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We study the surface of a three-dimensional spin chiral Z2 topological insulator (class CII), demonstrating the
possibility of its localization. This arises through an interplay of interaction and statistically symmetric disorder
that confines the gapless fermionic degrees of freedom to a network of one-dimensional helical domain walls that
can be localized. We identify two distinct regimes of this gapless insulating phase, a “clogged” regime wherein
the network localization is induced by its junctions between otherwise metallic helical domain walls, and a “fully
localized” regime of localized domain walls. The experimental signatures of these regimes are also discussed.
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I. INTRODUCTION

The surfaces of topological insulators (TIs) [1–4] exhibit
robust symmetry-protected metallic transport even in the
presence of symmetry-preserving heterogeneity (disorder) as
long as the bulk remains gapped. The evasion of Anderson
localization [5,6] is due to the anomalous nature of the
surface states, reflecting a nontrivial wave-function topology
of TI’s bulk. Characterization of such symmetry-protected
topological materials is a vibrant field of research in modern
condensed-matter physics [7,8].

Interactions can destabilize such metallic surfaces [9–13],
gapping them out by either spontaneously breaking the pro-
tective symmetry or inducing a symmetry-preserving topo-
logically ordered long-range entanglement. However, it has
been noted [14,15] and explored more extensively by us [16]
that in a two-dimensional (2D) time-reversal symmetric Z2 TI
(class AII) [17–19] an interplay of interaction and disorder
can lead to another possibility, namely to a glassy gapless
but insulating edge. Such a localized state breaks the time-
reversal symmetry spontaneously, but in “spin glass” fashion,
preserving it statistically. It exhibits a localization length
that is a nonmonotonic function of disorder strength, and is
best viewed as a localized insulator of half-charge fermionic
domain walls (Luther-Emery [20] fermons) [16]. Such edge
localization provides a potential explanation of the puzzling
experimental observations in InAs/GaSb TI systems [21–24].

Motivated by this nontrivial disorder-interaction interplay
in an edge of a 2D TI, we explore such phenomena in a 2D sur-
face of a three-dimensional (3D) TI and find that only the CII
class realizes this idea, namely, exhibits a gapless localized
surface. We thus focus on the CII-class TIs in the presence of
symmetry breaking, but statistically preserving disorder. Such
a disorder potential can in principle be generated dynamically
[26,27]. It allows for three distinct possibilities: a network
of chiral (particle-hole symmetric) or helical (time-reversal
symmetric) domain walls [28] (see Fig. 1), or a fully gapped
(time-reversal and particle-hole symmetry-broken) insulators,
depending on which symmetries are broken by disorder. As
we demonstrate below, for the second case of a network
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of helical domain walls, in the presence of interactions, a
CII-class TI surface indeed displays a phase transition to a
gapless insulating surface. The latter exhibits two regimes:
a “clogged” regime in which the barriers to transport are
the junctions in the network of otherwise delocalized domain
walls [29], and a fully localized regime of interpenetrating
one-dimensional (1D) localized helical edge states [16]. These
interaction-induced regimes are obtained via standard analysis
for helical Luttinger liquids [14–16,29]. TIs in other symme-
try classes of the tenfold way do not allow this possibility.

The paper is organized as follows. We begin in Sec. II
with an introduction of a continuum model of a surface of CII
class TI. We discuss three classes of symmetry-breaking het-
erogeneities that preserve its statistical symmetry in Sec. III,
focusing on the helical network surface. A single interacting
helical junction is studied in Sec. IV B, and is utilized to make
arguments for a localization transition in the helical surface
network. We conclude with experimental signatures and the
future directions in Sec. V.

II. SURFACE MODEL

3D TIs are characterized by symmetry-protected metal-
lic surfaces that host 2D massless Dirac or Majorana

FIG. 1. An illustration of a disordered interacting class CII TI
surface, forming helical domain walls (black solid curves) be-
tween topologically gapped green domains [25] and trivially gapped
white regions. Zoom-in: The interdomain four-way junction mod-
eled as two helical Luttinger liquids with an impurity (junction)
perturbation.
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TABLE I. Classification of the bilinear operators in terms of the
time-reversal (T ), particle-hole (P), and chiral (S = T P) operations
on the CII class [as defined in Eqs. (3)], and the type of perturbations
(V̂a, Âa, and M̂a).

T̂a Billinear operator T P S Class

V̂1,2 τ̂ x , τ̂ z � � � CII
Â1,2 σ̂ x τ̂ y, σ̂ yτ̂ y � � � CII
V̂3 τ̂ y x � x C
Â3,4,5,6 σ̂ x τ̂ x , σ̂ x τ̂ z, σ̂ yτ̂ x , σ̂ yτ̂ z x � x C
M̂1 σ̂ z x � x C
V̂4 1̂ � x x AII
M̂2 σ̂ z τ̂ y � x x AII
Â7,8 σ̂ x , σ̂ y x x � AIII
M̂3,4 σ̂ z τ̂ x, σ̂ z τ̂ z x x � AIII

quasiparticles [1,2,30]. In the absence of interaction, they
are robust to gapping out or localization by any symmetry-
preserving single particle scattering. We focus on the spin-
chiral TI (class CII) [30,31], characterized by a Z2 invariant.
Its topologically nontrivial surface exhibits two-valley Dirac
cones with the chemical potential pinned to the Dirac point.
The corresponding noninteracting clean CII surface Hamilto-
nian is given by

H0 = vD

∫
x
�†[−iσ̂ x∂x − iσ̂ y∂y]�, (1)

where � is a four-component fermionic Dirac field and σ̂ x,y,z

is the “spin” Pauli matrix.
The clean surface Hamiltonian H0 can be perturbed

by a number of fermion bilinear operators, �†T̂a� (listed
in Table I), that can be classified by their commutation/

anticommutation with σ̂ x and σ̂ y ( [T̂a, σ̂
x], [T̂a, σ̂

y], {T̂a, σ̂
x},

and {T̂a, σ̂
y}). If a bilinear commutes with both the σ̂ x and

σ̂ y, it is regarded as a scalar operator, denoted by V̂a. A
vector operator, Âa, commutes with one of the σ̂ x or σ̂ y, but
anticommutes with the other one. The mass operator, M̂a,
anticommutes with both the σ̂ x and σ̂ y.

We first focus on the symmetric bilinear operators given by

Hdis =
∫

x
�†[v1τ̂

x + v2τ̂
z + a1σ̂

x τ̂ y + a2σ̂
yτ̂ y]�, (2)

where τ̂ x,y,z is the “valley” Pauli matrix. The bilinear operators
v1(x), v2(x) are scalar and a1(x), a2(x) vector, time-, and
particle-hole symmetry-preserving random potentials. The
disorder potentials here are consistent with a previous study,
but use a different parametrization [32]. The time reversal (T )
and the particle-hole (P) operations are defined by

T : � → iσ̂ y�, i → −i, (3a)

P : � → σ̂ x τ̂ y(�†)T . (3b)

We note that the matrices in both symmetry operations (σ̂ y

and σ̂ x τ̂ y) are antisymmetric because they correspond to T 2 =
−1 and P2 = −1 [3,4]. In addition, a chiral operation (S =
T P) can be defined as a product of T and P . All the bilinear
operators in Table I are classified by these symmetries as well.

We now consider symmetry-breaking random bilinear per-
turbations to the T , P symmetric CII surfaces. Although (as

listed in Table I) there are various scalar (V̂a) and vector (Âa)
operators, these do not open up a gap or induce a localization,
unlike the mass operator M̂a [25,33]. We thus focus on random
symmetry-breaking masses, HM = ∑4

a=1 HM,a, with

HM,a =
∫

x
ma(x)�†M̂a�. (4)

These can be classified as follows (also in Table I): M̂1 = σ̂ z

preserves P but breaks T ; M̂2 = σ̂ zτ̂ y preserves T but breaks
P; M̂3 = σ̂ zτ̂ x and M̂4 = σ̂ zτ̂ z preserve S = T P but break
both T and P .

For our purposes here, we imagine simply imposing the
random sign-changing amplitudes, ma(x), such that statisti-
cally (averaged over disorder or samples) T ,P symmetries
remain intact, i.e., ma has zero mean. More physically, such
random mass operators can arise as a result of heterogeneous
spontaneous symmetry breaking in the presence of symmetric
quenched disorder Hdis and four-Fermi interactions,

HI =
4∑

a=1

Ua

∫
x
[�†M̂a�]2, (5)

where Ua denotes the interaction strength corresponding to the
mass M̂a [26,27], with ma(x) the mean-field order parameter
determined self-consistently [26].

Independent of the physical mechanism, we expect the
CII symmetry-breaking random perturbation HM to generate
a surface ground state that is a network of 1D domain walls,
similar to statistical TIs [25,34], illustrated in Fig. 1, the fate
of which, in the presence of interactions, is the focus of our
paper.

III. CII CLASS SYMMETRY-BROKEN SURFACE STATES

In a 3D CII class TI, the random symmetry-breaking mass
operators M̂a can lead to three types of domain-wall networks,
corresponding to three distinct symmetries of sign-changing
masses ma(x) introduced in Sec. II (see Table I). As we will
discuss below, with one type of a mass, the inhomogeneous
symmetry breaking leads to a surface state composed of
a network of gapless 1D domain walls separating domains
characterized by a positive and negative value of a mass ma.
In the CII class, it is also possible to generate multiple mass
terms when only the chiral symmetry (S) is preserved. In this
case, the symmetry-breaking order parameter is a vector that
can rotate smoothly without vanishing, and as a result, such
surface state, previously discussed [9–13], is fully gapped.
Looking for a new, gapless but localized TI surface scenario,
here we instead focus on the case only time-reversal (T ) or
particle-hole (P) symmetry is unbroken, such that there are
sharp gapless domain walls, that we will argue can get local-
ized for the case of M̂2 disorder in the presence of interactions.

The transport in such symmetry-broken surface states of
CII TIs is governed by the resulting network of the massless
1D domain-walls. The domain-wall surface states can be
derived analytically in the large domain size limit via the
standard “twist mass” formalism [35,36]. The 1D nature of
the domain walls is interrupted by regions where two domain
walls come close to each other. These can be modeled as
junctions illustrated in Fig. 1.
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Here we are outlining the underlying physics and the
approach, relegating the technical analysis to the Appendices.
To make progress, we take the effect due to the random mass
symmetry-breaking operators [given by Eq. (4)] to be much
stronger than the symmetric disorder [given by Hdis in Eq. (1)].
Therefore, we first compute the zero energy states of H0 +
HM,a, determining the structure of the 1D electron domain
walls. We find that only one class, the helical domain walls,
arising by domains breaking P but not T symmetry, have
the possibility of localization. We then study the stability of
the resulting network to interactions and symmetric disorder,
Hdis, taking advantage of our earlier work on 1D edges of 2D
TIs [16], as well as the analysis of the four-way junctions
[29]. The other symmetry-breaking scenarios are robust to
symmetric disorder and interactions and thus such disordered
TI surfaces remain metallic.

A. Particle-hole symmetric surface:
Chiral domain-wall network

A particle-hole symmetric but time-reversal broken surface
corresponds to the random mass operator M̂1 = σ̂ z. In this
case, the 1D domain walls are chiral with two co-moving
electrons. The chiral domain-wall states can be viewed as the
spin quantum Hall edge of class C [37–40]. The intersections
or proximity of chiral domain-walls can only rearrange their
connectivity, but cannot stop the network state from conduct-
ing. Such a metallic state can be realized as a statistical TI
[25,34], or, alternatively can be viewed as a critical state at
the plateau transition [6]. These are well known to be robust
against local symmetric disorder perturbations, as with con-
ventional quantum Hall states. We are not aware of any new
physics to be discovered here from the interplay of disorder
and interactions, at least in the large domain size limit, where
the domain-wall structure can be derived analytically.

B. Time-reversal symmetric surface:
Helical domain-wall network

We now turn to the most interesting case with a time-
reversal symmetric surface, but with particle-hole symmetry
randomly broken by the mass operator M̂2 = σ̂ zτ̂ y. In this
case, the domain walls form a helical network state [28],
protected against localization in the absence of interactions
[17,41] and have been studied previously [42–45]. We em-
phasize that class CII TI is the only tenfold way insula-
tor that realizes a network of helical states under inhomo-
geneous symmetry breaking. The surface remains metallic
as long as the time-reversal symmetry is intact. We next
discuss the stability of this metallic helical network to in-
teractions and symmetry-preserving disorder in the remain-
der of this subsection, with the technical analysis presented
in Sec. IV B.

Such surface transport is governed by the network of
interacting helical domain walls. At length scales shorter than
the distance between junctions, the physics is controlled by
isolated helical domain walls, analyzable as a helical Luttinger
liquid [14,15]. For sufficiently strong repulsive interactions,
K < 3/8, these can be localized [14–16] due to an interplay
of symmetric disorder and umklapp four-fermion interaction

[16]. Such a localized state spontaneously and inhomoge-
neously breaks the time-reversal symmetry and is best viewed
by a localized insulator of e/2-charge Luther-Emery fermions
[16]. Thus for K < 3/8, such TI surface becomes a network
of localized 1D insulators. This picture is self-consistent as
long as the localization length along the 1D domain walls is
short compared to the typical distance between junctions of
the network, a condition that can be satisfied by taking the
domains to be sufficiently large.

In the complementary regime of weaker interactions, K >

3/8, the isolated 1D domain-wall segments are not local-
ized, requiring an analysis of the full network, controlled
by domain-wall proximity (intersections) that we model as
four-way junctions. The latter problem is related to the earlier
studies of the corner junction [46] and the point contact [29].
We perform a complementary analysis based on two helical
Luttinger liquids with symmetry-allowed impurity perturba-
tions in Sec. IV B and Appendix B. As we will demonstrate,
for sufficiently strong interactions, K < 1/2, the junctions
become strong impurity barriers that suppress all conduction
(before, i.e., for weaker interaction than localization of iso-
lated domain walls, K < 3/8 [14–16]), and break the time-
reversal symmetry spontaneously. Our results are consistent
with the earlier finding in the helical liquid point contact study
with spin-orbit couplings [29].

Combining the results from both the junction and the
domain-wall states, we conclude the existence of three
regimes (summarized in Fig. 2) in the large domain limit.
For weak interactions (K > 1/2), the helical network remains
conducting and can be viewed as a statistical TI surface
[25,34]. For intermediate interactions (3/8 < K � 1/2), the
junctions break time-reversal symmetry spontaneously and
suppress the conduction. The domain-wall state in each seg-
ment remains “delocalized” but the junctions block transport.
We refer to this as a “clogged” regime. For sufficiently strong
interactions (K � 3/8), all the junctions and the domain-
wall segments break time-reversal symmetry spontaneously
and form a network of localized 1D channels. Because the
“clogged” and “fully localized” states are qualitatively the
same, they are two distinct regimes connected by a smooth
crossover (driven by interaction strength K) within a single
insulating phase that sets in for K < 1/2. We discuss this
crossover further in Sec. IV B.

C. Surface with only chiral symmetry: Gapped insulator

Lastly, for completeness, we discuss the CII TI surface
with both time-reversal and particle-hole symmetry broken
by two mass operators, M̂3 = σ̂ zτ̂ x and M̂4 = σ̂ zτ̂ z, corre-
sponding to the chiral symmetric class AIII. Qualitatively
distinct from the case of a single mass, such symmetry broken
surface state is typically fully gapped because the domains
with multiple masses can deform from one to another without
closing the gap [25], a possibility that was anticipated in the
previous studies [9–13]. Thus, such a surface is a fully gapped
insulator up to disorder-induced rare in-gap states.

Finally, we note that for a fine-tuned microscopic model,
where only one type of bilinear appears, e.g., M̂3 = σ̂ zτ̂ x or
M̂4 = σ̂ zτ̂ z, a domain-wall network can be realized. However,
the domain walls of this network carry conventional 1D
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FIG. 2. Three possible regimes in the helical domain-wall net-
works. (a) Metallic regime. The helical network remains conducting
for weaker Luttinger liquid interaction, K > 1/2. (b) “Clogged”
regime. For 3/8 < K � 1/2, the symmetric disorder remains irrel-
evant, but the random junctions (intersections) of the helical domain
walls are relevant and therefore block the dc transport, with helical
electrons confined in the interjunction domain-wall segments, break-
ing time-reversal symmetry spontaneously [29]. A clogged state also
persists for K < 3/8 when the 1D domain-wall localization length
(ξ (1D)

loc ) is much longer than the typical length of the domain-wall
segment (lseg). As indicated in the figure, in the clogged regime, the
true physical localization length, ξloc is set by lseg. (c) “Fully local-
ized” regime. For K � 3/8 and sufficiently small 1D domain-wall
localization length (ξ (1D)

loc � lseg), the whole domain-wall network
becomes localized with a localization length set by ξ

(1D)
loc . The yellow

(purple) solid lines indicate the conducting (localized) channels; the
purple crosses mark the perfect barrier junctions; the blue and red
arrows indicate the movement of the domain-wall electrons that form
Kramers pairs in each domain-wall segment.

electrons. They thus do not enjoy the protection of T sym-
metry against localization and can therefore be Anderson
localized by disorder alone, in the absence of interactions.

IV. HELICAL DOMAIN-NETWORK ANALYSIS

We now focus on a helical domain-wall network and
analyze its stability to interactions and symmetry-preserving
disorder. To this end, we first demonstrate localization along
independent 1D domain-walls, and then show that the local-
ization is stable to the ever-present domain-wall junctions,
whose effect is to enhance localization by shifting the critical
point to weaker interactions.

A. Independent helical domain walls

At short length scales (shorter than the typical interjunction
separation), we can neglect the domain-wall junctions and fo-
cus on the nature of individual helical domain-wall segments.
In this limit, the problem reduces to independent 1D helical
conductors, in the presence of symmetry-preserving disorder
and interactions. This problem is technically identical to that
of an interacting disordered edge of a 2D TI in the AII class
[14–16] that can be localized by the interplay of symmetric
disorder and interactions.

To see this, we consider a helical conductor modeled as
counter-propagating states of right (R) and left (L) moving he-
lical fermions, with the low-energy disorder-free Hamiltonian
given by

HhLL = vF

∫
x

[R†(−i∂xR) − L†(−i∂xL)] + Hint, (6)

where vF is the Fermi velocity and Hint encodes the Luttinger
liquid interactions [47,48]. Although HhLL takes the same
form as the spinless Luttinger liquid [47,48], it is distinct
from it, as in the helical Luttinger liquids the time-reversal
symmetry (R → L, L → −R, and i → −i) satisfies T 2 = −1,
and thereby forbids single-particle backscattering perturba-
tion, L†R.

Thus, symmetric disorder only allows forward scattering,

Hchem =
∫

x
V (x)(R†R + L†L), (7)

that in the absence of additional interactions does not lead to
localization.

The helical Luttinger liquid is also generically stable to the
(disorder-free) time-reversal symmetric two-particle umklapp
scattering,

Humklapp =
∫

x
[ei(4kF −Q)x : (L†R)2 : +H.c.] (8)

(: A : is the normal ordering of A) as long the reciprocal lattice
wave vector Q is sufficiently incommensurate, i.e., as long as
|4kF − Q| > δQc (δQc the critical threshold) is satisfied [49].

However, in the presence of symmetric disorder, that sta-
tistically makes up the wave vector incommensuration, the
umklapp interaction generates a random time-reversal sym-
metric two-fermion backscattering, that can lead to a local-
ization of the 1D helical Luttinger liquid and the associated
spin-glass-like time-reversal symmetry breaking [16]. Indeed,
the standard renormalization group (RG) analysis shows that
an interacting disordered helical conductor can be localized
for K < 3/8 [14,15]. Alternatively, the problem at K = 1/4
can be mapped onto noninteracting Luther-Emery fermions
[20] with chemical potential disorder [16], a model that is
known to give localization for the entire spectrum [50]. Such
an interacting localized state is best viewed as an Anderson
localized insulator of half-charge fermions (solitons) that
exhibits a nonmonotonic localization as a function of disorder
strength [16].

Such localization of the 1D helical liquids then directly
predicts a localization of long segments of nonintersecting
domain wall, valid in the regime when domain-wall junctions
can be neglected. We next analyze the complementary regime
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where junctions play an essential role in localization of the
CII surface.

B. Interacting helical junction

For a weaker electron interaction K > 3/8 and/or smaller
domain size, the domain-wall intersections become important,
and it is necessary to take into account junctions (see zoom-in
of Fig. 1). At the technical level, the problem of the four-way
helical junction is related to the studies of a corner junction
[46] and point contact [29] in a 2D TI. In these previous
works, the junction of four semi-infinite helical Luttinger
liquids is mapped to an infinite spinful Luttinger liquid with
an impurity interaction. We present a technically distinct but
physically equivalent analysis based on two isolated Luttinger
liquids with junction perturbations.

We thus consider two 1D generic helical Luttinger liquids
+,−, interacting via a local junction perturbation, corre-
sponding to two helical domain-walls coming to close prox-
imity (see the zoom-in in Fig. 1). Because these are bound-
aries of the same type of gapped domains, they map onto two
1D Luttinger liquids of opposite helicity, described by two
copies of the helical Hamiltonian [Eq. (6)],

HhLL,2 =vF

∑
s=±

∫
x

[R†
s (−i∂xRs) − L†

s (−i∂xLs)] + Hint,2, (9)

where Rs (Ls) is the right (left) moving fermion, with the index
s labeling the two helical domain walls and Hint,2 encoding the
Luttinger liquid interactions [47] within each helical liquid.
For simplicity, we take these two to have the same Fermi
velocity (vF ) and Luttinger liquid interaction; we expect our
qualitative conclusions to remain valid away from this special
case.

To construct junction perturbations, we enumerate all bi-
linear and quartic operators allowed by the time-reversal
symmetry [51,52]. For example, as usual, the single-particle
backscattering within the same helical liquid (L†

s Rs) is for-
bidden. We will also ignore perturbations that are always
irrelevant in the RG analysis. The single particle forward and
backward tunneling processes between the two helical liquids
are given by

H (1)
junc = −te[L†

−(0)R+(0) − R†
−(0)L+(0) + H.c.]

− te′ [R†
−(0)R+(0) + L†

−(0)L+(0) + H.c.], (10)

where te and te′ are the amplitudes of single electron tunneling.
We note that te′ process is only allowed in the presence of
Rashba spin-orbit coupling, which breaks the nongeneric spin
Sz conservation [29]. For sufficiently strong te, the connectiv-
ity of the two helical liquids may be restructured. (See the
zoom-in of Fig. 1 for the two possible configurations.)

We also include the two-particle “Cooper pair” tunneling
processes, given by

H (2)
junc = −t2e[L†

−(0)R†
−(0)R+(0)L+(0) + H.c.], (11)

corresponding to a Kramers pair hopping between two helical
domain walls.

FIG. 3. Illustration of junction perturbations between two helical
domain-wall liquids with opposite helicities in proximity to each
other. In the absence of Rashba spin-orbit coupling, the red (blue)
arrows indicate movers with up (down) spin. The corresponding
fermion fields are labeled on the top of this illustration. The in-
teractions te, t2e, and tσ are “spin-preserving” processes; te′ and
tσ ′ perturbations correspond to “spin-flip” processes which require
Rahsba spin-orbit coupling.

Finally, we include the two-particle backscattering across
the junction,

H (I )
junc = −tσ [L†

+(0)R+(0)L†
−(0)R−(0) + H.c.]

− tσ ′ [L†
+(0)R+(0)R†

−(0)L−(0) + H.c.]. (12)

The tσ and tσ ′ processes can be viewed as “spin-flip” pro-
cesses. In particular, tσ ′ operator breaks the nongeneric spin Sz

conservation [29]. These two interactions are analogous to the
primary interedge interactions in the studies of helical liquid
drag [52,53]. When tσ and tσ ′ are both relevant, the junction
becomes a barrier that suppresses electrical conduction and
breaks time-reversal symmetry [29].

In the presence of time-reversal symmetry, one can also
consider an interaction-assisted backscattering [52]:

H (irr)
junc = −W ′

+[R†
−(0)L−(0)R†

+(0)R+(0)

− L†
−(0)R−(0)L†

+(0)L+(0) + H.c.]

−W ′
−[R†

+(0)L+(0)R†
−(0)R−(0)

− L†
+(0)R+(0)L†

−(0)L+(0) − H.c.]. (13)

However, standard RG analysis shows that it and all other
perturbations are irrelevant. Thus, in the remaining discussion
we will focus on HhLL,2 + H (1)

junc + H (2)
junc + H (I )

juct, processes,
summarized in Fig. 3.

To study the above processes in the presence of Luttinger
liquid interactions, we employ standard bosonization [47,48]
of the above Hamiltonian. With the detailed derivation rel-
egated to Appendix B, below we summarize the results of
the leading order RG analysis, with the RG flow equations
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given by

dte
dl

=
[

1 − 1

2

(
K + 1

K

)]
te, (14a)

dte′

dl
=

[
1 − 1

2

(
K + 1

K

)]
te′ , (14b)

dt2e

dl
=

[
1 − 2

K

]
t2e, (14c)

dtσ
dl

= [1 − 2K]tσ , (14d)

dtσ ′

dl
= [1 − 2K]tσ ′ . (14e)

These are consistent with the previous works on the corner
junction [46] and the quantum point contact [29]. We also note
that te and te′ are at most marginal in the noninteracting limit,
K = 1. This ensures that the configuration of two helical states
we consider is unchanged in the repulsive interaction regime.
The Cooper pair tunneling t2e naturally becomes relevant
for sufficiently strong attractive interactions (K > 2). Thus,
below we focus on the two-particle backscattering, tσ and tσ ′ ,
that become relevant for K < 1/2.

For such strongly repulsive interactions, K < 1/2, we only
need to consider HhLL,2 + H (I )

junc. As detailed in Appendix B,
the inter-domain-wall coupling decomposes the action into
symmetric and antisymmetric sectors. In each sector, the
action can be mapped to the Kane-Fisher model [54,55] with
K → 2K . For K < 1/2, the impurity interactions effectively
cut (i.e., pin) the symmetric and antisymmetric Luttinger
liquids. In the physical basis of two helical Luttinger liquids,
the junction coupling creates a perfectly reflecting boundary
condition which suppresses all conduction [29]. The junction
is therefore “clogged.” Concomitantly, the time-reversal sym-
metry is broken spontaneously and heterogeneously by the
network of junctions [29].

At the critical point K = 1/2, the transmission across a
single junction is nonzero and can be computed exactly by
fermionizing the symmetric and antisymmetric sectors into
a noninteracting model of Luther-Emery fermions. The scat-
tering problem can then be solved exactly, with the physical
transmission (T) and reflection (R) coefficients given by [29],

T =
(

2e|Mb|/v

e2|Mb|/v + 1

)2

, (15a)

R =
(

e2|Mb|/v − 1

e2|Mb|/v + 1

)2

, (15b)

where b = S, A indicates symmetric and antisymmetric sec-
tors. Above, MS = tσ /(πα) and MA = tσ ′/(πα), with α the
ultraviolet length-scale cutoff. We note that the expressions
are independent of the energy due to low-energy point-
scattering approximation. When |Mb|/v � 1, the transmis-
sion T ≈ 4 exp(−2|Mb|/v). Therefore, we conclude that the
junction at K = 1/2 is also clogged for |Mb|/v � 1. The
details of this analysis, extended beyond a point junction limit
is relegated to Appendix B.

The above results can now be bootstrapped to characterize
the helical network surface of clogged junctions. The surface

can be viewed as a network of ideal helical conductors that
are connected by clogged resistive junctions. Each clogged
junction contributes incoherently a suppression factor Gj ∼
exp (−2|Mj |/v), where j is the junction index and |Mj | is the
amplitude of the effective potential. The conductance is deter-
mined by the most conductive path in the network. We esti-
mate the conductance by G ∼ ∏′

j G j ∼ exp (−2
∑′

j |Mj |/v),
where the summation runs over all the junctions in the most
conductive path. Without loss of generality, the number of the
junctions in the path is roughly L/lseg (lseg the typical length
of the domain-wall segment). Combining the above estimates,
we predict a surface conductance G ∼ exp(−2 M̄

v
L

lseg
), where

M̄ is the averaged value of |Mj |. As a comparison, the conduc-
tance in the localized regime is G ∼ exp (−2L/ξloc), where
ξloc is the averaged localization length. The exponentially
small conductance of the clogged state and the absence of
qualitative distinctions argues that these regimes are a single
localized state, separated by a smooth crossover, rather than a
genuine phase transition.

V. DISCUSSION AND SUMMARY

We explored the stability of a 2D metallic surface of a
3D spin chiral (CII class) TI to disorder and interaction.
In the scenario of a symmetry-broken surface that forms
multiple statistically symmetric domains, we argued that the
surface can realize a gapless insulating ground state, with two
regimes—a network of 1D helical domain walls interrupted
by blockaded junctions (the clogged regime), and a network
of localized 1D helical channels (the fully localized regime).
This gapless insulating surface state, realized only in the CII
TI class, is a distinct scenario from the previously discussed
possibilities of interacting TI surfaces [9–13].

The gapless insulating surface of nontrivial TIs predicted
here shares many experimental features with a 2D conven-
tional Anderson insulator, exhibiting vanishing dc conduc-
tivity and nonzero compressibility. However, it may be dis-
tinguishable through real-space surface imaging (e.g., STM)
by its low-energy states organized into the characteristic
domain-wall network, quite different from the conventional
2D localized states. In addition, the half-charge excitations
in the localized regime [16] and the perfect barrier junctions
[29] should in principle be experimentally detectable via noise
measurements.

Finite temperature and finite frequency measurements may
also be able to distinguish between the clogged and fully
localized regimes, tunable by the strength of interactions
and disorder, with the latter controlling the domain size.
In the clogged regime of the dilute domain-wall limit, the
temperature dependence of the surface transport is dictated
by the weak junction links [54,55] and should then exhibit
the 1D insulator dependence. The ac conductivity will show a
crossover frequency scale set by ω∗ ∼ vF /lseg (lseg the length
of domain-wall segment) above which the ac conductivity is
the same as that of a 1D helical liquid [56]. In contrast, at low
frequency (ω < ω∗) the ac conductivity should vanish due to
the weak link barriers at the junctions.

In the fully localized regime, the transport is governed by
a network of 1D localized insulators. The low temperature
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conductance due to a localized insulator should follow G ∼
e−2L/ξloc , where ξloc is the localization length. The ac con-
ductivity should show the Mott conductivity σ ∝ ω2 [57] up
to logarithmic corrections. These two regimes are connected
via a crossover for finite domain-wall segments and become
distinct phases in the infinite domain-wall segment limit.

In this paper, we consider statistically symmetry-
preserving disorder that creates inhomogeneous symmetry
breaking. Such disorder may be generated due to the interplay
of symmetric disorder and interaction, leading to instabilities
of the dirty interacting topological surface states [58–60].
A systematic derivation of the heterogeneous spontaneous
symmetry breaking in a dirty interacting TI is beyond the
scope of the current paper and is left to future studies.

We note that the clogged state predicted here may also
be realized in the Luttinger liquid networks of the (twisted)
bilayer graphene and other related platforms [61–72]. If so,
the clogged phenomenology predicted here may extend to
those systems as well. We leave to future work the extension
of the present analysis to six-way junctions, relevant in the
twisted bilayer graphene systems [63,64].
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APPENDIX A: DERIVATIONS OF DOMAIN-WALL STATES

Here we derive the low-energy domain-wall model from
the 2D surface theory encoded in H0 + Hdis + HM,a, Eqs. (1),
(2), and (4). Our strategy is to first solve H0 + HM,a exactly,
thereby obtaining the domain-wall states and then treat Hdis as
a perturbation. The solution of H0 + HM,a can be parametrized
by �0(x, y) = f (x)[ψ̃1(y)v̂1 + ψ̃2(y)v̂2], where ψ̃1,2(y) are
normalized wave functions of y and v̂1,2 is a four component
vector. Taking ma(x) = ma sgn(x), we find that the amplitude
f (x) and vectors v̂1,2 satisfy

−ivDσ̂ x v̂1,2∂x f (x) + ma sgn(x)M̂av̂1,2 f (x) = 0, (A1)

which reduces to

v̂1,2∂x f (x) = −ma

vD
(iσ̂ xM̂a) sgn(x)v̂1,2 f (x). (A2)

The zero energy normalizable amplitude solution is given by

f (x) =
√

ma

vD
e−(ma/vD )|x|, (A3)

and the four component vectors satisfy

iσ̂ xM̂av̂1,2 = v̂1,2. (A4)

The above solution f (x) describes the domain-wall profile
across x, with the domain-wall chosen to run along y. The
single domain-wall assumption is justified as long as its width
(vD/ma) is much smaller than the typical domain size w, i.e.,
wma/vD � 1.

To obtain the effective 1D domain-wall Hamiltonian we
substitute �0 for � inside H0 + Hdis + HM,a. The resulting
kinetic energy part of the domain-wall Hamiltonian is then
given by

HDW,0 = [H0 + HM,a]�→�0

= vD

∫
dy[−is1ψ̃

†
1 ∂yψ̃1 − is2ψ̃

†
2 ∂yψ̃2], (A5)

where s1,2 = v̂
†
1,2σ̂

yv̂1,2 = ±1 determines the sign of veloci-
ties for the fermion fields ψi.

The domain-wall model is chiral when s1 = s2. We note
that there is no mixing term because [σ̂ xM̂a, σ̂

y] = 0.
The disorder part of the Hamiltonian is given by

HDW,dis = Hdis[� → �0]

=
∑
a,b

∫
dy ψ̃†

a v̂†
a[ṽ1τ̂

x + ṽ2τ̂
z + ã1σ̂

x τ̂ y

+ ã2σ̂
yτ̂ y]v̂bψ̃b, (A6)

where a, b = 1, 2 are the 1D fermion flavors. The 1D disorder
bilinears, ṽ1, ṽ2, ã1, and ã2, correspond to their 2D disor-
der counterparts, v1, v2, a1, and a2, respectively, related by
Õ(y) = ∫

dx f 2(x)O(x, y) for O = v1, v2, a1, a2.
We now use this setup to derive and analyze the structure

of the chiral, helical, and (fine-tuned) nontopological domain
walls.

1. Chiral domain walls

In the presence of only M̂1 = σ̂ z mass operator, the time-
reversal symmetry (T ) is broken, but the particle-hole (P)
is preserved. The resulting symmetry-broken surface corre-
sponds to the symmetry class C [73]. The corresponding
spinor equation reduces to iσ̂ xM̂1v̂1,2 = σ̂ yv̂1,2 = v̂1,2, with
solutions

v̂1 = 1√
2

⎡
⎢⎣

1
0
i
0

⎤
⎥⎦, v̂2 = 1√

2

⎡
⎢⎣

0
1
0
i

⎤
⎥⎦. (A7)

We can then identify that s1 = v̂
†
1 σ̂

yv̂1 = 1 and s2 =
v̂

†
2 σ̂

yv̂2 = 1. Based on the structure in Eq. (A5), the domain-
wall state only contains right-mover fermions. Thus such
a domain-wall solution realizes a chiral state, which corre-
sponds to the spin quantum Hall edge of class C [37–40], and
is robust against any local perturbation within a domain-wall.

For completeness, we also construct the disorder potential
on the domain-wall even though a chiral state is robust against
such disorder. Using Eqs. (A6) and (A7), the effective disorder
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domain-wall Hamiltonian is given by

H (1)
DW,dis =

∫
y

[ṽ2(y)(ψ†
1 ψ1 − ψ

†
2 ψ2) + ã2(y)(iψ†

2 ψ1

− iψ†
1 ψ2)].

The above ṽ2 plays the role of an antisymmetric chemical
potential in the two right movers, and ãy is an impurity
forward scattering between two right movers, that cannot
induce localization [74].

2. Helical domain walls

We now consider a symmetry-breaking mass M̂2 = σ̂ zτ̂ y.
This mass bilinear breaks the particle-hole symmetry but pre-
serves time-reversal symmetry. The symmetry-broken surface
belongs to the class AII (the same as the 2D time-reversal
symmetric Z2 TIs). The corresponding spinor equation is
σ̂ yτ̂ yv̂1,2 = v̂1,2 and yields solutions

v̂1 = 1

2

⎡
⎢⎣

1
i
i

−1

⎤
⎥⎦, v̂2 = 1

2

⎡
⎢⎣

1
−i
−i
−1

⎤
⎥⎦. (A8)

In this case, s1 = v̂
†
1 σ̂

yv̂1 = 1 and s2 = v̂
†
2 σ̂

yv̂2 = −1. Ac-
cording to Eq. (A5), the domain-wall movers are described by
a right mover (s1 = 1) and a left mover (s2 = −1). To assess
the effect of symmetric disorder, we construct the domain-
wall disorder potential Hamiltonian based on Eq. (A6),
obtaining

H (2)
DW,dis =

∫
y

ã2(y)[ψ̃†
1 ψ̃1 + ψ̃

†
2 ψ̃2]. (A9)

The domain-wall disorder is controlled by a scalar potential
ã2, corresponding to a randomly fluctuating chemical po-
tential. Based on symmetry, one can also include V̂4 = 1̂ in
Table I. This only creates correction to the existing random
chemical potential fluctuation. There are no additional bilinear
operators with T 2 = −1, so we conclude that the domain-wall
state is a helical state [28] which is topologically protected
from disorder in the absence of interactions [17].

3. Normal domain wall

For certain microscopic models (e.g., fine tuning interac-
tions such that only U3 �= 0 or U4 �= 0 appear), it is possible
to realize only one mass term. Here, we perform the same
analysis to derive the domain-wall states due to only M̂3 =
σ̂ z τ̂ x or M̂4 = σ̂ zτ̂ z mass operators. In the two dimensions, the
AIII class is topologically trivial. The spinor solutions (v̂1,2

for M̂3, û1,2 for M̂4) obey σ̂ yτ̂ x v̂1,2 = v̂1,2 and σ̂ yτ̂ zû1,2 = û1,2.
The corresponding solutions are given by

v̂1 = 1

2

⎡
⎢⎣

1
1
i
i

⎤
⎥⎦, v̂2 = 1

2

⎡
⎢⎣

1
−1
−i

i

⎤
⎥⎦, (A10)

and

û1 = 1√
2

⎡
⎢⎣

1
0
i
0

⎤
⎥⎦, û2 = 1√

2

⎡
⎢⎣

0
1
0

−i

⎤
⎥⎦ (A11)

We thus identify that v̂
†
1 σ̂

yv̂1 = û†
1σ̂

yû1 = 1 (right mover)
and v̂

†
2 σ̂

yv̂2 = û†
2σ̂

yû2 = −1 (left mover). Therefore, both
cases give a nonchiral state. Because the surface state is in
class A, the massless domain-wall hosts nontopological 1D
fermions.

For completeness, we also discuss the corresponding
domain-wall disorder. With the mass M̂3, the disorder part is
given by

H (3)
DW,dis =

∫
y

ṽ1(y)[ψ̃†
1 ψ̃1 − ψ̃

†
2 ψ̃2]

+
∫

y
ã1(y)[ψ̃†

2 ψ̃1 + ψ̃
†
1 ψ̃2]. (A12)

For M̂4 case we instead find

H (4)
DW,dis =

∫
y

ṽ2(y)[ψ̃†
1 ψ̃1 − ψ̃

†
2 ψ̃2]

−
∫

y
ã1(y)[ψ̃†

2 ψ̃1 + ψ̃
†
1 ψ̃2]. (A13)

The antisymmetry chemical potentials (ṽ1 in H (3)
DW,dis and ṽ2

in H (4)
DW,dis) couples to the difference of right and left mover

local densities. Both cases allow for conventional impurity
backscattering (ã1 in both cases) within the domain wall,
and thus realize topologically trivial 1D fermions, which are
therefore not protected against Anderson localization.

APPENDIX B: HELICAL JUNCTION

In this Appendix, we provide the derivations of the results
in Sec. IV B. We will also review the standard bosonization
and the Luther-Emery analysis.

1. Bosonization

To treat the Luttinger interaction nonperturbatively, we
adopt the standard field theoretic bosonization method [48].
The fermionic fields can be described by chiral bosons via

Ra(x) = Ûa√
2πα

ei[φa+θa](x), La(x) = Ûa√
2πα

ei[φa−θa](x),

(B1)

where φa=± is the bosonic phase field, θa=± is the phononlike
boson, Ua=± is the Klein factor [47], and α is the ultraviolet
length scale that is determined by the microscopic model. The
time-reversal operation (T 2 = −1) in the bosonic language is
defined as follows: φ± → −φ± + π

2 , θ± → θ± − π
2 , and i →

−i. This corresponds to the fermionic operation R± → L±,
L± → −R±, and i → −i. We note that the introduction of the
Klein factors (Ua=±) here is just for bookkeeping purposes.

Now, we perform the standard bosonization and analyze
the Hamiltonian. The Hamiltonian of each helical liquid is
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bosonized to

HhLL,2 =
∑
a=±

∫
x

[
v

2πK
(∂xθa)2 + vK

2π
(∂xφa)2

]
, (B2)

where we have assumed the same velocity (v) and the same
Luttinger parameter (K) among the two helical liquids. K
encodes the strength Luttinger liquid interactions. K < 1
(K > 1) for repulsive (attractive) interactions. K = 1 is at
the noninteracting fermion limit. The impurity perturbations
[given by Eqs. (10)–(12)] are bosonized to

H (1)
junc = − te

2πα
[Û †

−Û+(2i)ei(φ+−φ− ) sin (θ+ + θ−) + H.c.]

− te′

2πα
[Û †

−Û+2ei(φ+−φ− ) cos(θ+ − θ−) + H.c.],

(B3)

H (2)
junc = − t2e

4πα2
[Û †

−Û †
−Û+Û+ei(2φ+−2φ− ) + H.c.], (B4)

H (I )
junc = − tσ

2π2α2
cos[2θ+ + 2θ−]

− tσ ′

2π2α2
cos[2θ+ − 2θ−]. (B5)

The corresponding RG equations can be found in Eqs. (14).

2. Clogged junction

We are interested in the repulsive interacting regime (K <

1) in the helical network model. Therefore, we focus on the
tσ and tσ ′ interactions given by Eq. (B5) and ignore other
processes. In the strong coupling limit (K < 1/2), the ground-
state constraints are θ+(t, x = 0) + θ−(t, x = 0) = nπ and
θ+(t, x = 0) + θ−(t, x = 0) = mπ , where n and m are in-
tegers. The ground state yields static solutions at x = 0:
θ+(t, x = 0) = (n + m)π/2 and θ−(t, x = 0) = (n − m)π/2.
As a consequence, the current I± = − 1

π
∂tθ± at x = 0 is zero

in both of the helical liquids. Therefore, we predict that a
four-way junction with semi-infinite helical liquids becomes
“clogged” for K < 1/2.

An alternative way to view the clogging is to map the
problem to a modified Kane-Fisher single-impurity problem
[54,55]. We define symmetric and anti-symmetric collective
bosonic modes as follows:

�S = 1√
2

(θ+ + θ−), �S = 1√
2

(φ+ + φ−), (B6)

�A = 1√
2

(θ+ − θ−), �A = 1√
2

(φ+ − φ−). (B7)

The subscripts S and A denote the symmetric and antisymmet-
ric collective modes, respectively. Now, we use the collective
coordinate to rewrite the theory. The Luttinger liquid Hamil-
tonian in Eq. (B2) is now expressed by

HhLL,2 =
∫

x

[
v

2πK
(∂x�S )2 + vK

2π
(∂x�S )2

]
(B8)

+
∫

x

[
v

2πK
(∂x�A)2 + vK

2π
(∂x�A)2

]
. (B9)

We note that the impurity interaction cannot induce renormal-
ization of the velocity and Luttinger parameter. The junction
interactions in Eq. (B5) becomes

H (I )
junc = − tσ

2π2α2
cos[2

√
2�S] − tσ ′

2π2α2
cos[2

√
2�A].

(B10)

Both the symmetric and antisymmetric sectors can be indi-
vidually mapped to the Kane-Fisher problem [54,55] with
K → 2K . The critical point is given by K = 1/2, below which
the transmission of both the symmetric and antisymmetric
modes vanish to zero.

3. Luther-Emery analysis

At the critical point K = 1/2, one can perform standard
refermionization for the two helical Luttinger liquids problem
since both the symmetric and the antisymmetric sectors cor-
respond to the Kane-Fisher model [54,55]. We introduce the
Luther-Emery fermions via

�b,R(x) =ei[�b(x)/
√

2+√
2�b(x)]

√
2πα

,

(B11)

�b,L(x) =ei[�b(x)/
√

2−√
2�b(x)]

√
2πα

,

where b = S, A is the index for symmetric (S) and anti-
symmetric (A) collective modes. The Luther-Emery fermion
Hamiltonian of the sector b is given by

Hb = −iv
∫

dx[�†
b,R∂x�b,R − �

†
b,L∂x�b,L]

+ Mb[�†
b,R�b,L + �

†
b,L�b,R]x=0, (B12)

where Mb=S = tσ /(πα) and Mb=A = tσ ′/(πα). The impurity
mass problem can be solved via standard quantum mechanical
scattering approach. First=, we derive the Dirac equation as
follows:

[ −iv∂x Mbδ(x)
Mbδ(x) iv∂x

][
�b,R

�b,L

]
= E

[
�b,R

�b,L

]
(B13)

→ − ivσ̂ z∂x�̂b + Mbδ(x)σ̂ x�̂b = E�̂b, (B14)

where �̂b is the two-component column vector that contains
�b,R and �b,L. The above equation satisfies a boundary con-
dition as follows:

−ivσ̂ z[�̂b(0+) − �̂b(0−)] + Mbσ̂
x�̂b(0) = 0. (B15)

We note that this boundary condition is ambiguous because
the wave function might be discontinuous at x = 0.

Instead of studying the delta distribution problem, we
replace the impurity potential by a square well potential,
Mbδ(x) → M̃b�(x)�(d − x), where d is the size of mass
region and M̃b = Mb/d is the “mass” strength. The impurity
limit is obtained by taking d → 0+. With a finite d , the wave
function is continuous everywhere because of the analyticity.
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We consider a scattering ansatz as follows:

�̂b(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

eikx
[

1
0

]
+ Ae−ikx

[
0
1

]
, for x � 0

Beiqx
[

1
−vq+E

M̃b

]
+ Ce−iqx

[ −vq+E
M̃b
1

]
, for 0 < x � d

Deikx
[

1
0

]
, for x > d,

(B16)

where k = E/v and q =
√

E2 − M̃2
b/v. The boundary condi-

tions are given by

B + C

(−vq + E

M̃b

)
=1, (B17)

B

(−vq + E

M̃b

)
+ C =A, (B18)

Beiqd + Ce−iqd

(−vq + E

M̃b

)
=Deikd , (B19)

Beiqd

(−vq + E

M̃b

)
+ Ce−iqd =0. (B20)

With the help of Mathematica, one can obtain the solutions as
follows:

A =
(√

x2
E − 1 − xE

)(
−1 + e2i�

√
x2

E −1
)

1 +
(

2xE

√
x2

E − 1 − 2x2
E + 1

)
e2i�

√
x2

E −1
, (B21a)

B = 1

1 +
(

2xE

√
x2

E − 1 − 2x2
E + 1

)
e2i�

√
x2

E −1
, (B21b)

C =
(√

x2
E − 1 − xE

)
e2i�

√
x2

E −1

1 +
(

2xE

√
x2

E − 1 − 2x2
E + 1

)
e2i�

√
x2

E −1
, (B21c)

D =
2
(

xE

√
x2

E − 1 − x2
E + 1

)
ei�

(√
x2

E −1−xE

)

1 +
(

2xE

√
x2

E − 1 − 2x2
E + 1

)
e2i�

√
x2

E −1
, (B21d)

where xE ≡ E/|M̃b| and � ≡ d|M̃b|/v = |Mb|/v. The reflec-
tion is R = |A|2 and transmission is T = |D|2. The depen-
dence of xE and � are plotted in Fig. 4. For � = |Mb|/v � 1,

Δ=0.5

Δ=1

Δ=2
Δ=5

Δ=5

Δ=0.5

Δ=1

Δ=2

)b()a(

FIG. 4. Reflection and transmission of 1D Dirac scattering prob-
lem (finite mass region) as functions of rescaled energy. (a) Re-
flection, R = |A|2. (b) Transmission, T = |D|2. Both A and B are
given by Eqs. (B21). xE is the dimensionless energy parameter
defined in the text below Eqs. (B21). Black, blue, green, and red
curves indicate � = Mb/v = 0.5, 1, 2, 5, respectively. The perfect
transmissions (T = 1 and R = 0) for xE > 1 correspond to the Fabry-
Pérot interference.

the scattering problem reveals a sharp gap structure because
R ≈ 1 for xE < 1. For xE > 1, there are some special energies
that allow perfect transmission. This is related to the Fabry-
Pérot interference. However, we do not focus on such high
energy phenomenon in this paper.

Now, we consider d → 0+ with M̃bd = Mb fixed. The
finite mass region is reduced to a single impurity potential.
In the impurity case, xE = Ed/|Mb| → 0 for a fixed Mb/v.
The expression of transmission and reflection are reduced to
Eqs. (15). The results do not depend on the energy due to the
infinite |M̃b| = |Mb|/d in this limit. These results characterize
the low-energy scattering in the network model. In particular,
the transmission T → 4e−2|Mb|/v when |Mb|/v � 1.

In the four-way junction problem, the clogging conditions
at K = 1/2 correspond to perfect reflections in both the sym-
metric and antisymmetric sectors. In the zero-energy limit,
the clogging conditions are |MS|/v � 1 and |MA|/v � 1. To
make the junction more realistic, we can assume that both the
domain-wall segment and the interacting region are finite. The
longest wavelength is set by the typical domain-wall segment
length, lseg, corresponding to the lowest kinetic energy E0 =
v(2π/lseg). The clogging conditions become to v(2π/lseg) <

|tσ |/(παd ), v(2π/lseg) < |tσ ′ |/(παd ), |tσ |/(vπα) � 1, and
|tσ ′ |/(vπα) � 1. The former two conditions are from com-
paring the energy of the electron to the local mass; the latter
two conditions are related to the existence of sharp gaps.
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