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Boundary-corner entanglement for free bosons
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In quantum field theories defined on a space-time with boundaries, the entanglement entropy exhibits
subleading, boundary-induced corrections to the ubiquitous area law. At critical points described by conformal
field theories (CFTs), and when the entangling surface intersects the physical boundary of the space, new
universal terms appear in the entropy and encode valuable information about the boundary CFT. In 2 + 1
dimensions, the universal subleading boundary term is logarithmic with coefficient b(θ ) depending on the angle
θ at which the entangling surface intersects the boundary, as well as on the boundary conditions (BCs). In this
paper, we conduct a numerical study of b(θ ) for free bosons on finite-size square lattices. We find a surprisingly
accurate fit between our lattice results and the corresponding holographic function available in the literature.
We also comment on the ratio b′′(π/2)/AT , where AT is the central charge in the near boundary expansion of
the stress tensor, for which a holographic analysis suggests that it may be a universal quantity. Though we show
evidence that this ratio is violated for the free boson with Dirichlet BCs, we conjecture its validity for free bosons
evenly split between Dirichlet and Neumann BCs.
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I. INTRODUCTION

First introduced in the early 1930s by von Neumann [1],
the entanglement entropy was 60 years later put forward
in an attempt to explain black hole entropy [2,3] and has
since emerged as a prominent tool in many different areas
of theoretical physics. In quantum field theory (QFT), the
entanglement entropy of a spatial region A is defined as the
von Neumann entropy of the reduced density matrix ρA on
A, SA = −TrA(ρA ln ρA). This entropy is UV divergent due to
short-range correlations for generic states in QFTs and thus
needs to be regulated by a cutoff ε. In continuum Lorentz-
invariant theories defined on a (d + 1)−dimensional space-
time without boundary, the general structure of UV divergence
for a smooth entangling surface � (the boundary of the region
A) takes the following form:

SA = γ
A(�)

εd−1
+ sd−3

εd−3
+ · · · +

{
slog ln ε , d + 1 even
s0 , d + 1 odd,

where the leading term obeys the area law [3,4]. The entan-
glement entropy is particularly useful to probe the structure
of conformal field theories (CFTs). In even dimensions, the
relevant subleading term to the area law in SA is a log-
arithmic divergence whose coefficient encodes information
about the central charges of the theory—charges that appear
in the trace anomaly [5–9]. The logarithmic term in even
dimensions is thus closely related to the trace anomaly. In an
odd-dimensional space-time without boundary, the conformal
anomaly trivially vanishes since it is impossible to construct
invariants of odd dimension from the Riemann curvature
and its derivatives. For similar reasons, the logarithmic term
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in the entropy for odd-dimensional CFTs is absent and the
subleading term that contains relevant information about the
theory is finite. However, the story is quite different for
CFTs in the presence of boundaries. Boundary conformal
field theories (BCFTs) have been extensively studied [10–16]
and constructions of their gravitational duals have also been
discussed [17–22]. For BCFTs, new anomalies localized
on the boundary appear together with new central charges
[14–16,23]. In particular, the conformal anomaly of an odd-
dimensional BCFT is a pure boundary term. For example,
in three dimensions, the integrated conformal anomaly reads
[23–25]

A3 ≡
∫
M3

〈T 〉 = 1

384π

∫
∂M3

(−aR̂ + 3
2 q Tr k̂2

)
, (1)

where a and q are boundary central charges, R̂ is the Ricci
curvature on the boundary, and k̂μν is the traceless part of
the extrinsic curvature tensor of the boundary. In parallel, it
has been shown that the entanglement entropy for BCFTs
acquires new subleading boundary-induced terms, see for
instance Refs. [26–34] and Refs. [17,18,22,35–37] for holo-
graphic treatments. For particular entanglement geometries,
the subleading corrections to the area law are purely boundary
induced, and one may then extract from the entanglement
entropy the boundary contributions that encode universal fea-
tures of the field theory.

In three-dimensional BCFTs, if one wishes to compute
the entanglement entropy of some spatial region, one can
envisage three different situations: (i) The entangling surface
is a smooth curve that does not intersect the boundary of the
space. In that case, there is no logarithmic divergence in the
entropy. (ii) The region A possesses sharp corners [38–48],
i.e., the entangling surface is singular but does not inter-
sect the boundary. The entanglement entropy then exhibits a
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logarithmic divergence whose coefficient, the corner function
a(θ ), depends on the opening angle of the corner and is rec-
ognized as an effective measure of the degrees of freedom in
the underlying CFT [38,43–46]. (iii) The entangling surface is
smooth but intersects the boundary of the space. In that case, a
different logarithmic contribution appears in the entanglement
entropy [33,34] as the region A now has corners adjacent
to the boundary. These kinds of corners being qualitatively
different than the sharp corners discussed just above, we will
dub them “boundary corners.” When the opening angle of the
boundary corner is equal to π/2, the logarithmic coefficient
in the entropy is controlled by the charge a [33] present in
the anomaly A3. In this paper, we are interested in the angle
dependance of the boundary-corner function for free massless
scalar fields.

II. BOUNDARY-CORNER ENTANGLEMENT

In this paper, we study numerically the boundary-corner
contribution to the entanglement entropy in 2 + 1 dimensions
for free massless scalar fields. The general geometrical setup
we consider is depicted in Fig. 1: the space-time has a flat
boundary ∂M, and the entangling surface � that separates
the region A from its complement intersects ∂M at C with
angle θ . This configuration, besides the area law, captures the
subleading boundary-induced logarithmic divergence only as
� is smooth (no sharp corners).

For a region A that contains multiple boundary corners,
i.e., for which � intersects several times the boundary ∂M,
the coefficient of the logarithmic divergence is obtained by
summing the contributions of all corners Ci on the boundary:

SA = s1
L

ε
−

∑
Ci

b(θi ) ln
L

ε
+ s0 . (2)

Here L is the length of � and ε is a UV cutoff. For a confor-
mally invariant theory, s1,0 are nonuniversal constants, while
b(θ ) is universal and related to the trace anomaly Eq. (1). Its
form is constrained by properties of the entanglement entropy.
Since we consider a BCFT3 in its ground state, which is a pure
state, by symmetry SA = SĀ we have

b(θ ) = b(π − θ ) , (3)

which allows us to study this boundary-corner function for
0 < θ � π/2. When the entangling surface is orthogonal to
the boundary, the logarithmic term is given by Ref. [33] (see

FIG. 1. BCFT3 on the half plane x � 0 (time slice). The region
A, shown in light blue, is bounded by � (entangling surface, thick
blue line) and ∂M (space boundary, thick black line). � intersects
∂M at C with opening angle θ .

TABLE I. Boundary central charges in the boundary conformal
anomaly in 2 + 1 dimensions [23,33].

Theory a q Boundary condition

Real scalar 1 1 Dirichlet
Real scalar −1 1 Robin
Dirac spinor 0 2 mixed

also Ref. [34] and the Appendix for scalar field results in d
spatial dimensions),

b(π/2) = a

24
, (4)

where a is the boundary charge that appears in the conformal
anomaly Eq. (1) and whose values may be found in Table I
for scalars and Dirac spinors. Assuming that the boundary-
corner function is analytic about π/2, then it follows from the
reflexion symmetry Eq. (3) that b(θ ) behaves around θ = π/2
as

b(θ � π/2) = a

24
+ σ (θ − π/2)2 + γ (θ − π/2)4 + · · · .

(5)

In the opposite limit θ → 0, b(θ ) is singular as the partition
of the system into two parts cannot be defined. We expect in
this limit

b(θ → 0) = κ

θ
+ · · · . (6)

Both σ and κ are supposed to contain valuable information
about the BCFT. This is believed to be true (1) because of the
holographic result of Ref. [36], which shows that the second
derivative at π/2 of the holographic boundary-corner function
(i.e., the holographic version of σ ) is related to the charge
AT associated to the one point function of the stress tensor in
the BCFT3, and (2) by analogy with the corner function a(θ )
for the nonsmooth entangling surface, for which the leading
coefficient in the smooth limit [analog to the limit Eq. (5)] is
universal and characterizes the number of degrees of freedom
in the underlying CFT.

The objective of this paper is to compute numerically
b(θ ) for free bosons with Dirichlet boundary conditions for
a certain range of opening angles. We then calculate the
universal numbers σ and κ from our lattice computations. We
eventually compare our exact results to the anomaly-derived
formula of Ref. [33] and to the holographic boundary-corner
function found in Ref. [36]. We present both aforementioned
analytical formulas hereafter.

A. Boundary-corner function from the anomaly

As is well-known in two and four dimensions, the logarith-
mic term in the entanglement entropy can be exactly derived
from the integrated anomaly using the replica method [49].
However, in three dimensions the relation between the bound-
ary anomaly A3 and the logarithmic contribution b(θ ) appears
to be less transparent. In Ref. [33], Fursaev and Solodukhin
showed that for scalar fields, the entropy at θ = π/2 derived
from the integrated anomaly differs from that computed via
the heat kernel. This mismatch is imputed to the occurrence of
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the nonminimal coupling of the scalar field to the curvature.
It is further argued in Ref. [33] that the complete logarithmic
term for arbitrary angle θ is the difference between the con-
tribution obtained from the anomaly and the one coming from
the nonminimal coupling. Their resulting proposed analytical
formula for the boundary-corner function, which we denote
bFS(θ ), is the following1:

bFS(θ ) = a

96 sin θ
(3 + sin2 θ ) + q

64
f (θ ) , (7)

where f (θ ) = 1
32

cos2 θ
sin θ

(1 + 2 sin2 θ + 5 sin4 θ ) and q is the
second boundary central charge in A3. Formula Eq. (7) pos-
sesses the qualitative behaviors expected for the boundary-
corner function; it is a monotonic function of the opening
angle from θ = 0 to θ = π/2 (the decreasing/increasing char-
acter depends on the values of the charges a and q), and near
orthogonality one has

bFS(θ � π/2) = a

24
+ 8a + 3q

768
(θ − π/2)2 + · · · , (8)

while in the cusp limit, one obtains from Eq. (7)

bFS(θ → 0) = 64a + q

2048 θ
+ O(θ ) . (9)

For a scalar field with Dirichlet boundary condition, one gets

σ D
FS = 11

768
� 0.01432 , (10)

κD
FS = 65

2048
� 0.03174 . (11)

B. Holographic boundary-corner function

The holographic picture of AdS/BCFT was first introduced
in Ref. [17] and can be sketched as follows. The dual of a
BCFTd+1 is given by an asymptotically AdSd+2 space-time
restricted by a (d + 1)–dimensional brane Q whose boundary
coincides with the boundary ∂M of the BCFTd+1. Thus, the
boundary of the bulk space-time has two components, Q and
the conformal boundary M on which lives the BCFTd+1, and
these two meet at a common boundary such that ∂Q = ∂M.
In this prescription [17], the gravitational action consists of
the Einstein-Hilbert action to which is added a Gibbons-
Hawking term and a boundary cosmological constant T on
the holographic boundary Q.

We consider a geometrical setup in which the boundary
of the BCFT3 is flat, and its extension Q into the bulk
has constant tension T . The constant T is related to the
slope α of Q as T = 2 cos α. Then, as usual, according to
Ryu-Takayanagi formula [50], the holographic entanglement
entropy is proportional to the area of the minimal surface
anchored on the entangling surface on the BCFT side—the
minimal surface which also ends on Q. Hence, the entan-
glement entropy computed within the AdS/BCFT framework
will in general depend on the slope α of Q. In particular, the
holographic boundary-corner function is not only a function
of the opening angle θ but is also parametrized by α.

1We have corrected in Eq. (7) a sin θ factor in the a part of bFS(θ )
that was missing in the calculations of Ref. [33].

In Ref. [36], the authors computed the minimal sur-
face corresponding to an infinite wedge with opening angle
θ ∈ ]0, π/2] having one of its edges on the boundary of the
BCFT3 and found an analytic expression for the holographic
boundary-corner function, which they call Fα (θ ). The com-
plete expression of Fα (θ ) is rather complicated; it involves
elliptic integrals and is given in a parameterized form. Thus
we will not reproduce their result here, and we refer the reader
to Sec. 6 of Ref. [36] for details. Instead, we only report
the limiting regimes of interest, i.e., the orthogonal and cusp
limits:

Fα (θ � π/2) = − cot α + (θ − π/2)2

2(π − α)
+ · · · , (12)

Fα (θ → 0) = g(α)2

θ
+ O(θ ) , (13)

where g(α) = E (π/4 − α/2|2) − cos α√
sin α

+ (3/4)2√
2π

, with
E (φ|m) being the elliptic integral of the second kind.

In the following section, we introduce our calculation for
the free massless scalar field theory on a finite-size square
lattice. We will then compare our lattice results for the
boundary-corner function to the analytical formulas proposed
in Refs. [33] (field theoretic) and [36] (holographic).

III. FREE BOSONS ON THE LATTICE

We consider the lattice Hamiltonian of a free massless
scalar field given by

Hd = 1

2

∑
x

[
π2

x + (
φx1+1,x2,··· ,xd − φx

)2 + · · ·

+ (
φx1,x2,··· ,xd +1 − φx

)2]
, (14)

where d is the spatial dimension of the lattice, x =
(x1, x2, · · · , xd ) represents the spatial lattice coordinates with
xi = 1, · · · , Li, and Li is the lattice length along the ith direc-
tion. The total number of sites is N = L1L2 · · · Ld . The lattice
spacing ε has been set to unity. The Hamiltonian Eq. (14) can
be written as

Hd = 1

2

∑
x

π2
x + 1

2

∑
x,y

φxKxyφy, (15)

where K is a positive-definite N × N matrix encoding the
nearest-neighbor interactions between lattice sites as well as
the boundary conditions. One is free to impose either, e.g.,
periodic (PBCs) or open (OBCs) boundary conditions along
each direction,

PBCs : φxi = φxi+Li and πxi = πxi+Li , (16)

OBCs : φ0 = φLi+1 = 0 and π0 = πLi+1 = 0 . (17)

The vacuum two-point correlation functions are given by

〈φxφx′ 〉 = 1

2
K−1/2 , and 〈πxπx′ 〉 = 1

2
K1/2 . (18)
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We are only interested in the elements of the correlation
matrices for the distinguished region A [51]:

(XA)i j = 〈φxiφx j 〉
(PA)i j = 〈πxiπx j 〉

}
∀(xi, x j ) ∈ A . (19)

The entanglement entropy can then be calculated from the
eigenvalues ν� of the matrix CA = √

XAPA [40]:

Sd (A) =
∑

�

[(
ν� + 1

2

)
log

(
ν� + 1

2

)

−
(

ν� − 1

2

)
log

(
ν� − 1

2

)]
. (20)

The procedure described above allows us to calculate the
entropy for two-dimensional regions A of sizes up to ∼4.104

lattice sites on a computing server with 64 GB RAM. In
addition, for boundary corners with opening angle θ = π/2
(i.e., the entangling surface crosses the boundary orthogo-
nally), we take advantage of the OBCs in one lattice direction
to dimensionally reduce our (2 + 1)−dimensional model to
multiple (1 + 1)−dimensional effective models. With this
mapping, we can compute the entanglement entropy for much
larger domains.

A. Numerical extraction of boundary corners

Let us discuss here the method that we employ to extract
the numerical values of the boundary-corner function from the
procedure outlined above.

The initial data are the values computed from Eq. (20) for
a range of L, where L is the lattice length of the entangling
surface. The final values for b(θ ) are then obtained in two
steps, see, e.g., Refs. [38,40,48,52]. First, we perform least-
squares fits of these values to the general scaling ansatz,

S(L) = s1L − b ln L + s0

+ s−1L−1 + · · · + s−pmax L−pmax , (21)

over various fit ranges [Lmin, Lmax] and pmax ∈ [1, 4], and
obtain corresponding b(Lmax )(θ ) as functions of Lmax. Second,
we carry out an extrapolation of these values to the thermody-
namic limit Lmax → ∞ and take the result as the final value
for b(θ ).

As a warm-up, we first apply these methods in the fol-
lowing subsection in the case where the entangling surface
crosses the boundaries orthogonally. The angle dependance is
considered right after that.

B. Orthogonal intersections

1. Dimensional reduction

In d = 2 spatial dimensions, the region A (see Fig. 2)
consists of LA

y complete rows, i.e., all sites along the x direc-
tion for LA

y rows along y. One can decompose the fields φx,y

Σ2

Σ1

LA
y

Lx

Σ

Σ

Σ

LA
y

Ly

Lx

Σ

(a) (b)

FIG. 2. Two-dimensional square harmonic lattices. The region A
is shown in light blue. OBCs are imposed in the horizontal x direction
in both cases. (a) PBCs imposed in the vertical y direction. The region
A is bounded by � = �1 ∪ �2. (b) OBCs are imposed in the vertical
y direction. The region A is bounded by � (one component only).

and πx,y along the lattice direction x such that

φx,y =
√

2

Lx + 1

∑
kx

sin(kxx)φy(kx ) , (22)

πx,y =
√

2

Lx + 1

∑
kx

sin(kxx)πy(kx ) , (23)

where kx = nxπ

Lx + 1
, with nx = 1, · · · , Lx. The Hamiltonian

Eq. (14) in two spatial dimensions can then be written as a
sum over Lx decoupled one-dimensional Hamiltonians,

H2 =
∑

kx

H1(kx ) , (24)

where the lower-dimensional Hamiltonians H1(kx ) are given
by

H1(kx ) = 1

2

∑
y

[
π†

y (kx )πy(kx ) + 4 sin2

(
kx

2

)
φ†

y (kx )φy(kx )

+ (φ†
y+1(kx ) − φ†

y (kx ))(φy+1(kx ) − φy(kx ))

]
. (25)

One notices that each Hamiltonian H1(kx ) corresponds to that
of a one-dimensional free scalar field with effective mass
m2

kx
= 4 sin2(kx/2). Therefore, the entropy S2(A) is given by

a sum over Lx different kx–dependent entropies S1(LA
y ; kx ):

S2(A) =
∑

kx

S1
(
LA

y ; kx
)
. (26)

The highly time-/memory-consuming task of diagonalizing
NA × NA matrices is thus reduced to diagonalizing Lx matrices
of size LA

y × LA
y . The generalization of the above procedure
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to higher dimensions is straightforward. We compute the
boundary-corner function in 3 + 1 dimensions in Sec. IV.

2. Correlation functions

a. PBCs in the y direction. For the one-dimensional
harmonic chain with effective mass m2

kx
= 4 sin2(kx/2) with

PBCs in the y direction, the two-point functions are given by

(XA)i j ≡ 〈φiφ j〉 = 1

2Ly

∑
ky

1

ωk
cos[ky(i − j)] , (27)

(PA)i j ≡ 〈πiπ j〉 = 1

2Ly

∑
ky

ωk cos[ky(i − j)] , (28)

where ω2
k = m2

kx
+ 4 sin2(ky/2) and ky = 2πny/Ly with ny =

1, · · · , Ly and i, j ∈ A. In the thermodynamic limit Ly → ∞
(i.e., 1

Ly

∑
ky

→ 1
2π

∫ 2π

0 dky), these vacuum-state correlators
become [53]

(XA)i j = zi− j

2

√
z

1 − z2

(
i − j − 1/2

i − j

)

× 2F1

(
1

2
,

1

2
; i − j + 1;

z2

z2 − 1

)
, (29)

(PA)i j = zi− j

2

√
1 − z2

z

(
i − j − 3/2

i − j

)

× 2F1

(
− 1

2
,

3

2
; i − j + 1;

z2

z2 − 1

)
, (30)

where z = 1
4 (mkx −

√
m2

kx
+ 4)

2
.

b. OBCs in the y direction. If one imposes OBCs in the y
direction, the two-point functions are now given by

(XA)i j = 1

Ly + 1

∑
ky

1

ωk
sin(kyi) sin(ky j) , (31)

(PA)i j = 1

Ly + 1

∑
ky

ωk sin(kyi) sin(ky j) , (32)

where ω2
k = m2

kx
+ 4 sin2(ky/2) and ky = nyπ/(Ly + 1) with

ny = 1, · · · , Ly and i, j ∈ A. Due to the presence of the
nonzero effective mass mkx , we have not been able to find
analytical expressions for these two correlators in the thermo-
dynamical limit.

Summarizing, the numerical evaluation of the entropy for
a massless scalar field for the spatial configurations depicted
in Fig. 2 starts with the calculation of the LA

y × LA
y correlation

matrix CA from Eqs. (27)–(28) or (31)–(32) for a given effec-
tive mass mkx . Then, we calculate the contribution S1(LA

y ; kx )
in Eq. (26) and, finally, the entropy is given by the sum
Eq. (26).

3. Results

We have calculated the entanglement entropy for regions
orthogonal to the boundaries of sizes up to 60 × 1000 (LA

y =
1000). The numerical results are shown in Fig. 3 where we
have plotted the logarithmic contribution found from our

20 24 28 32 36 40 44 48 52

0.166666

0.166627

0.166671

(y
−P

B
C

s)

b(Lmax
x )(π/2)

Lattice

Field theory: 4b(π/2) = 1/6

20 24 28 32 36 40 44 48 52

0.083333

0.083330

0.083337

Lmax
x

(y
−O

B
C

s)

Lattice

Field theory: 2b(π/2) = 1/12

FIG. 3. Convergence analysis of the fitted values of the
boundary-corner contributions as a function of Lmax

x (pmax = 3). The
configurations employed here are shown Fig. 2. Top: PBCs are
imposed in the y direction. Bottom: OBCs are imposed in the y
direction. The horizontal dashed lines correspond to the expected
values from field theory Eq. (4) with a = 1.

fitting procedure against Lmax
x . We obtain from our best fits

and extrapolations:

y−PBCs : b = 0.16666(6) � 4

24
= 4b(π/2) , (33)

y−OBCs : b = 0.083333(3) � 2

24
= 2b(π/2) . (34)

We thus find a perfect agreement to the sixth digit between the
lattice numerics and the field theory results b(π/2) = a/24
with a = 1 for the free boson with Dirichlet BCs (OBCs). The
factor 4 in Eq. (33) comes from the fact that the entangling
surface intersects four times the boundaries in the case where
we impose PBCs in the y direction, and similarly for the factor
2 in Eq. (34) for OBCs (see Fig. 2). The total logarithmic
contribution in the entropy is the sum of all the intersections,
hence the factors 4 or 2. We consider next the angle depen-
dence.

C. Angle dependence

When the entangling surface is not orthogonal to the
boundaries, we cannot sine-decompose the fields in the x di-
rection as we did in the previous section and hence dimension-
ally reduce our numerical problem. Nevertheless, we may still
compute the entanglement entropy on full two-dimensional
lattices for configurations shown in Fig. 4. In the y direction,
we impose PBCs as this allows us to access the thermody-
namic limit Ly → ∞ analytically. For OBCs and PBCs in the
x direction and y direction, respectively, the two-dimensional
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LA
y

Lx

θ=3π/4

Σ1

Σ2

LA
y

Lx

Σ1

Σ2

tan θ=−2

(a) (b)

FIG. 4. Two-dimensional square lattices with OBCs imposed in
the horizontal x direction and PBCs in the vertical y direction. The
regions A (blue) are bounded by � = �1 ∪ �2. (a) The entangling
surface intersects the boundaries with angles θ = 3π/4 and π/4.
(b) The entangling surface intersects the boundaries with angles
θ = arctan(±2).

vacuum two-point functions in the thermodynamic limit Ly →
∞ are the following:

〈φi, jφr,s〉 =
( j−s−1/2

j−s

)
Lx + 1

∑
kx

sin(kxi) sin(kxr)

×
√

z2( j−s)+1

1 − z2 2F1

(
1

2
,

1

2
; j − s + 1;

z2

z2 − 1

)
,

(35)

〈πi, jπr,s〉 =
( j−s−3/2

j−s

)
Lx + 1

∑
kx

sin(kxi) sin(kxr)

×
√

1 − z2

z2(s− j)+1 2F1

(
− 1

2
,

3

2
; j − s + 1;

z2

z2 − 1

)
,

(36)

where kx = πnx/(Lx + 1) with nx = 1, · · · , Lx, and we de-

fined z ≡ z(kx ) = (| sin(kx/2)| −
√

sin2(kx/2) + 1)
2

. Expres-
sion Eqs. (35) and (36) are the matrix elements of the cor-
relation matrices XA and PA, respectively (where (i, j) and
(r, s) are the raw and column indices, respectively). The
entanglement entropy is calculated with Eq. (20).

We compute the entanglement entropy of regions A of
width LA

y � 1 and length Lx � LA
y on a lattice with OBCs in

the x direction and PBCs in the y direction (see Fig. 4). For
such configurations, there are four identical boundary corners
due to the symmetry b(θ ) = b(π − θ ). Then one extracts the
logarithmic contribution in the entropy and divides it by four
to get b(θ ).

TABLE II. Lattice results for the boundary-corner function b(θ )
for the free boson with Dirichlet BCs. Also indicated are values from
FS function Eq. (7).

tan θ Lattice FS tan θ Lattice FS

1/8 0.357(7) 0.25723 3 0.04419 0.043175
1/6 0.269(7) 0.19485 4 0.04310 0.042533
1/4 0.182(4) 0.13352 5 0.0425(9) 0.042227
1/3 0.1395 0.10385 6 0.0423(1) 0.042058
1/2 0.09798 0.075933 7 0.0421(4) 0.041955
1 0.06080(9) 0.052682 8 0.0420(3) 0.041888
2 0.04717 0.044888 ∞ 0.041666 0.0416666

To access the boundary-corner coefficient of angles other
than θ = π/2, we follow, e.g., Ref. [48] and “pixelate” the
entangling surface whose intersections with the boundaries
define the boundary corners. Angles which obey tan θ = r ∈
Q are then accessible on square lattices. This is shown in
Fig. 4 for θ = 3π/4 (or π/4, equivalently) and tan θ = ±2.
For angles such that tan θ = r > 1, the data points with which
we perform our fits are chosen to be distant from each other
by �L = r. The errors related to the finite size of the lattices
or those introduced through our choice of fitting procedures
make the confidence intervals of our numerical values difficult
to determine. The lattice results for the free boson with
Dirichlet BCs are given in Table II. We have reported there
the digits that we found to be stable. From our numerical data
points, we obtain the following values for the orthogonal and
cusp limit coefficients:

σ D = 0.023(4) , κD = 0.044(4) . (37)

We have extracted the value σ D = 0.023(4) from our
lattice calculations by fitting our data to Eq. (5) for tan θ =
4, 5, 6, 7, 8,∞. Similarly, we obtained κD = 0.044(4) by fit-
ting our data points to Eq. (6) for tan θ = 1/8, 1/6, 1/4.

D. Comparison with the literature

Comparing our numerical results with FS function Eq. (7)
is straightforward, see Table II and Fig. 5 where we have
plotted our lattice results and bFS(θ ). We find a relatively good
agreement between the two for angles θ > π/3, for which the
deviation from the numerics falls below 5%. However, in the
small angle regime, the difference between the lattice data and
the FS formula goes up to 30%, as one can see from the differ-
ence between κD = 0.044(4) and κD

FS = 65/2048 � 0.03174.
If we compare σ D = 0.023(4) and σ D

FS = 11/768 � 0.01432,
the latter differs by nearly 40% with respect to the former.
Overall, bFS(θ ) does not appear to describe consistently our
lattice results over the whole range 0 < θ � π/2.

Let us now turn ourselves to the analytical formula derived
within the AdS/BCFT framework in Ref. [36]. To compare
their holographic boundary-corner contribution Fα (θ ) with
our numerical free boson result b(θ ), we must start by normal-
izing Fα (θ ). A convenient choice is to consider the function
bα (θ ) defined as

bα (θ )

b(π/2)
≡ Fα (θ )

Fα (π/2)
, (38)
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FIG. 5. Boundary-corner entanglement for the free boson with
Dirichlet BCs. Our lattice results (black dots) are compared to the
(normalized) holographic function bα with α = 2.56(3) (red) and
FS function bFS (blue). The inset shows the deviation of the two
functions from each data point.

such that bα (π/2) = b(π/2). The extra parameter α is related
to the boundary conditions in the holographic field theory, but
a precise dictionary between them has yet to be established.
The holographic BCFT is a strongly coupled theory with a
large number of degrees of freedom. In contrast, the free
boson has only one degree of freedom and zero coupling.
Furthermore, the BCs of the holographic theory are certainly
more complicated than the Dirichlet one we consider for the
free boson. It may thus seem unlikely that holographic results
reproduce exactly free-field ones given how different the two
field theories are. Comparison of bα (θ ) to our lattice data
shows a surprising excellent match between the two for a
specific value of α, namely αs � 2.56(3) � 147◦. As one can
see in Fig. 5, the resulting normalized holographic function
bαs (θ ) and our data for the free boson with Dirichlet BCs
agree with each other exceptionally well, within less than
0.1% discrepancy, for the range of angles we considered. We
can also use the liming regimes Eqs. (12) and (13) of the
holographic boundary-corner function to get estimates of σ D

and κD. For α = αs, bαs (θ ) yields the values σ D = 0.023(47)
and κD = 0.044(35) which are indeed very close to the ones
we obtained in Eq. (37).

E. A universal ratio? Holography vs free field

In a BCFT3, the near boundary behavior of the one point
function of the stress tensor is given by [54]

〈Ti j〉 = AT

x2
k̂i j + · · · , x → 0 , (39)

where x is the proper distance from the boundary, k̂i j is
the traceless part of the extrinsic curvature of the boundary,
and the coefficient AT a priori depends on the boundary
conditions of the BCFT3. In Ref. [36], it has been observed
that for holographic theories dual to Einstein gravity, the ratio

1
4GN

F ′′
α (π/2)/AT,E is independent of α,

σE/AT,E = −π , (40)

where we have introduced σE = 1
8GN

F ′′
α (π/2), and the sub-

script E means that this quantity was computed holograph-
ically for a bulk theory described by Einstein gravity. As
noted in Ref. [36] and above, it is indeed interesting that the
ratio Eq. (40) is independent of the slope α of the boundary
because α is supposed to encode the boundary conditions
of the dual BCFT in the AdS/BCFT picture. On the field
theory side, AT has been computed in Ref. [55] for free scalar
fields with Dirichlet and Robin BCs, giving the same value
AT = −1/128π for both BCs. We thus find from our lattice
calculations

σ D/AT = −9.4 � −3π , (41)

which is approximately three times the holographic ratio.
Though one has to be careful when evaluating σ D from our
data, we are confident that our lattice values of b(θ ) are
accurate up to their third/fourth significant digits, which does
not allow for the value of σ D needed to satisfy Eq. (40).
It is somehow surprising that the holographic and free field
ratios do not match. Indeed, one may have anticipated a
similar outcome to that of the corner function a(θ ) (see again
Refs. [43–45]) for which holography and field theory agree
for the value of the ratio between the leading coefficient in the
smooth limit and the central charge CT of the CFT. However,
one may suggest2 that for α = π/2 the holographic BCFT3

shares some common properties with free scalars, half of them
with Dirichlet BCs and the other half with Robin BCs (e.g.,
same structures of one and two point functions [12,36,55,56]
and vanishing logarithmic contribution at orthogonality in the
holographic entanglement entropy [35,36]). One may there-
fore conjecture that the holographic ratio Eq. (40) could still
be valid for free bosons with half Dirichlet and half Robin
BCs. In that case, free scalars with Robin BCs would have to
satisfy the ratio (σ D + σ R)/2AT = −π , from which one may
estimate the Robin coefficient to be σ R � −0.0078. It would
be very interesting to test this conjecture for the Robin case
with field theoretic calculations.

IV. BOUNDARY CORNERS IN 3 + 1 DIMENSIONS

Boundary corners are not exclusive to (2 + 1) dimensional
space-times but can also be defined in higher dimensions. In
three spatial dimensions, a boundary corner is the intersection
of three two-dimensional surfaces where two of them are
boundaries of the space and the other one is the entangling
surface. Such a corner is shown in Fig. 6. In general, the
corresponding corner function b3d (α, β, γ ) multiplying the
logarithmic divergence in the entanglement entropy depends
on three opening angles α, β, γ , as well as on the BCs.

Restricting ourselves to the case where the entangling
surface is orthogonal to the boundaries, that is we fix β = γ =
π/2 but α remains arbitrary, the boundary-corner function

2I thank R.-X. Miao for discussions on this point.
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FIG. 6. 3d boundary corner. The intersection of the entangling
surface � (blue) with the boundary ∂M is a broken line (thick blue).
The boundary corner is marked by a red dot.

reduces to [29,57]

b3d (α, π/2, π/2) ≡ b3d (α) = π2 − α2

144πα
, (42)

for both Neumann and Dirichlet BCs. From the field the-
ory results of the Appendix, the entanglement entropy for
an orthogonal bipartition of the space with infinite square-
cylindrical boundary in 3 + 1 dimensions (see Fig. 8) reads

S3(L) = s2
L2

ε2
+ s1

4L

ε
+ 4b3d (π/2) ln

L

ε
+ s0 , (43)

where b3d (π/2) = 1/96 for a free massless scalar field. We
would like to compute numerically b3d (π/2) for free bosons
with Dirichlet BCs on the lattice. To do so, let us first gener-
alize the procedure outlined in Sec. III B 1 to d dimensions.

The fields φx and πx are decomposed along the lattice
directions xd = (x1, · · · , xd−1) such that

φx = 2(d−1)/2

√
(L1 + 1) · · · (Ld−1 + 1)

×
∑
kd−1

sin(k1x1) · · · sin(kd−1xd−1) φy(kd−1), (44)

πx = 2(d−1)/2

√
(L1 + 1) · · · (Ld−1 + 1)

×
∑
kd−1

sin(k1x1) · · · sin(kd−1xd−1) πy(kd−1) , (45)

where kd−1 = (k1, · · · , kd−1) and ki = niπ/(Li + 1), with
ni = 1, · · · , Li. The Hamiltonian Eq. (14) in d spatial dimen-
sions can be expressed as a sum over decoupled Hamiltonians
in one spatial dimension,

Hd =
∑
kd−1

H1(kd−1) , (46)

where each lower-dimensional Hamiltonian H1(kd−1) cor-
responds to that of a one-dimensional free scalar field
with mass m2

kd−1
= 4 sin2(k1/2) + · · · + 4 sin2(kd−1/2). The

15 20 25 30 35 40 45 50

0.01041666

0.01037667

0.01045667

Lmax

b3d(π/2; Lmax)

Lattice

Field theory: b3d(π/2) = 1/96

FIG. 7. Convergence analysis of the fitted values (black squares)
of b3d (π/2) for the free boson with Dirichlet BCs. PBCs are imposed
in the y direction (direction normal to the entangling surface) and we
set L1 = L2 = L, and pmax = 4.

entropy Sd (A) is thus given by the multiple sum

Sd (A) =
∑
kd−1

S1
(
LA

y ; kd−1
)
. (47)

In d = 3 spatial dimensions with coordinates (x1, x2, y), the
entanglement entropy is given by a double sum over k1 and
k2. We choose to set PBCs along y direction and consider
the thermodynamic limit Ly → ∞ so that the 1d correla-
tion matrices are given by Eqs. (29) and (30) with m2

k2
=

4 sin2(k1/2) + 4 sin2(k2/2). We set the lengths of the entan-
gling surface in both directions x1 and x2 to be the same, i.e.,
L1 = L2 = L. Then for finite LA

y , the entropy is twice that of
Eq. (43) because the entangling surface is composed of two
identical L × L squares. We have calculated the entanglement
entropy for regions orthogonal to the boundaries of sizes
up to 502 × 600, such that L ∈ [5, 50] and LA

y = 600. The
lattice results are shown in Fig. 7, where we have plotted the
logarithmic contribution (divided by eight since there are eight
boundary corners b3d (π/2)) against Lmax. We employed the
same fitting procedure presented earlier, only adapted to d =
3 dimensions. We obtain from our best fit and extrapolation:

b3d (π/2) = 0.010416(6) � 1

96
. (48)

We thus find excellent agreement, to the sixth significant digit,
between the lattice numerics and the field theory calculation.
We intend to study further in subsequent work the angle(s)
dependence of b3d (α, β, γ ), as rich universal features may be
expected.

V. CONCLUSION

We have presented in this paper a numerical study of the
universal term in the entanglement entropy that arises due
to the intersection of the entangling surface with the bound-
ary of the space in three dimensions. This boundary-corner
contribution, not to be confused with the sharp corner one
due to singularities in the entangling surface, is logarithmic
thus subleading to the area law, with universal coefficient
b(θ ). The boundary-corner function depends on the angle θ of
intersection between the entangling surface and the boundary,
and of course on the boundary conditions. Focusing on free
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bosons on two-dimensional square lattices with Dirichlet BCs,
we have performed exact numerical calculations of b(θ ) for
a range of angles between θ = 0 and θ = π/2. We then
compared our lattice results to two candidate functions: FS
formula bFS Eq. (7) and the holographic boundary-corner
function bα Eq. (38). For α � 2.56(3), the latter turns out to
agree exceptionally well with our lattice data over the whole
range of angles we considered. The (normalized) holographic
boundary-corner function bα (θ ) has an additional parameter
α, which from a mathematical point of view controls the
slope of the brane in the bulk whose boundary coincides with
the boundary of the BCFT3, but from a BCFT perspective
should be related to the boundary conditions of the underlying
holographic field theory. It is therefore remarkable that for a
particular value of α, the holographic function reproduces so
well the results of a free massless scalar field with Dirichlet
BCs, this despite the obvious dissimilarities of the two field
theories.

Our lattice approach allows us to probe the limiting
regimes θ � π/2 and θ → 0. For the orthogonal limit b(θ �
π/2) = a/24 + σ (θ − π/2)2, we obtain the numerical value
σ D = 0.023(4), while in the opposite limit b(θ → 0) � κ/θ

we find κD = 0.044(4). The orthogonal regime is of particular
interest. Indeed, the holographic study of the boundary-corner
function [36] suggests that the coefficient σ could be a univer-
sal quantity related to the boundary central charge AT in the
one point function of stress tensor through σE/AT,E = −π .
We find that this ratio is violated for the free boson with
Dirichlet BCs. However, one may conjecture this ratio to
still be valid for free bosons with half Dirichlet and half
Robin BCs due to properties that this theory shares with
the holographic one. This would yield for the free boson
with Robin BCs: σ R � −0.0078. Checking the validity of the
holographic ratio in additional theories and for various BCs is
an exciting issue to address. Free fermions are then next in line
for consideration. We also find it interesting to extend these
results to the Rényi entropies. Furthermore, as our numerical
results suggest, a complete analytical expression of b(θ ) for
free fields has yet to be found. Studying boundary corners in
higher dimensions is a promising path as well—we have only
tackled in this paper the four-dimensional case in the simple
setup of orthogonality. There is still much to explore.
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FIG. 8. 3 + 1 dimensional flat space with square cylindrical
boundary ∂M (t = 0 slice). The region A is in light blue. The
entangling surface � is a plane orthogonal to the boundary ∂M.
Their intersection P is a rectangle (in thick blue). A boundary-corner
C is marked by a red dot.

APPENDIX: FIELD THEORY CALCULATIONS FOR
ORTHOGONAL INSTERSECTIONS IN d + 1 DIMENSIONS

1. Geometrical setup

We choose to focus on one specific geometry which
captures the subleading boundary-induced terms only: the
(d + 1)-dimensional flat space-time M has an infinite square
cylindrical boundary ∂M and we compute the entanglement
entropy for half of this infinite square cylinder (the region
A), see Fig. 8. The distinguished region A is bounded by the
entangling surface, denoted �, which intersects orthogonally
the boundary at P = � ∩ ∂M. In 2 + 1 dimensions, � is a
line, in 3 + 1 dimensions it is a square, in 4 + 1 dimensions a
cube, and so on.

2. Replica trick and heat kernel method

A convenient way to compute the entanglement entropy in
QFT is to rely on the replica trick [7,8,40,58] and the heat
kernel method. The replica trick maps Rényi’s entropy to the
partition function of the field theory on an α-fold covering
space Mα with a conical singularity along the boundary � of
a region A:

S(α)(A) = 1

1 − α
ln Trρα

A = 1

1 − α
ln

Z (α)

Zα
, (A1)

where Z (α) is the partition function of the theory on Mα and
Z (1) = Z . In the limit α → 1, the Rényi entropy reduces to
the entanglement entropy:

lim
α→1

S(α)(A) = S(A) . (A2)

At the one-loop level, the partition function Z (on a manifold
M) can be computed via the trace of heat kernel K for the
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Laplace-type operator � that describes the field theory [59],

ln Z = 1

2

∫ ∞

ε2

ds

s
TrK (s) , (A3)

where ε → 0 is a UV cutoff. The trace of the heat kernel
encodes information about the spectrum of �, and therefore
also about the BCs. The underlying manifold M being ar-
bitrary, if one computes the trace of the heat kernel on the
replicated space-time Mα which has a conical singularity
along a codimension two hypersurface �, then combining
Eq. (A3) with the replica formula Eq. (A1), one obtains
the entanglement entropy associated with �. We denote the
entanglement entropy as a function of � or as a function of
the region A, keeping in mind that it effectively depends on
the geometry of the entangling surface.

3. Heat equation and the method of images

The method of images is useful to find solutions of PDE
on certain domains with boundaries. The symmetries of the
domain can be exploited in constructing solutions using their
free space counterparts. Let us put this method to use to solve
the heat equation on flat space with plane-parallel boundaries.

The heat kernel K satisfies the heat equation

(∂s − ∇2)K (s, x, x′) = 0 , (A4)

with the initial condition K (s = 0, x, x′) = δ(x, x′). The solu-
tion on R is well-known:

K∞(s, x, x′) = 1√
4πs

e− 1
4s (x−x′ )2

. (A5)

Let us consider now the one-dimensional heat equation on 0 �
x � L and impose Neumann or Dirichlet boundary condition
at x = 0 and x = L:

∂xK (N )
∣∣∣
x=0, L

= 0 , or K (D)
∣∣∣
x=0, L

= 0 . (A6)

To construct the solutions corresponding to these BCs, one
considers a point P with position 0 < x < L and finds its
images across the two parallel planes x = 0 and x = L. There
is an infinite number of images, with positions 2Lk ± x, k ∈
Z. For (Dirichlet) Neumann BCs, one has to (anti) symmetrize
K∞ with respect to x = 0 and x = L, such that the solutions to
the heat equation for these BCs read

KN (D)(s, x, x′)

=
∑
k∈Z

K∞(s, 2Lk + x, x′) ± K∞(s, 2Lk − x, x′) , (A7)

where the plus (minus) sign corresponds to Neumann (Dirich-
let) BCs. Similarly, if we impose Neumann BCs at x = 0 and
Dirichlet at x = L, i.e., mixed BCs, one has

Kmixed(s, x, x′)

=
∑
k∈Z

(−1)k[K∞(s, 2Lk + x, x′) − K∞(s, 2Lk − x, x′)].

(A8)

Generalization to higher dimensions is straightforward.

4. Factorization of the heat kernel and partition function

We work in (d + 1)-dimensional flat space with Cartesian
coordinates X μ = (τ, y, xi, i = 1, .., d − 2). The entangling
surface � is defined by the equations τ = 0 and y = 0. The
subspace (τ, y) will therefore be the two-dimensional cone
C(α)

2 with angular deficit 2π (1 − α). For a massive scalar field,
the Hilbert space and the field operator � = −∇2 + m2 on the
domain � = C(α)

2 ×d−1
i=1 �i with �i = (0, Li ) factorize, and so

does the associated heat kernel. In this context, the method
of images is particularly suitable to compute the heat kernel
(see, e.g., Ref. [34]). The BCs that we shall impose in each
direction xi are either Neumann or Dirichlet or mixed (i.e.,
Neumann-Dirichlet). The trace of the heat kernel on � with a
conical singularity takes the compact form (we omit a volume
term irrelevant to our discussion),

Tr Kα (s) = α(α−2 − 1)

12(4π )(d−1)/2

e−sm2

s(d−1)/2

×
d−1∏
i=1

⎡
⎣∑

ki∈Z
ωi

∫ Li

0
dxi

(
e− L2

i
s k2

i + ηi e− (xi−Liki )2

s

)⎤
⎦,

(A9)

where ωi and ηi depend on the type of BCs,

Neumann/Dirichlet : ωi = 1 , ηi = ±1 , (A10)

Mixed : ωi = (−1)ki , ηi = −1 . (A11)

The partition function then reads

ln Z (α) = α(α−2 − 1)

24(4π )(d−1)/2

∫ ∞

ε2
ds

e−sm2

s(d+1)/2

×
d−1∏
i=1

(
Li θ(i)

(
e−L2

i /s
) + Bi

√
πs

)
, (A12)

where we defined

Bi =
{±1 , for Neumann/Dirichlet BCs

0 , for mixed BCs ,
(A13)

and θ(i)(z) are Jacobi theta functions such that θ(i) = θ3 for
Neumann/Dirichlet BCs and θ(i) = θ4 for mixed BCs.

5. Entanglement entropy

Inserting Eq. (A12) in Eq. (A1) and taking the limit α → 1
yields [60]

Sd (�) = 1

12(4π )(d−1)/2

∫ ∞

ε2
ds

e−sm2

s(d+1)/2

×
d−1∏
i=1

(
Li θ(i)

(
e−L2

i /s
) + Bi

√
πs

)
. (A14)

In the massless case, the entanglement entropy given in
Eq. (A14) may display IR divergences, depending on the BCs.
For any d , we find that there is no IR divergence if the BCs are
not Neumann in every direction xi. Thus, among the d

2 (d + 1)
possible BCs combinations, there is only one that leads to an
IR divergence.
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Integrating Eq. (A14) over s with m = 0 and taking the
limit ε → 0, the entanglement entropy for the bipartition of
an infinite square cylinder as depicted in Fig. 8 reads

Sd (�) = sd−1
Ad−1

εd−1
+ sd−2

Pd−2

εd−2
+ · · ·

· · · + s1
P1

ε
− s(d )

log ln ε + s0 , (A15)

where Ad−1 = L1L2 · · · Ld−1 is the area of �. The coefficients
sk are dependent on the regularization procedure thus nonuni-
versal. The coefficients Pn are given by [60]

Pd−1−p = 2p

p!(d − 1 − p)!

∑
σ

Bσ1 · · ·BσpLσp+1 · · · Lσd−1 ,

(A16)

where the sum extends over all permutations of {1, · · ·, d−1}.
For pure Neumann or Dirichlet BCs, Pn is the n area of
� (for Li = L, Pn = 2d−1−n

(d−1
n

)
Ln). For example, in 3 + 1

dimensions, � is a rectangle which has four edges (one-faces)
and four corners (zero-faces). Thus P1 = 2(L1 + L2) is the
perimeter of �, and P0 = 4 its number of corners. In general,
the logarithmic coefficient is proportional to the number of

corners P0 = 2d−1 of �,

s(d )
log = P0

6 × 22(d−1)

⎧⎪⎪⎨
⎪⎪⎩

1 , Neumann
(−1)d−1 , Dirichlet
(−1)n , D(n) − N(d−1−n)

0 , else .

(A17)

It is interesting to note that the logarithmic divergence dis-
appears if the BCs are mixed in at least one direction. The
subleading terms in Eq. (A15) are due to the presence of the
boundary. More precisely, these contributions arise because
the entangling surface intersects the boundary of the space.
They are thus defined only at P . Setting Li = L, one may also
compute for pure Neumann or Dirichlet BCs the finite part
that combines with the logarithmic term (and/or the IR one),

s0 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − 2d−1

6 × 2d−1
ln L , Neumann

(−1)d−1

6 × 2d−1
ln L , Dirichlet .

(A18)

This term is due to a combination of two factors: the intersec-
tion of the � with the boundary ∂M and the BCs imposed on
it, as well as the finite size of �.
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