) and spin-down states 〈n↓〉 (dashed black line) as
a function of bias voltage V for (t, γ ) = (0.05, 0.9) (a), (t, γ ) =
(0.5, 0.9) (b), and (t, γ ) = (0.5, 0.1) (c).

functions almost coincide with the equilibrium ones. For
larger V the obtained occupation numbers 〈ne/o,↑〉 (〈ne/o,↓〉)
are less (greater) than those for the case of V � �/2 [see
Fig. 8(a)]. However, the difference between the occupa-
tion numbers of spin-up and spin-down states still remains
significant in the range 0.5 � V/� � 2.1. As can be seen
from Fig. 8(a), in the case of V � 2.1� we have 〈ne/o,↑〉 ≈
〈ne/o,↓〉 ≈ 0.5.

Let us now consider the case (t, γ ) = (0.5, 0.9), when the
hopping matrix elements ti j are an order of magnitude larger
than in the previous case, but have the same ratio between
them. In this case the renormalized energy levels εe/o,σ (see
Fig. 10) behave near the equilibrium quite analogously to
the above considered case (t, γ ) = (0.05, 0.9), but despite
the presence of the large splitting between the spin-up and
spin-down states of the even and odd orbitals the appearance
of local magnetic moment takes place only on the odd orbital,
which is clearly seen from the bias voltage dependence of
〈S2

e/o〉 shown in Fig 6(b). As in the equilibrium case, for
V � �/3 we obtain 〈S2

o〉 ≈ 3/4, while 〈S2
e〉 ≈ 3/8. In contrast

to the above considered case of small t , the hopping matrix
elements tσ

eo are nonzero even in the low bias region as shown
in the lower panel of Fig. 10. However, the generated hopping
parameters tσ

eo are small enough and do not provide the hy-
bridization between the odd orbital and the leads sufficient
to destroy the magnetic moment. In contrast to the case
(t, γ ) = (0.05, 0.9) there is no region of intermediate level
splitting, and for V � �/3 we have |εe/o,↑ − εe/o,↓| ≈ H → 0.
This leads to the sharp decrease of 〈S2

o〉 near the voltage
V = �/3 from almost its maximum value of 〈S2

o〉 = 3/4 to
〈S2

o〉 ≈ 3/8 [see Fig. 6(b)], such that the magnetic moment
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FIG. 10. The same as Fig. 7 for (t, γ ) = (0.5, 0.9).

is absent for V � �/3. As for the above considered case of
small t , we have 〈no,↑(↓)〉 ≈ 1 (0) in the regime with the
magnetic moment (V � �/3) and 〈no,↑/↓〉 ≈ 0.5 for larger V .
At the same time, we find that 〈ne,σ 〉 ≈ 0.5 for all values of
V . As a result, the local moment regime is characterized by
a difference in the total occupation numbers for the spin-up
and spin-down states approximately equal to one [〈n↑〉 ≈ 2.5
and 〈n↓〉 ≈ 1.5; see Fig. 9(b)]. It is worth noting that the small
difference between the occupation numbers 〈ne,↑〉 and 〈ne,↓〉
for V � �/3 [see Fig. 8(b)] is likely due to the overestimation
of the spin splitting of the energy levels of the even orbital
in the fRG scheme, which does not take into account the
renormalization of the nondiagonal self-energy elements in
the considered order of truncation. This small splitting is not
expected to affect the obtained results regarding the presence
of local magnetic moment at finite V .

Finally, we consider the case (t, γ ) = (0.5, 0.1) in which
the quantum dot system has a strong hopping asymmetry and
both the even and odd orbitals are coupled to the quantum dots
QD1 and QD4 by almost comparable hopping parameters:
t1e ≈ t4o ≈ 0.5, t1o = 0, and t4e ≈ 0.1. In this case we do
not find any splitting between spin-up and spin-down energy
states of the even/odd orbital (see Fig. 11) and, as a conse-
quence, 〈S2

e/o〉 ≈ 3/8 for an arbitrary bias voltage, as can be
seen in Fig. 6(c). In addition, we find a strong renormalization
of the energy levels; in particular εe,σ (εo,σ ) ∝ μL (μR) within
a wide range of bias voltage near V = 0 and slowly decreases
(increases) with further increase of bias voltage. Note that tσ

eo
shows linear behavior for bias voltages V � 3� and becomes
almost constant at higher bias voltages (see the lower panel of
Fig. 11). This behavior of the renormalized parameters leads
to the possibility of a significant deviation of the occupation
numbers 〈ne/o,σ 〉 [see Fig. 8(c)] from their equilibrium values

〈ne/o,σ 〉 V →0≈ 0.5, while the occupation numbers 〈n↑,↓〉 ≈ 2 are
only slightly different from each other [see Fig. 9(c)]. In the
limit of large bias voltages V � � the occupation numbers
converge to 〈ne,σ 〉 = 1 and 〈no,σ 〉 = 0 in contrast to the pre-
vious cases, where 〈ne/o,σ 〉 ≈ 0.5 for V � �. This behavior
originates from the fact that in the considered case the cou-
pling between the even (odd) orbital and the left (right) lead is
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FIG. 11. The same as Fig. 7 for (t, γ ) = (0.5, 0.1).

much stronger than the corresponding coupling with the right
(left) lead, which makes the filling of the even (odd) orbital
energetically (un)favorable for V � �. Similar conclusions
can be made concerning the fillings at the individual quantum
dots, and, as expected from the above qualitative discussion,
for V � � we find 〈n1(2),σ 〉 ≈ 1, while 〈n3(4),σ 〉 ≈ 0.

The spin-spin correlation functions 〈SiS j〉 corresponding
to the above-considered regimes of the system are shown in
Figs. 12(a)–12(c). One can see that the formation of the mag-
netic moment in the system is accompanied by the appearance
of ferromagnetic correlation between spins on the quantum
dots QD2 and QD3, 〈S2S3〉 > 0, which becomes stronger with
increasing value of the magnetic moment. For the regimes
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FIG. 12. The spin-spin correlation function 〈S1S2〉 (dashed red
line), 〈S1S3〉 (solid blue line), and 〈S2S3〉 (dashed-dotted black
line) as a function of bias voltage V for (a) (t, γ ) = (0.05, 0.9),
(b) (t, γ ) = (0.5, 0.9), and (c) (t, γ ) = (0.5, 0.1). The value of
〈SeSo〉 at zero bias voltage is indicated by the gray circle.
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without magnetic moment we find 〈S2S3〉 ≈ 0. Thus, in
the cases (t, γ ) = (0.05, 0.9) and (t, γ ) = (0.5, 0.9), 〈S2S3〉
shows steplike behavior as a function of bias voltage. The
spin-spin correlation functions 〈S1S2〉 = 〈S3S4〉 and 〈S1S3〉 =
〈S2S4〉 are always negative (antiferromagnetic) and are pro-
portional in magnitude to the hopping amplitudes between the
corresponding quantum dots, i.e, |〈SiS j〉| ∼ ti j . We also note
that for all three considered cases the spin-spin correlation
between the quantum dots QD1 and QD4 is almost absent,
〈S1S4〉 ≈ 0.

B. Current J

In this subsection we first present zero-temperature results
for the J-V characteristics and the bias voltage dependence
of the differential conductance G = e(dJ/dV ) for the cases
considered in the previous subsection. The current with spin
σ through the lead α is written as [64]

Jα
σ = 2ie

h
�α

∑
j


α
j

∫
dω

{
f (ω − μα )

[
Gr

j j;σ (ω) − Ga
j j;σ (ω)

]
+G−+;0

j j;σ (ω)
}
, (12)

where Ga = G−−;0 − G+−;0 is the advanced Green’s function
in the end of the fRG flow. Using the explicit form of the
propagator G given by Eq. (5) we can reduce the above
expression to a more convenient form

Jα=L(R)
σ = 2ie

h
�α

∑
j


α
j

∫ μL

μR

G+−(−+);0
j j;σ (ω)dω, (13)

where we have used that the nondiagonal components of the

self-energy do not flow ∂��kk
′
;�

j j′
∼ δkk′ δ j j′ [see Eq. (8)] and

we have taken the zero-temperature limit for Fermi functions.
The total current J can be calculated as

J = 1

2

∑
σ

(
JL
σ − JR

σ

)
. (14)

Note that |JR
σ | = JL

σ due to the conservation of the current.
The dependencies of the corresponding currents J on the bias
voltage V for t14 = ε = 0 are shown in Fig. 13. We also plot
the zero-temperature differential conductance G = ∑

σ Gσ ,
where Gσ = e(dJL

σ /dV ) = −e(dJR
σ /dV ), in Fig. 14. In the

equilibrium limit V → 0 the current vanishes and for the
differential conductance we obtain

G0
σ = ie2

h
�L

[
G+−;0

11;σ (μL − 0) + G+−;0
11;σ (μR + 0)

]
, (15)

which coincides with the conductance obtained from the equi-
librium Matsubara functional renormalization group method
within the Landauer formalism (see Appendix D). In the op-
posite limit of large bias voltage V � �, the current saturates
and we find that G → 0 for all regimes of interest.

As one can see from Fig. 13(a) in the case of (t, γ ) =
(0.05, 0.9), the J-V curve shows a staircaselike structure with
two sharp steps, which take place at the same bias voltages,
at which 〈S2

e/o〉 show stepike behavior in Fig. 6(a). As a
result, the differential conductance G (see Fig. 14) exhibits
two narrow peaks located near V ≈ 0.5� and V ≈ 2.1�; the
first conductance peak almost reaches the unitary limit of the

0
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3

J/
(e

/h
)

0

0.04

J/
(e

/h
)

0 1 2 3 4
V/

0

0.02

J/
(e

/h
)

(a)

(b)

(c)

FIG. 13. Zero-temperature current J as a function of bias voltage
V for (t, γ ) = (0.05, 0.9) (a), (t, γ ) = (0.5, 0.9) (b), and (t, γ ) =
(0.5, 0.1) (c), and t14 = ε = 0.

conductance G = 2e2/h. For bias voltages outside the regions
of conductance peaks, we find G ≈ 0. These two peaks are
in contrast to the single peak in the gate voltage dependence
of the linear conductance at V = 0 (see Fig. 3). It is also
important to note that the J-V characteristic contains regions in
which the current decreases with the increase of bias voltage,
leading to the negative differential conductance (NDC). As
will be shown below, the appearance of NDC is associated
with a strong dependence of the renormalized system param-
eters on the bias voltage, which is in turn induced by the
electron-electron interaction.

For (t, γ ) = (0.5, 0.9), the current shows a small-
amplitude abrupt jump [not distinguishable in Fig. 13(b)],

0 1 2 3 4

V/

-0.5

0

0.5

1

1.5

2

G
/(

e2 /
h)

FIG. 14. Zero-temperature differential conductance G as a
function of bias voltage V for (t, γ ) = (0.05, 0.9) (dashed red
line), (t, γ ) = (0.5, 0.9) (solid black line), and (t, γ ) = (0.5, 0.1)
(dashed-dotted blue line: the result for the conductance G was
multiplied by 10), and t14 = ε = 0.
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which is located, as in the above case, at the transition between
the different magnetic regimes and results in the asymmetric
resonance peak of the differential conductance for V ≈ �/3.
It is interesting to note that the conductance reaches its
maximum value in the vicinity of the resonance. Overall in
this case, the conductance/current takes significantly higher
values compared with those of (t, γ ) = (0.05, 0.9). This
holds for U = 0 and is related to the large coupling strength
between quantum dots. In addition, the conductance becomes
negative in two regions of bias voltage: the narrow region
near the conductance dip and the semi-infinite one for higher
voltages.

Finally, in the case of (t, γ ) = (0.5, 0.1), where the mag-
netic moment is absent for any value of V , the current does
not show any abrupt behavior and changes smoothly with bias
voltage, as shown in Fig. 13(c). However, the J-V character-
istic is strongly nonlinear, which is the result of the nonlinear
behavior of the renormalized system parameters. The NDC
effect is also present in this case.

As is evident from the above results, each sharp jump
in the current indicates a transition between the regimes
with different magnetic moment values. At the same time, a
negative differential conductance appears even in the regime
without local magnetic moments, as we have shown for the
(t, γ ) = (0.5, 0.1) case. In order to get insight into the origin
of the NDC behavior, consider the explicit expression for the
zero-temperature conductance Gσ . Direct differentiation of
Eq. (13) yields Gσ = G0

σ + GI
σ , where

GI
σ = e2

h

∑
p

Kp,σ
dεp,σ

dV
(16)

with

Kp,σ = 2i�L

∫ μL

μR

(
G+−;0

1p;σ G−−;0
p1;σ − G++;0

1p;σ G+−;0
p1;σ

)
dω, (17)

where p ∈ {1, 2, 3, 4}. The contribution GI represents the
essentially nonequilibrium part of the conductance (which
vanishes in the limit V → 0), corresponding to passing the
current through each of the quantum dots p, and, as shown
below, it is responsible for the NDC phenomenon (we note
that the contributions G0

σ are also affected by finite bias
voltage, but remain always positive; see Appendix D).

As an example, let us analyze the magnitude and sign of the
contributions G0

σ and GI
σ to the differential conductance Gσ

for the case (t, γ ) = (0.5, 0.1), t14 = ε = 0, and σ =↑ (for
σ =↓ we obtain the same results). Note that the conductance
G↑ reproduces all the features of the total conductance G [see
Fig. 15(d)]. The term G0

↑ is positive for any bias voltage V
(see Appendix D), and thus does not contribute to the NDC
effect. The sign of GI

σ is determined by the sign of the sum of
the terms Kp,σ (dεp,σ /dV ). As shown in Fig. 15(a), dεp,↑/dV
can be positive definite (p = 1), negative definite (p = 4),
or even change sign (p = 2, 3). Moreover, we find that the
coefficients Kp,↑ are also not sign definite [see Fig. 15(b)].
It is important to note that |dε2(3),↑/dV | > |dε1(4),↑/dV | and
|K2(3),↑| � |K1(4),↑| in a wide region of intermediate values of
V , which means that terms corresponding to the contribution
of the quantum dots p = 2, 3 give the main contribution to
GI

↑. This is supported by the bias voltage dependence of the
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FIG. 15. The panels (a)–(c): The bias voltage dependence of
dεp,σ /dV (a), Kp,σ (b), and Dp,σ (c) for σ =↑. The thin solid (blue),
thick solid (red), thick dashed (black), and thin dashed (green) lines
correspond to p = 1, 2, 3, and 4, respectively. The lower panel (d):
The bias voltage dependence of the differential conductance Gσ [thin
solid (black) line], G0

σ [thick solid (red) line], and GI
σ [thick dashed

(blue) line] for σ =↑.

functions Dp,↑ = Kp,↑(dεp,↑/dV ) shown in Fig. 15(c). As we
can see, D2(3),↑ is negative definite (almost everywhere) and
has a much greater impact on the conductance, while D1(4),↑
is predominantly negative and small in magnitude for all bias
voltages. As a result, we find that GI

↑ is always negative for
arbitrary value of V and is comparable in magnitude with
G0

↑ [see Fig. 15(d)], leading to the strong suppression or
even change of sign of the Landauer-type G0

↑ contribution to
the differential conductance G↑. This eventually leads to the
appearance of the NDC effect when the nonequilibrium part
dominates, |GI

↑| > G0
↑.

Comparing the obtained results for t14 = ε = 0 to those for
the DQD system (see Appendix C), we find that the double
quantum dot system shows a qualitatively similar picture of
the magnetic moment(s) and differential conductance to that
in the QQD system. In particular, as for the QQD system, in
the DQD system regimes with two, one, or none of the mag-
netic moment(s) in quantum dots can be realized depending
on the choice of the geometry of the system.

Finally, we also present the results for the bias voltage
dependence of the spin-resolved currents at finite t14 (see
Fig. 16). In this case we choose ε = 0.8�, which corresponds
to the gate voltage near the minimum of G↑(ε) conductance.
One can see that for t14 = 2�, when in the equilibrium
G↑(ε) = 0, the corresponding current J↑(V ) almost vanishes
in finite range of bias voltages V < 0.15�, and remains small
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FIG. 16. Zero-temperature current Jσ = JL
σ = |JR

σ | for spin-up
(σ =↑, solid red lines) and spin-down (σ =↓, dashed black lines)
electrons as a function of bias voltage V for (t, γ ) = (0.5, 0.9), ε =
0.8�, and t14 = � (upper panel), t14 = 2� (lower panel). Insets zoom
the Jσ (V ) dependencies at small V .

outside this range up to V ∼ �. This shows a possibility of
spin filtering by the QQD system even at finite small bias
voltages.

V. CONCLUSIONS

In summary, in the zero-temperature limit we have dis-
cussed the possibility of the formation of magnetic moments
near equilibrium and nonequilibrium electron transport in the
QQD system coupled to two leads within the nonequilibrium
functional renormalization group approach. Our calculations
have shown that depending on the interdot coupling (hopping)
configuration and bias voltage V , different magnetic regimes
can be realized in the QQD system.

We have first explored the formation of the magnetic
moments in the equilibrium (V = 0) case. In that case we have
shown that the considered fRG approach neglecting vertex
flow reproduces qualitatively correct results, obtained within
a more sophisticated fRG approach, which accounts for the
flow of the vertices, and which in turn showed good agreement
with the numerical renormalization group analysis for DQD
system.

We have found three different magnetic regimes that can be
achieved in the QQD system by tuning the interdot hopping
parameters with two, one, or no magnetic moments. As for
the parallel double quantum dot system, this difference can
be understood on the basis of the “even-odd” states. The first
case (two magnetic moments) corresponds to the situation in
which all interdot hopping parameters are small compared
to the other parameters of the system. We have found that
the realization of the second and third cases depends on the
interdot coupling of the “odd” states: a well-defined magnetic
moment occurs when the coupling of the odd states is suffi-
ciently small.

While the above mentioned properties are similar to the
DQD system, in the QQD system the possibility of resonant
tunneling between the opposite quantum dots yields some-
what different transport properties from those in the DQD

system. This difference becomes especially prominent in the
presence of direct hopping between the opposite quantum
dots, attached to the leads. In particular, in the presence of this
hopping and one local moment in the ring, the conductance of
one of the spin projections, oriented along the infinitesimally
small magnetic field, is suppressed due to the interference
effects, such that the QQD system can be used in spintronic
devices.

Then we have considered the influence of the nonequi-
librium conditions, appearing because of finite bias voltage,
on the above listed magnetic states of the QQD system. We
have found that magnetic moments (if they exist) remain
stable in the wide range of voltages near V = 0. At the
same time, for higher bias voltages the destruction of the
magnetic state occurs and proceeds in one (two) stage(s) for
the QQD systems whose coupling configuration allows the
formation of the one (two) local moment regime. For the
two-stage process the intermediate state possesses fractional
magnetic moment. The current-voltage characteristics and the
differential conductances of the system exhibit sharp features
at the transition points between different magnetic phases and
show negative differential conductance (NDC) behavior.

It is important to note that although the frequency-
independent fRG approximation used in the present study
is applicable for the study of the formation of local mag-
netic moment(s) and transport properties of the quantum dot
systems in the regime of small to intermediate Coulomb
interactions, it cannot be used to describe spectral functions
of the system, as well as various properties associated with
the imaginary part of the self-energy, for example, the spin
relaxation processes [65]. For description of these properties
the numerical approaches, in particular the numerical renor-
malization group, should be further developed. At the same
time, the presented study can help to interpret/achieve new
results in experimental realizations of the QQD system, in-
cluding its use in spintronic devices, as well as being the guide
for studying larger quantum dot and nanoscopic systems,
which include closed path (ring) geometries, e.g., organic
molecules.
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APPENDIX A: THE TRANSFORMATION TO THE EVEN
AND ODD ORBITALS OF QD2,3

Following Refs. [24,25], it is convenient to
perform the canonical transformation from ({d j,σ }) to
(d1,σ , de,σ , do,σ , d4,σ ) states, where even- (de,σ ) and
odd-parity (do,σ ) states are defined as

(
de,σ

do,σ

)
= 1√

1 + η2

(
1 η

−η 1

)(
d2,σ

d3,σ

)
. (A1)
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FIG. 17. The hopping matrix elements between the quantum dots
QD1/QD4 and the even/odd orbitals t1(4)−e(o) as a function of γ for
ε = 0: t1e (dashed black line), t4e (dashed-dotted blue line), t4o (solid
red line).

Applying the above transformation to the Hamiltonian (2)
with U = 0, we get the Hamiltonian of the form

HQQD
U=0=

∑
p,σ

(εp − σH )d†
p,σ dp,σ

−
∑

σ

[(teod†
e,σ do,σ + t1ed†

1,σ de,σ + t4ed†
4,σ deσ

+ t1od†
1,σ do,σ + t4od†

4,σ do,σ + t14d†
1,σ d4,σ ) + H.c.],

(A2)

where p ∈ {1, e, o, 4}, εe(o) = h2[ε2(3) + η2ε3(2)], and the
nonzero hopping matrix elements between new orbitals are
given by

t1e = h(t12 + ηt13) = h(1 + γ η)t,

t4e = h(t24 + ηt34) = h(γ + η)t,

t1o = h(t13 − ηt12) = h(γ − η)t, (A3)

t4o = h(t34 − ηt24) = h(1 − γ η)t,

teo = h2[η(ε2 − ε3)],

where h = (1 + η2)−1/2 and we set t12 = t34 = t, t13 = t24 =
γ t , where the parameter γ varies from zero to unity. Note that
in our case ε j = ε and hence teo = 0 for U = 0.

We define “odd” orbitals, where the (local) magnetic mo-
ment behavior is most pronounced, by choosing the parameter
η [appearing in Eq. (A1) and which has been arbitrary up to
this moment] from the condition of the minimum of the cou-
pling strength between the odd orbitals and the quantum dots
QD1 and QD4, which is equivalent to finding the minimum
of F (η) = |t1o| + |t4o|. This function has a minimum value
of F = (1 − γ 2)(1 + γ 2)−1/2t for two values of η, which
are η1 = γ and η2 = γ −1. It is easy to see that both values
of η correspond to the same physical situation, and we set
η = γ in the following discussion. Thus, we obtain t1e =
(1 + γ 2)1/2t, t4e = 2γ (1 + γ 2)−1/2t, t1o = 0, and t4o = (1 −
γ 2)(1 + γ 2)−1/2t for the corresponding hopping amplitudes
between QD1/QD4 and the even/odd orbitals. Figure 17
displays the ratio tpq/t (p ∈ 1, 4, q ∈ e, o) as a function of
the “asymmetry parameter” γ for ε = 0. For γ = 0, we have
t1e = t4o = t and t4e = t1o = 0. This result is expected since
in that case quantum dots are connected by t14 only (if it is
present) and the bases coincide: de,σ ≡ d2,σ , do,σ ≡ d3,σ . One
can see that with increasing symmetry of the quantum dot
system (increasing of the parameter γ ), hopping parameters

associated with the even-parity states (t1e, t4e) increase. In
contrast, the parameter t4o decreases with γ (note that t1o =
0). The latter means that the odd-parity orbitals, which are
chosen to be the orbitals with the minimal couplings to the
other ones and indicate or are responsible for the formation
of the magnetic moment in the system, are better and better
defined as the symmetry of the hopping parameters between
the quantum dots increases. When the system is completely
symmetric (γ = 1), i.e., ti j = t , we obtain t1e = t4e = √

2t
and t1o = t4o = 0; consequently, the odd states are completely
disconnected from the rest of the system for U = 0.

On the next step we take into account the on-site electron-
electron interaction U through the self-energy obtained from
integration of the fRG flow equation (8). It is important to
note that from the explicit form of Eq. (8) and the fact that
the self-energy � is frequency independent (and also real) it
follows that the Coulomb interaction U does not change the
hopping amplitudes ti j (i �= j; i, j ∈ {1 . . . 4}) and hence tpq

(p ∈ {1, 4}, q ∈ {e, o}) at our approximation level. Therefore,
in the fRG scheme with the flow of the self-energy only, the
initial interacting quantum dot system, described by Eq. (1)
of the main text, can be considered as the noninteracting one,
where energy levels are replaced by renormalized ones: ε j →
ε j,σ = ε j + �−−;�→0

j j;σ . In the even-odd basis, the parameter
teo is the only hopping term, which can be renormalized by
the interaction: teo → tσ

eo = h2[η(ε2,σ − ε3,σ )]. Note that if
we take into account the flow of higher-order vertices (for
example, the flow of the two-particle vertex) the situation
described above changes; in particular, new hopping matrix
elements will be generated. However, as we discuss in the
main text of the paper these processes do not significantly
influence the behavior of local magnetic moments.

APPENDIX B: THE CHAIN OF THREE QUANTUM DOTS
ATTACHED TO THE LEADS

To explain the physical content of the states (10) of the
QQD system, in this Appendix we consider a simpler problem
of a three quantum dots chain, which is tractable analytically
and models a subsystem QD1 ↔ |2〉 + |3〉 ↔ QD4 of the
QQD system, attached to the leads, where |2〉 + |3〉 corre-
sponds to the even energy level of QD2,3 and we assume that
the odd energy level of QD2,3 is almost detached from the
leads.

After projecting out the leads the corresponding inverse
zero-energy retarded Green’s function of the chain of three
quantum dots for each spin projection reads

[Gr (0)]−1 = −

⎛
⎜⎝

−i� t tLR

t ε t

tLR t −i�

⎞
⎟⎠, (B1)

where � is the hybridization of the left and right dots to
the leads, t is the hopping between the left and middle and
between the middle and right dots, tLR is the hopping between
the left and right dots (in this Appendix we denote by L the
left dot, M the middle, and R the right dot), and ε is the energy
shift of the middle quantum dot with respect to the left and
right dots. We assume that all effects of the interaction are

165114-14



LOCAL MAGNETIC MOMENTS AND ELECTRONIC … PHYSICAL REVIEW B 99, 165114 (2019)

in the renormalization of these parameters, similarly to the
consideration of the QQD system in the main text.

Let us consider first tLR = 0. Performing the inversion of
the Green’s function, we find the conductance of the chain
(per spin projection)

Gσ = 4e2

h
�2

∣∣Gr
LR(0)

∣∣2 = e2

h

1

1 + ε2�2/(4t4)
. (B2)

At ε = 0 the conductance is unitary due to resonant tunneling
of the electrons through the quantum dots. To figure out
which states contribute to the conductance we diagonalize the
Green’s function by representing GLR(0) = −∑

m Pm, where
Pm = U σ

Lm[U σ ]−1
mR/λσ

m is the partial contribution of the mth
eigenstate, λm are corresponding eigenvalues, and Uim are
eigenvectors of −Gr (0)−1. For the considered chain we find
the following eigenvectors:

|es1〉 = |L〉 − |R〉,
|es2〉 = 2α|M〉 − (|L〉 + |R〉), (B3)

|es3〉 = |M〉 + α(|L〉 + |R〉),

where

α =
√

8t2 + (ε + i�)2 − (ε + i�)

4t
. (B4)

The states (B3) are analogous to the states of QQD
system (10), except the odd energy level, which is not
present in the considered chain. The corresponding eigenval-
ues λ1 = −i�, λ2,3 = [ε − i� ∓

√
(ε + i�)2 + 8t2]/2. Using

these values and matrices U , we find partial contributions of
different states

P1 = 1

2i�
,

P2,3 = ∓4t2 + ε[ε + i� ±
√

8t2 + (ε + i�)2]

4(2t2 + i�ε)
√

8t2 + (ε + i�)2
. (B5)

One can see that at small ε the contributions P2,3 almost
compensate each other, such that the state |es1〉 is responsible
for the resonant tunneling. In the presence of direct hopping
tLR between the left and right dots we find the corresponding
leading contribution to the Green’s function P1 = 1/[2(i� +
tLR)], such that the resonant tunneling is suppressed by tLR.

On the other hand, for ε � t, tLR, � we find

P2 � − 1

2(i� − tLR)
+ t2

(i� − tLR)2ε
, (B6)

P3 � t2

ε3
, (B7)

such that for small tLR the large contribution of |es1〉 is almost
compensated by one for |es2〉, yielding small conductance in
the sequential tunneling regime Gσ � (4e2/h)t4/(ε2�2). The
contribution of the state |es3〉 is negligible in this case.

APPENDIX C: COMPARISON TO THE DOUBLE
QUANTUM DOT SYSTEM

In this Appendix we give a brief analysis of the transport
and magnetic properties of the parallel double quantum dot
system (DQD), which is schematically shown in Fig. 18.
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FIG. 18. The gate voltage dependence of the spin-up (σ =↑,
solid red lines) and spin-down (σ =↓, dashed black lines) zero-
temperature linear conductance Gσ of DQD system with γ = 0.9
with the direct hopping between the left and right leads tLR = 0 (up-
per panel) and (tLR = 4�) (lower panel) in the fRG approach without
the flow of the two-particle vertex. Inset: Schematic representation of
parallel double quantum dots (QD1 and QD2) connected to left (L)
and right (R) leads.

As previously, we focus on the zero-temperature limit.
To establish the relationship with the quadruple quantum
dot system (QQD) system, we restrict our attention to the
case of hopping diagonal asymmetry: tL(R)

1(2) = t, tR(L)
1(2) = γ t .

The hybridization functions �α
j = π |tα

j |2ρlead ( j ∈ {1, 2}, α ∈
{L, R}) can be written as �

L(R)
1(2) = �, �

R(L)
1(2) = γ 2�. For both

quantum dots we assume equal local Coulomb interactions
U1 = U2 = U and equal energy levels ε1,σ = ε2,σ = −σH ,
with the magnetic field H/U = 0.001.

In Fig. 18 we show the gate voltage dependence of the dif-
ferential conductance for each spin projection in the equilib-
rium (V = 0) for U = 2�, tLR = 0, and tLR = 4�. For tLR = 0
we find almost equal conductances of the two spin projections,
which is due to rather small spin splitting of the energy levels.
The plateau of the conductance at small ε corresponds to the
presence of local magnetic moment in the odd orbital and
appears due to pinning of the even energy levels to their value
at ε = 0. This pinning and plateau of G(ε) are similar to the
Kondo plateau for a single quantum dot [53]. For rather large
tLR = 4� both spin-up and spin-down conductances remain
of the same order of magnitude due to the weakness of the
interference effects. In particular, G↑/G↓ ∼ 0.5 in the spin-
split region |ε/U | � 0.6, except the narrow resonance region
(where the conductance G↑ tends to almost zero value due to
the destructive quantum interference). This is opposite to the
QQD system where the spin-up and spin-down conductances
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FIG. 19. Bias voltage dependence of the square of the total spin
〈S2〉 (upper panel) and the differential conductance G (lower panel)
of the double quantum dot system with tLR = ε = 0, γ = 0.9, and
� = 0.005U (thin red line) and � = 0.5U (thick black line).

can be substantially different in the spin-split region exclud-
ing the resonance. For example, for the QQD system with
(t, γ ) = (0.5, 0.9) (see Fig. 4 in the main text) in the region
below the resonance we found G↑/G↓ ∼ 0.25 for t14 = � and
G↑/G↓ reaching the minimal value of the order of 10−6 for
t14 = 2�.

In Fig. 19 we show the zero-temperature fRG results
for the differential conductance G and the average of the
square of the total spin 〈S2〉 as a function of bias voltage
V , obtained from numerically integrating the nonequilibrium
flow equation for the self-energy [Eq. (8) of the main text]
for tLR = ε = 0, γ = 0.9, and two different choices of �/U .
As expected, the DQD system shows a qualitatively similar
picture of the magnetic moment(s) formation in the quantum
dots to that of the QQD system. In particular, as for the QQD
system, in the double quantum dot system regimes with two,
one, or none of the magnetic moment(s) in quantum dots
can be realized depending on the choice of the geometry
of the system (�, γ ); for example, for (�, γ ) = (0.005, 0.9)
we have 〈S2

e/o〉 ≈ 3/4, while for (�, γ ) = (0.5, 0.9) we find
〈S2

o〉 ≈ 3/4, 〈S2
e〉 ≈ 3/8, which corresponds to two and one

magnetic moments in the quantum dots at V = 0, respectively.
The possibility of the transition to the state with the local
magnetic moment has been studied previously for the DQD
system in the equilibrium, in particular, within the Matsubara
fRG approach.

As seen from Fig. 19, the application of the bias voltage
leads to suppression of the magnetic moment(s) (if they
exist at V = 0) and with increasing of bias voltage the DQD

system undergoes evolution from the magnetic moment(s)
to the nonmagnetic state in such a way that almost com-
pletely corresponds to the one obtained for the QQD system.
Furthermore, the magnetic phase with the fractional value
of the magnetic moment also appears when two magnetic
moments exist at V = 0. The differential conductance curves
of the DQD system also look similar to those of the QQD
system if the corresponding systems have the same mag-
netic states at V = 0; however, the conductance of the DQD
system shows somewhat different behavior near the phase
transition region and does not demonstrate the presence of
the negative differential conductance effects for intermediate
interactions U .

APPENDIX D: LANDAUER-LIKE CONTRIBUTION
TO CONDUCTANCE

In this Appendix, we show that Eq. (15) of the main text
can be written in a Landauer-like form

G0
σ = 2e2

h
�L�R

∑
α

∣∣Gr
14;σ (ω = μα )

∣∣2
. (D1)

Using the definitions of the retarded (p = r), advanced (p =
a), and Keldysh (p = K ) Green’s functions G p and the cor-
responding self-energies �p, one can write the following
identities:

�̃K = �̃a − �̃r − 2�̃+− (D2)

and

GK = 2G+− − Gr + Ga, (D3)

where we have introduced the notation �̃p = �p + �
p
bath;

here and below we omit the upper index;0 of the Green’s
functions and self-energies, assuming the � → 0 limit in the
equations of this Appendix.

Substituting Eq. (D2) and Eq. (D3) into the Dyson equation
for the Keldysh Green’s function

GK = (1 + Gr�̃r )GK
dots(1 + �̃aGa) + Gr�̃KGa, (D4)

one can write the Green’s function G+− as

G+− = − 1
2G

r
[(
Gr

dots

)−1 − (
Ga

dots

)−1

− (
Gr

dots

)−1GK
dots

(
Ga

dots

)−1 + 2�̃+−]
Ga, (D5)

where G p
dots (p = r, a, K ) are the Green’s functions for �p = 0

and �
p
bath = 0.

Taking into account the explicit form of the Green’s func-
tion [see Eq. (5) in the main text], we obtain

(
Gr

dots

)−1 − (
Ga

dots

)−1 = (
Gr

dots

)−1(Ga
dots − Gr

dots

)(
Ga

dots

)−1

= (Gr
dots)−1(G−+

dots − G+−
dots)

(
Ga

dots

)−1

= 0 (D6)
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and

GK
dots = G+−

dots + G−+
dots = 0. (D7)

Therefore, Eq. (D5) reduces to

G+− = −Gr�+−
bathGa, (D8)

where we have exploited the fact that in our approach
�+− = 0.

Then, using the expression for �+−
bath, given by Eq. (7) of

the main text, we can write the diagonal elements of G+− as

G+−
j j;σ = − i�L(1 + sgn(ω − μL))

∣∣Gr
j1;σ

∣∣2

− i�R(1 + sgn(ω − μR))
∣∣Gr

j4;σ

∣∣2
, (D9)

where we have used that Ga = (Gr )†.
Finally, substitution of these results into Eq. (15) of the

main text leads to Eq. (D1).
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