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Equation of state of boron nitride combining computation, modeling, and experiment
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The equation of state (EOS) of materials at warm dense conditions poses significant challenges to both theory
and experiment. We report a combined computational, modeling, and experimental investigation leveraging
new theoretical and experimental capabilities to investigate warm-dense boron nitride (BN). The simulation
methodologies include path integral Monte Carlo (PIMC), several density functional theory (DFT) molecular
dynamics methods [plane-wave pseudopotential, Fermi operator expansion (FOE), and spectral quadrature
(SQ)], activity expansion (ACTEX), and all-electron Green’s function Korringa-Kohn-Rostoker (MECCA), and
compute the pressure and internal energy of BN over a broad range of densities and temperatures. Our
experiments were conducted at the Omega laser facility and the Hugoniot response of BN to unprecedented
pressures (1200–2650 GPa). The EOSs computed using different methods cross validate one another in the
warm-dense matter regime, and the experimental Hugoniot data are in good agreement with our theoretical
predictions. By comparing the EOS results from different methods, we assess that the largest discrepancies
between theoretical predictions are �4% in pressure and �3% in energy and occur at 106 K, slightly below the
peak compression that corresponds to the K-shell ionization regime. At these conditions, we find remarkable
consistency between the EOS from DFT calculations performed on different platforms and using different
exchange-correlation functionals and those from PIMC using free-particle nodes. This provides strong evidence
for the accuracy of both PIMC and DFT in the high-pressure, high-temperature regime. Moreover, the recently
developed SQ and FOE methods produce EOS data that have significantly smaller statistical error bars than
PIMC, and so represent significant advances for efficient computation at high temperatures. The shock Hugoniot
predicted by PIMC, ACTEX, and MECCA shows a maximum compression ratio of 4.55 ± 0.05 for an initial density
of 2.26 g/cm3, higher than the Thomas-Fermi predictions by about 5%. In addition, we construct tabular EOS
models that are consistent with the first-principles simulations and the experimental data. Our findings clarify the
ionic and electronic structure of BN over a broad range of temperatures and densities and quantify their roles in
the EOS and properties of this material. The tabular models may be utilized for future simulations of laser-driven
experiments that include BN as a candidate ablator material.
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I. INTRODUCTION

The equation of state (EOS) of materials from the con-
densed matter to warm-dense matter and the plasma regime
plays an indispensable role in radiation hydrodynamic sim-
ulations [1], which are required for the design and analysis
of inertial confinement fusion (ICF) and high-energy den-
sity (HED) experiments. In laser-driven capsule experiments,
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ablator materials are important to implosion dynamics and
performance. Currently, the most widely used ablator mate-
rials are plastics, such as polystyrene derivatives and glow-
discharge polymer, high-density carbon (HDC), and beryl-
lium. Materials with higher density and tensile strength, such
as boron (B) and its compounds, offer the potential for im-
provements in performance and additional nuclear diagnostics
in exploding pusher platforms [2,3].

At ambient conditions, boron nitride (BN) exists in two
stable, nearly degenerate phases: hexagonal BN (h-BN) and
cubic BN (c-BN), similar to the graphite and diamond phases
of its isoelectronic material, carbon (C). Because of this simi-
larity, BN is widely investigated for the synthesis of superhard
materials and fabrication of thin films or heterostructures
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for various applications [4]. Nanostructured c-BN, whose
hardness is almost twice that of bulk c-BN and close to that of
diamond, has been synthesized at high-pressure and temper-
ature conditions [5]. Other applications for low-dimensional
BN include nanoelectronic devices [4] and expanded h-BN
for hydrogen storage [6]. It has also been demonstrated that
the density and mechanical properties of BN can be tuned by
constructing a mixture of its cubic and hexagonal phases [7].

There have been extensive theoretical and experimental
studies on the structure [8,9], stability [10–12], EOS [13–18],
melting and phase diagram [19–22], and mechanical [23–25],
optical [26,27], thermodynamic [14,25,28,29], and transport
[30,31] properties of BN and its polymorphs. The phase
transformation of rhombohedral BN (r-BN) was found to be
dependent on the pressure-transmitting medium [12], and the
transition of h-BN into a wurtzite phase (w-BN) under plastic
shear may be dramatically different from that under hydro-
static pressures [32,33]. A large number of calculations using
density functional theory (DFT) [34,35], and quantum Monte
Carlo (QMC) simulations [15,36,37] have been performed on
c-BN. Assisted by vibrational corrections, QMC results [15]
successfully reproduce the volume changes and Raman fre-
quency shifts measured by static high-pressure experiments.

Experimentally, the diamond anvil cell or multianvil ap-
paratus have been used to obtain the EOS of h-BN up to
∼12 GPa and 1000 K [38–40], c-BN to 160 GPa and 3300 K
[41–43], and of w-BN to 66 GPa [44]. Shock compression
measurements for BN up to 300 GPa have been reported
for various initial densities (1.81–3.48 g/cm3) [16–18,45],
porosity [18], and temperatures (293–713 K) [45]. Because
of the limited data available at extremely high-pressure and
-temperature conditions, existing tabular EOS models have
traditionally relied on simplified electronic structure theory,
such as the Thomas-Fermi (TF) theory. The goal of this work
is to investigate the EOS of BN in the high-energy density
regime and provide tabular models that are validated by first-
principles simulations and experimental data.

In a recent study [3], Zhang et al. computed the EOS of
B based on first-principles quantum simulations over a wide
range of temperatures and densities. The Hugoniot computed
from those simulations shows excellent agreement with our
experimental measurement on a planar laser shock platform.
We have utilized the data to construct an EOS table (X52) for
B. The work has also allowed us to study the performance of
the polar direct-drive exploding pusher platform [2] and its
sensitivity to the EOS.

In this work, we combine extensive theoretical calculations
to build tabular models for the EOS of BN, which we then
validate in the warm-dense matter regime via comparison to
experimental measurements of the BN Hugoniot. We also
provide theoretical estimates of the uncertainty in the pressure
and internal energy by comparing values from different sim-
ulation methods. Our theoretical methods include many-body
path integral Monte Carlo (PIMC), several electronic structure
theories based on pseudopotential DFT-molecular dynam-
ics (DFT-MD), an activity expansion method, and an all-
electron, Green’s function Korringa-Kohn-Rostoker (KKR)
method. Our experiments consist of three measurements of
the Hugoniot response of c-BN conducted at the Omega laser
facility.

The paper is organized as follows: Sec. II introduces
our simulation methods; Sec. III describes details of our
shock experiments; Sec. IV introduces our EOS models;
Sec. V compares and discusses our EOS and Hugoniot results
from different theoretical methods and experiments and those
between BN and C; finally, we conclude in Sec. VI.

II. FIRST-PRINCIPLES SIMULATION METHODS

In this section, we introduce the theoretical methods that
are used in this work to compute the internal energies and
pressures of BN across a wide range of temperatures and
densities in order to provide simulation data for construction
of tabular EOS models for BN. The theoretical methods
applied here include PIMC, the activity expansion method
as implemented in the ACTEX code, and several methods that
are based on DFT. The DFT methods include both methods
that sample the ionic positions via molecular dynamics and
average-atom methods where the ionic positions are static.
Figure 1 summarizes the temperature and density conditions
at which each of the methods has been employed for calcula-
tions of BN in this study. In the following, we briefly describe
the fundamental assumptions associated with each technique
and comment on its accuracy. Additional details can be found
in the cited references.

A. Path integral Monte Carlo

PIMC is a quantum many-body method for materials
simulations that is based on sampling the finite-temperature
density matrix derived from the full many-body Hamiltonian
H. In PIMC, particles are treated as quantum paths that are
cyclic in imaginary time [0, β = 1/kBT ], where kB is the
Boltzmann constant. Thermodynamic properties, such as the
internal energy, are obtained by

Ō = 1

Z

∫∫
dR dR′〈R|Ô|R′〉�(R, R′; β ) (1)

FIG. 1. Temperature-density diagram showing the parameter re-
gions where the methods in this paper are used for calculating the
EOS of BN.
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in coordinate representation. Z = ∫
dR〈R|Ô|R〉 is the partition

function. �(R, R′; β ) = 〈R| exp(−βH)|R′〉 is the density ma-
trix. Trotter’s formula [46] can be used to break up �(R, R′; β )
into M slices, each corresponding to an imaginary-time step
τ = β/M. The method becomes exact in the limit of τ → 0.
Higher temperatures require fewer points, and convergence
with respect to the imaginary-time step must systematically
be tested for each system studied. In practice, one starts with a
solution of the two-body problem and only employs the PIMC
method to sample higher-order correlations. This pair density
matrix approach is described in Refs. [47,48].

The application of PIMC to electronic structure calcula-
tions requires certain approximations due to the fermion sign
problem. Fermionic symmetry requires that a negative sign
arises from the antisymmetrical wave function. This leads
to the nearly complete cancellation of positive and negative
contributions to the fermionic density matrix, which makes
a direct numerical evaluation impractical for more than a
few particles. The standard way to avoid this issue in PIMC
simulations is to restrict the paths to the positive region of
the trial density matrix �T by implementing the fixed-node
approximation [49]. The condition �T = 0 in 3N-dimensional
space defines the nodal surface, where N is the number of
particles. In high-temperature simulations, �T is chosen to be
a Slater determinant of free-particle density matrices

�[1](ri, r j ; β ) =
∑

k

exp(−βEk )�∗
k (ri)�k (r j ), (2)

where �∗
k (r) denotes a plane wave with energy Ek . The cor-

responding nodal surface is called free-particle nodes. The as-
sumption of free-particle nodes is appropriate at high tempera-
ture. The PIMC method with free-particle nodes has been suc-
cessfully developed and applied to hydrogen [50–58], helium
[59,60], and calculations of the EOS for a range of first-row
elements [3,61–64] and compounds [61,65–67]. Recent de-
velopments [68–70] have extended the applicability of PIMC
to second-row elements at lower temperatures by appending
localized orbitals to �[1], opening a possible route toward ac-
curate quantum many-body simulations of heavier elements.

In this study, we apply PIMC for the simulations of BN
with free-particle nodes using the CUPID code [71]. All elec-
trons and nuclei are treated explicitly as quantum paths. The
Coulomb interactions are described via pair density matrices
[47,72], which are evaluated in steps of τ = 1

512 Hartree−1

(Ha−1). The nodal restriction is enforced in much smaller
steps of 1

8192 Ha−1. The calculations are performed over a
wide range of densities 0.23–45.16 g/cm3, or 0.1 to 20 times
the ambient density ρ0 ∼ 2.26 g/cm3 based on that of h-BN
[73], and temperatures 106–5 × 108 K. Each simulation cell
consists of 24 atoms, which is comparable to our previous
simulations for pure B [3], nitrogen (N) [63], and hydrocar-
bons [66,67]. The cell-size effects on the EOS are negligible
at such high-temperature conditions.1

1By comparing the EOS and the radial distribution function g(r)
obtained using 24-atom cells to those using 96-atom cells in our
DFT-MD calculations, we find negligible differences at temperatures
above 5 × 104 K. A comparison in g(r) is shown in Fig. 8.

B. DFT-MD with plane-wave basis and projector
augmented wave potentials

DFT-MD is a widely used method for accurately simu-
lating condensed matter systems at finite temperatures. In
DFT-MD, the ions are classical particles, which move accord-
ing to Newton’s classical equations of motion. The forces
are computed by solving the Kohn-Sham DFT equations
for the electrons at each time step. The applicability and
accuracy of DFT-MD for EOS calculations has been previ-
ously demonstrated for condensed phase materials in multiple
studies (see Ref. [74] as an example). One difficulty lies in
using this method for high temperatures, which is originated
from significant thermal excitation of electrons and intractable
computational cost.

Our DFT-MD simulations for BN are performed in two
different ways. One way is by using the projector augmented
wave (PAW) pseudopotentials [75] and plane-wave basis
(PAWpw), as implemented in the Vienna ab initio simulation
package (VASP) [76] and used in our previous studies (e.g.,
Refs. [3,66,67,69,77]). Similar to our recent work on pure
B [3], we choose the hardest PAW potentials available in
VASP, which freeze the 1s electrons in the core and have a
core radius of 1.1 bohrs for both B and N. We choose the
Perdew-Burke-Ernzerhof (PBE) [78] functional for describing
electronic exchange and correlation interactions, a large cutoff
energy of 2000 eV for the plane-wave basis, and the � point
to sample the Brillouin zone. The simulations are carried out
using a Nosé thermostat [79] to generate MD trajectories
in the canonical ensemble. The MD time step is chosen to
ensure total energy conservation and takes on values of 0.05–
0.55 fs in these calculations, with smaller values correspond-
ing to higher temperatures. We typically run for 5000 steps
at each density-temperature (ρ-T ) condition, which is found
to be sufficient for convergence of the computed energies and
pressures.

To ensure consistency with the all-electron PIMC energies,
our PAWpw energies from VASP reported in this study are
shifted by −79.017 Ha/BN. This is determined with all-
electron calculations for isolated B and N atoms with OPIUM
[80] using the PBE functional.

Our PAWpw calculations are performed at temperatures
between 6.7 × 103 K and 5.05 × 105 K (∼0.6–43.5 eV). Due
to limitations in applying the plane-wave expansion for or-
bitals at low densities and limitations in the applicability of
the pseudopotentials that freeze the 1s2 electrons in the core
at high densities, we consider a smaller range of densities
(ρ0 up to 10 × ρ0) than that was examined via PIMC simu-
lations. These conditions are relevant to shock-compression
experiments and span the range in which Kohn-Sham
DFT-MD simulations are feasible by conventional wave-
function-based approaches. We performed calculations with
both 24-atom and 96-atom cells to minimize the finite-size
errors.

C. DFT-MD with optimized norm-conserving Vanderbilt
pseudopotentials and Fermi-operator expansion

As a check on the PAWpw calculations for the major-
ity of the DFT-MD simulations and to enable extension of
our DFT-MD calculations to higher density, we perform a
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separate set of DFT-MD simulations by utilizing optimized
norm-conserving Vanderbilt (ONCV) [81,82] pseudopoten-
tials, a plane-wave method (ONCVpw) at low temperatures,
and a Fermi-operator expansion method (FOE) at high tem-
peratures, in order to verify our PAWpw calculations and
expand the range of applicability of Kohn-Sham DFT to
higher temperatures. Detailed information about the ONCV
pseudopotentials is described in Appendix A.

The ONCVpw calculations at low temperature (<1.3 ×
105 K) are similar to those using PAWpw. We applied a
preconditioned conjugate gradient method [83] to fully re-
lax the electronic wave functions at each time step. An
efficient fast Fourier transform (FFT) algorithm was used
for the conversion of the wave functions between real and
reciprocal spaces. Each simulation is performed either with
frozen 1s2 core pseudopotentials (for ρ � 10 × ρ0) or with
all-electron pseudopotentials (for ρ > 10 × ρ0), NV T ensem-
ble with over 5000 steps, time step of 0.2 fs, and on 128-atom
supercells.

At temperatures greater than 3.5 × 105 K, K-shell ion-
ization becomes significant [3]. We use all-electron ONCV
potentials and FOE [84,85], which takes advantage of the
smooth Fermi-Dirac function at high temperature by approx-
imating the function with polynomial expansion, to con-
duct Kohn-Sham DFT calculations. In the subspace-projected
Hamiltonian approach, we adopted the Chebyshev filtered
subspace iteration approach [86]. As the ground-state elec-
tron density depends solely on the occupied eigenspace, the
technique exploits the fast growth property of Chebyshev
polynomial to magnify the relevant spectrum, thereby provid-
ing an efficient approach for the solution of the Kohn-Sham
eigenvalue problem. The matrix-vector multiplications in the
Chebyshev filtering procedure are performed on the FFT grids
in Fourier space and only considered if the vector has a
nonzero value in the matrix.

Three steps are involved in this method: (i) a Chebyshev
filter to construct a subspace which is an approximation to
the temperature-smearing occupied eigenspace in a given self-
consistent iteration; (ii) FFT mesh to span the Chebyshev
filtered subspace from real space to Fourier space; (iii) FOE
in terms of the subspace-projected Hamiltonian represented
in the plane-wave basis to compute relevant quantities like
the density matrix, electron density, and band energy. The
accuracy of the Chebychev polynomial expansion [87,88]
depends on the electron temperature Te, and the width of the
eigenspectrum �Ee. In particular, the degree of polynomial
required to achieve the desired accuracy in the approximation
[87] of the Fermi-Dirac distribution is O(�Ee/kBTe). A more
accurate estimate that takes into account the location of the
Fermi level can be found in Ref. [89]. Chebychev polynomial
orders of 40–60 and localization radii ranging from 1.056 to
2.88 bohrs were used in the FOE method.

To achieve the same level of accuracy as the plane-wave
approach, our high-T FOE simulations use PBE exchange-
correlation functional and the same FFT meshes as the ON-
CVpw method (real-space grid spacing ranges from 0.066 to
0.18 bohrs). The NV T simulations were carried out using 32-
atom supercells. Each simulation involves 3000–6000 steps
(0.05–0.1 fs/step) to ensure sufficient statistics.

D. DFT-MD using spectral quadrature

The spectral quadrature (SQ) method [89] is a density
matrix based O(N ) method for the solution of the Kohn-Sham
equations that is particularly well suited for calculations at
high temperature. In the SQ method, all quantities of interest,
such as energies, forces, and pressures, are expressed as
bilinear forms or sums of bilinear forms which are then ap-
proximated by quadrature rules that remain spatially localized
by exploiting the locality of electronic interactions in real
space [90], i.e., the exponential decay of the density matrix
at finite temperature [91–94]. In the absence of truncation, the
method becomes mathematically equivalent to the recursion
method [95,96] with the choice of Gauss quadrature, while for
Clenshaw-Curtis quadrature, the FOE [87,88] in Chebyshev
polynomials is recovered. Being formulated in terms of the
finite-temperature density matrix, the method is applicable to
metallic and insulating systems alike, with increasing effi-
ciency at higher temperature as the Fermi operator becomes
smoother and the density matrix becomes more localized
[97,98]. O(N ) scaling is obtained by exploiting the locality
of the density matrix at finite temperature, while the exact
diagonalization limit is obtained to desired accuracy with
increasing quadrature order and localization radius. Conver-
gence to standard O(N3) plane-wave results, for metallic and
insulating systems alike, is readily obtained [97,98].

While mathematically equivalent to classical FOE meth-
ods for a particular choice of quadrature, the more general
SQ formulation affords a number of advantages in practice
[97,98]. These include the following: (1) The method is
expected to be more robust since it explicitly accounts for
the effect of truncation on the Chebyshev expansion. (2) The
method computes only the elements of density matrix needed
to evaluate quantities of interest, e.g., only diagonal elements
to obtain densities and energies, rather than computing the full
density matrix (to specified threshold) as in FOE methods.
(3) The method computes the Fermi energy without storage
or recomputation of Chebyshev matrices as required in FOE
methods. (4) The method admits a decomposition of the
global Hamiltonian into local sub-Hamiltonians in real space,
reducing key computations to local sub-Hamiltonian matrix-
vector multiplications rather than global full-Hamiltonian
matrix-matrix multiplications as in FOE methods. Since the
associated local multiplications are small (according to the
decay of the density matrix) and independent of one another,
the method is particularly well suited to massively paral-
lel implementation; whereas the global sparse matrix-matrix
multiplications required in FOE methods pose significant
challenges for parallel implementation [85].

In this work, we employ the massively parallel SQDFT
code [98] for high-temperature Kohn-Sham calculations.
SQDFT implements the SQ method in real space using
a high-order finite-difference discretization wherein sub-
Hamiltonians are computed and applied for each finite-
difference grid point. For efficient MD simulations, Gauss
quadrature is employed for the calculation of density and en-
ergy in each SCF iteration whereas Clenshaw-Curtis quadra-
ture is employed for the calculation of atomic forces and
pressure [97]. While applicable at any temperature in prin-
ciple, the present implementation is most advantageous at
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temperatures in excess of ∼105 K, where the Fermi operator
becomes sufficiently smooth and density matrix sufficiently
localized to reduce wall times below those attainable by
standard O(N3) scaling methods for the system sizes con-
sidered here, though avenues exist to reduce this temperature
substantially [99].

Simulations were carried out for a series of 32-atom BN
unit cells at densities from 6.77–13.55 g/cm3 and tempera-
tures from 1 010 479–1 347 305 K. All-electron ONCV [81]
pseudopotentials were employed for B and N with cutoff radii
of 0.60 and 0.65 bohrs, respectively. Exchange and correlation
were modeled in the local density approximation (LDA) as
parametrized by Perdew and Zunger [100]. NV T simulations
were carried out using a Nosé-Hoover thermostat [79,101]
with ∼500 steps for equilibration followed by ∼3000–5000
steps for production (with time steps of 0.035–0.04 fs). A
finite-difference grid spacing of ∼0.1 bohrs (commensu-
rate with unit-cell dimensions), Gauss and Clenshaw-Curtis
quadrature orders of 50 and 76, respectively, and localization
radius of 1.3 bohrs were employed in the SQ calculations to
obtain energies to 0.02% and pressures to 0.2% (discretization
error) or less.

E. All-electron, Green’s function Korringa-Kohn-Rostoker

In addition, we applied an all-electron, Green’s function
KKR electronic structure method (based on Kohn-Sham DFT)
implemented within a scalar-relativistic approximation, i.e.,
spin orbit is ignored beyond the core electrons. We use the
multiple-scattering electronic structure calculation for com-
plex applications (MECCA) code, a k-space KKR code [102].
More technical details on high-energy density applications
using MECCA and the advantages using a Green’s function
method can be found in Ref. [103]. MECCA is applicable to
the whole pressure and temperature range of interest in this
paper, beyond that available from pseudopotential methods.
However, as presently implemented, MECCA is a static DFT
code that does not sample the ionic degrees explicitly, i.e.,
vibrational energies and corresponding entropy contributions
cannot be obtained. As such, one must add these either from
another calculation or some analytic model. Here, we apply
the ideal-gas correction to the MECCA results to provide the
most consistent comparisons with the other methods. This
approach was used recently to address, for example, the
principal Hugoniot curves for Be in a review of EOS models
for ICF materials [104].

For current results, we used the atomic sphere approx-
imation with periodic boundary conditions to incorporate
interstitial electron contributions to Coulomb energy from
all atomic Voronoi polyhedra. The KKR spherical-harmonic
local basis included Lmax = 2, i.e., s, p, and d symmetries
within the multiple-scattering contributions, and L’s up to
200 are included automatically until the free-electron Bessel
functions contribute zero to the single-site wave-function
normalizations. The Green’s functions are integrated via
complex-energy contours taking advantage of analytic contin-
uation to decrease dramatically solution times [105]. Various
DFT exchange-correlation functionals are included through
use of the libXC library [106]. In this work we used the
LDA functional of Vosko, Wilk, and Nusair [107]. Brillouin

zone integrations for self-consistent charge iterations were
performed with a 16 × 16 × 16 Monkhorst-Pack [108] k-
point mesh along the complex-energy contour for energies
with an imaginary part smaller than 0.25 Rydberg, and a
10 × 10 × 10 k-point mesh otherwise. A denser mesh was
used for the physical density of states calculated along the
real-energy axes when needed.

Even though BN occurs in many phases near ambient
conditions, for simplicity we chose to use a dense packed
but cubic structure, the B2 phase (CsCl prototype) for all
MECCA calculations to cover the broad range of pressures and
temperatures.

F. Activity expansion

Activity-expansion calculations of the EOS are performed
using the ACTEX code, which is based on an expansion of the
plasma grand partition function in powers of the constituent
particle activities (fugacities) [109,110]. The present calcu-
lations are similar to those used in previous work [3] and
include interaction terms beyond the Debye-Hückel, electron-
ion bound states and ion-core plasma polarization terms,
along with relativistic and quantum corrections [111,112].
EOS data generated with the ACTEX code, as well as OPAL
opacity tables which use the state populations computed from
ACTEX, have been extensively checked by comparison with
astronomical observations [113] and with laser-driven experi-
ments [114].

As with previous studies [3], we cut off ACTEX calcu-
lations at temperatures below the point where many-body
terms become comparable to the leading-order Saha term
(T > 5.8 × 105 K). This ensures that the activity-expansion
method is valid while allowing investigation of the predicted
peak compression on the Hugoniot.

III. SHOCK HUGONIOT EXPERIMENT

Experiments to constrain the EOS of BN were performed at
the Omega laser facility at the Laboratory for Laser Energetics
in Rochester, NY. Samples were c-BN crystals of greater
than 99% purity (by weight) and density of 3.45(±0.03)
g/cm3, obtained from Saint-Gobain Ceramic Materials. Pale
amber-colored {111} and {1̄1̄1̄}-oriented (identified by their
morphology) optically transparent single crystals were char-
acterized using x-ray photoelectron spectroscopy (XPS) and
Raman spectroscopy as in [115]. XPS analysis was performed
with a PHI Quantum 2000 system, using focused (1 × 1 mm)
monochromatic Al Kα x rays (1486.3 eV). XPS revealed a
large amount of C, O, and Si contamination, but a 60-s 3-kV
Ar-ion beam sputter (estimated to remove about 2–5 nm from
the surface), dropped the concentration of contaminants by
nearly 50%, indicating that these form primarily a surface
contamination (a <1 μm contaminated surface layer will have
no effect on our measurement). After etching, XPS identified
a B:N ratio of 1.08:1. Room-temperature Raman spectroscopy
at 514.5 nm showed the TO and LO phonons of c-BN at
1057.7 and 1309.1 cm−1, with no sign of the defect bands
observed for amber crystals in Ref. [115], indicating a high
bulk purity. An extremely weak peak at 1122.3 cm−1 suggests
a negligible contamination of B4C.
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FIG. 2. (a) Experimental configuration (not drawn to scale), (b) image of a typical c-BN crystal glued to the quartz plate, viewed from the
perspective of the VISAR diagnostic, and (c) image of the VISAR data from shot 75 265, with the analyzed velocities shown as red and blue
traces (corresponding the two interferometer legs). The dashed traces are the apparent velocities and the solid traces are corrected for the index
of refraction in quartz and c-BN.

Crystals with parallel facets separated by ∼150 μm and
lateral dimensions of 150–250 μm were affixed to ∼90-μm-
thick z-cut α-quartz (density of 2.65 g/cm3) windows with
micron-scale layers of epoxy. A 3-μm-thick layer of Au was
deposited on the other side of the quartz window, to absorb
ablation plasma x rays and reduce x-ray preheat of the BN
samples to negligible levels, and a ∼25-μm-thick layer of
plastic was deposited onto the Au to form the laser ablator
[Fig. 2(a)].

Samples were ablated directly using 12 beams at of the
Omega laser with a 1-ns top-hat pulse shape and distributed
phase plates forming a 800-μm spot size. Laser energies were
tuned to drive the target at intensities ranging from 1.8 × 1014

to 5 × 1014 TW/cm2.
A reflecting shock wave could be tracked continuously as

it propagated through the quartz and c-BN samples, using
a line-imaging velocimeter (VISAR: Velocity Interferometer
System for Any Reflector) [116]. The in situ apparent veloc-
ities are corrected for the index of refraction of the quartz
(1.546 87) [117] and c-BN (2.126) [118] at 532 nm, which
is the wavelength of the VISAR probe laser.

The shock velocities in the quartz and c-BN at the interface
between the two are used in the impedance-matching tech-
nique, to determine the EOS data point for c-BN. Because of
a finite glue bond thickness between the two materials, the
shock velocity in the c-BN must be extrapolated to the quartz
surface. The quartz Hugoniot standard is taken from [119]
and the reshock model from [120]. The shock impedance in
c-BN at these conditions is higher than quartz, but sufficiently
close that the accuracy of the off-Hugoniot quartz model has
a small effect on the result (differs by ∼1% from the result

obtained by simply assuming a reflected Hugoniot for the
reshock state).

The results of these measurements are recorded in Table I.
Factors contributing to the uncertainty in the Omega mea-
surements include uncertainty in the quartz and c-BN wave
velocities, uncertainty in the extrapolation of the c-BN veloc-
ity across the epoxy layer, uncertainty in the initial density of
c-BN, and systematic uncertainty in the quartz standard EOS.
Uncertainty in the c-BN index of refraction is not quantified
so is not included in the error bar.

IV. CONSTRUCTION OF EOS MODELS FOR BN

Before describing the results of the first-principles simula-
tions and experiments in detail, we describe the EOS models
and make comparisons to a subset of the calculations. We
construct EOS tables (X2151 and X2152) for BN under the
QEOS framework [121,122]. QEOS is a self-contained quasi-
single-phase set of thermodynamic models that are widely
applicable and guarantee the correct physical limits at both
high/low temperature and high/low density. The standard
QEOS model based on TF theory also guarantees thermo-
dynamic consistency. In our QEOS framework, we decom-
pose the EOS into separate contributions corresponding to
the T = 0 cold curve, the ion-thermal term that describes
contributions to the EOS from the ionic degrees of freedom,
and the electron-thermal term that describes the contributions
to the EOS from thermal distribution of the electrons. The cold
curve is generally taken from experimental data static DFT
calculations, while the electron-thermal term is generated
using fast electronic structure methods, namely, TF theory

TABLE I. Measured quartz and c-BN shock velocities (Us) and analyzed c-BN particle velocity (Up), pressure (P), and density (ρ).

Quartz BN

Us (km/s) Us (km/s) Up (km/s) P (GPa) ρ (g/cm3)

75265 31.27(0.47) 31.95(0.29) 18.97(0.47) 2091(53) 8.49(0.34)
75263 34.99(0.34) 35.04(0.31) 21.87(0.37) 2643(48) 9.18(0.30)
75264 24.51(0.61) 25.29(0.35) 13.92(0.58) 1214(52) 7.67(0.44)
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and DFT calculations for the average atom-in-jellium model
(Purgatorio) described in Appendix B. The ion-thermal term
is often derived using a form proposed by Cowan [121,122]
and can be modified to fit both experimental data and data
from many-body calculations. In condensed phases (at high
densities and low temperatures), the EOS, and hence the shock
response of materials, is dominated by the cold curve, whereas
the ion-thermal term dominates the EOS through much of
the high-velocity shock regime that is currently accessible
in planar experiments at Omega and the National Ignition
Facility. The behavior of the EOS and the Hugoniot near
peak compression, on the other hand, is mostly dominated
by the electron-thermal term. The Hugoniot response that a
model predicts near peak compression is therefore determined
mostly by the underlying electron-thermal model, and thus
notable differences are seen between TF-based QEOS models
and Purgatorio-based QEOS models.

The QEOS framework was chosen due to the lack of
data necessary to constrain a more complicated multiphase
EOS representation and because the focus of this study is
in the liquid/plasma region relevant to high-velocity, laser-
driven shocks. Both X2151 and X2152 tables have reasonably
similar parametrization except for the electron-thermal model.
At the time when the X2151 table was constructed there was
only a Purgatorio2 electron-thermal model for B, therefore,
the full electron-thermal model for BN is a mixture of a Purga-
torio electron-thermal model for B and a TF electron-thermal
model for N. Once a N Purgatorio electron-thermal model
became available, the X2152 table was constructed, where
the hybrid TF-Purgatorio electron-thermal model from X2151
was exchanged with a fully Purgatorio electron-thermal model
(some adjustments to other EOS parameters were needed to
improve the fit for X2152). Therefore, examining the L2150
(legacy TF EOS), X2151, and X2152 gives a demonstration of
how the Hugoniot varies from a fully mean-field TF descrip-
tion of ionization, to a hybrid treatment, to a fully quantum
atom-in-jellium description.

In both X2151 and X2152, the equilibrium conditions
were chosen to be in the hexagonal phase, with a density
of 2.258 g/cm3, at 295 K and 1 atm. The cold curves are
identical in the two models and were fit to calculations
from this study and Hugoniot measurements from the Marsh
compendium [18]. Since the ground-state phase was taken
to be hexagonal, the transformation to the cubic phase was
represented by employing break points [122] to transition
from the hexagonal cold curve to the cubic cold curve at
10 GPa (the wurtzite phase is essentially combined with
the cubic phase in this QEOS form). This transformation
pressure is slightly higher than what is reported (1–6 GPa
[123]) but was chosen so that the density where the transfor-
mation begins is notably denser than the reference density;
this was a practical choice to enhance the stability of the

2We performed Purgatorio calculations for boron and for nitro-
gen in order to generate the electron-thermal term of the EOS,
which is used for constructing EOS tables based on the QEOS
model. Our Purgatorio calculations use the Coulomb potential and
Hedin-Lundqvist [140] form of exchange-correlation functional un-
der LDA.

TABLE II. Key parameters used in the X2152 EOS table.

Note

ρ0 2.258 g/cm3 Reference density
T0 295 K Reference temperature
Kh-BN 37 GPa Bulk modulus
Kc-BN 369 GPa Bulk modulus
Ecoh 9 × 1010 erg/cm3 Cohesive energy
T 0

m 2200 K Melt temperature @ 1 bar

0

D 1675 K Debye temperature @ ρ0

γ 1/3 Cowan exponent

EOS when employed during hydrodynamic simulations. The
first-principles isochores calculated for this work were used
to constrain the ion-thermal models; specifically, the density-
dependent Grüneisen model, and the Cowan liquid model.
The largest difference between X2151 and X2152 (outside
of the electron-thermal model) is that the best ion-thermal
fit for X2151 (hybrid electron thermal) was found using a
Cowan exponent of 0.5, conversely the best fit for X2152
(purely Purgatorio) was determined using the canonical value
of 1

3 . All other EOS parameters (melt temperature, Debye
temperature, etc.) were taken directly from known literature.
The thermodynamic parameters in the ion-thermal model are
determined by fitting the pressure data from PIMC, DFT-MD,
and ACTEX, taking into account the range of applicability of
each method. The key parameters used in X2152 are shown
in Table II. In order to avoid problems with energy offsets
(energy zeros) in various techniques, only the pressure data
are used for constructing the LEOS tables. The fidelity of this
procedure is discussed here.

We note that the EOS obtained using different electronic
structure theories can vary depending on the underlying
physics. For example, orbital-free (OF) MD, which signifi-
cantly reduces computational cost of standard DFT-MD by
constructing the energy functional in a form that is inde-
pendent of electronic wave functions, predicts CH to be less
compressible at the compression maximum than predicted by
PIMC and Purgatorio [66,67]. Zhang et al. [67] found that
this is because the internal energies calculated by OFMD are
lower than PIMC, although the pressures are similar, at the
same temperatures. Comparing a recent work [124] on carbon
EOS using OFWMD (with W standing for Weizsäcker) to the
most recent, Purgatorio-based LEOS 9061 table,3 the peak
compression predicted by OFWMD is also smaller (4.5 by
OFWMD versus 4.6 by LEOS 9061). In addition, OFMD
calculations for silicon [125] show a single compression max-
imum along the Hugoniot, whereas PIMC predicts two peaks
corresponding to K and L shell ionization, respectively.

We examine the internal energy differences by comparing
the Hugoniot curves for BN based on three LEOS tables
(LEOS 2150, X2151, and X2152), for which the electron-
thermal free energy is constructed differently, as we have

3LEOS 9061 is a multiphase, Purgatorio-based table for carbon
developed by fitting the ionic thermodynamic parameters to the
first-principles DFT and PIMC data reported in Ref. [128].
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FIG. 3. (a) Pressure- and (b) temperature-compression Hugoniot
of BN predicted by different LEOS models in comparison with PIMC
and DFT-MD (PAWpw). The initial density of all Hugoniot curves is
set to be 2.15 g/cm3. Note that the deviations at above 106 GPa and
2 × 107 K are due to the electron relativistic effect, which is included
in the Purgatorio tables (thus fully in X2152 and partially in X2151)
but not in L2150 or PIMC.

explained previously in this section. The results are shown
in Fig. 3. Consistent with previous studies, we find that the
TF-based model (L2150) predicts a lower peak compression
with a broader shape along the vertical axis than the fully
Purgatorio-based model (X2152). As expected, the model
which combines TF and Purgatorio models lies between the
two. Both the shape and the magnitude of the peak com-
pression are intimately related to the K-shell ionization of
B and N. The TF model is broad due to the neglect of
the shell effects, and we observe that the peak compression
becomes sharper as one accounts for the K-shell ionization
of B (X2151), and sharper still when we also account for the
shell structure of N (X2152).

The differences in the maximum compression predicted
by the different models can be explained by decomposing
the Hugoniot function [left-hand side of the Hugoniot equa-
tion E − Ei − (P + Pi )(Vi − V )/2 = 0, where (E , P,V ) and
(Ei, Pi,Vi ) denote the energy, pressure, and volume of the
sample in the shocked and the initial states, respectively] into
the energy term E − Ei and the pressure term (P + Pi )(Vi −
V )/2 and comparing the two as functions of density along
isotherms. Figure 4 shows such comparisons at 2 × 106 K,
which is near the compression maximum along the shock
Hugoniot (Fig. 3). The density at which the energy and the
pressure curves cross is the Hugoniot density at this temper-
ature. We find that the pressure curves of X2151 and X2152
are on top of each other, but their energies are different. The
energies of X2151 are lower, leading to a smaller compression
ratio than X2152. In comparison, X2152 data are similar to
PIMC in both energy and pressure. This indicates that when
constructing an EOS model by merely fitting pressure, it is
important to make the electronic contribution fully Purgatorio
based. This is not surprising because Purgatorio is essentially
a DFT method. The EOS consistency here demonstrates that
the agreement in EOS between PIMC and DFT is not acciden-
tal, but represents a consistent description of the electronic
interaction in both methods. In addition, Fig. 4 shows the
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FIG. 4. Comparison of the pressure and the energy terms of
the Hugoniot function along the 2 × 106 K isotherm, which is near
the compression maximum. Shaded areas denote the error bar of the
PIMC data.

nonsmoothness and error bar of the PIMC data at 2 × 106 K,
which leads to an uncertainty in the compression ratio of
�0.05 (or �1%). This represents the level of uncertainty in
our reported compression maximum along the Hugoniot by
PIMC. At both higher and lower temperatures, the uncertain-
ties are smaller because of the smaller error of the EOS data
and higher smoothness of the data along isotherms.

V. RESULTS AND DISCUSSION

A. Isochore comparisons

In order to evaluate the performance of recent extensions
of DFT methods to high temperature, we compare the com-
puted EOS data from PIMC, PAWpw, ONCVpw, FOE, SQ,
ACTEX, and MECCA. We choose the X2152 model along sev-
eral isochores between 0.23 and 45.16 g/cm3 in Fig. 5 for the
basis of performing the comparison. Figure 5(b) highlights the
comparison in the temperature range of 105–107 K. This is the
regime where 1s electrons are significantly ionized, providing
an important test bed for different methods.

We find that, at temperatures greater than 2 × 106 K,
PIMC, ACTEX, and MECCA results show excellent agreement
with each other, while the ACTEX predictions are slightly
higher than the other two methods only at higher densi-
ties. At densities above 4.52 g/cm3 and temperatures below
1.35 × 106 K, deviations of ACTEX from the other methods are
evident, which indicates a cutoff temperature (Tcutoff) below
which the ACTEX method breaks down. This is where the
two-body term at order 2 in the activity becomes comparable
to the Saha term, which we use as a simple measure of the
point where higher-order terms start to contribute. Since those
terms are not included in ACTEX, we can consider this to be
the limit of the current theory. Moreover, we have plotted the
percent differences between ACTEX and X2152 data (see Fig. 6
for the comparison in energy; pressure plots look similar), and
found the cutoff is dependent on the density: Tcutoff gradually
increases from 106 K to 4 × 106 K as density increases from
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FIG. 5. Comparison of the pressure-temperature profiles of BN
along several isochores from PIMC, DFT-MD (PAW, frozen 1s),
DFT-MD (ONCV, frozen 1s), FOE (all electron), SQ (all electron),
ACTEX, MECCA, and X2152. Subplot (b) is a zoom-in version of (a).

0.1 to 20 times ρ0. Above Tcutoff, the agreement between
ACTEX and X2152 data is excellent, with differences below
2% in general.

Our pressure-temperature profiles by MECCA are overall
consistent with those by PIMC, PAWpw, ONCVpw, FOE,
SQ, and ACTEX. The agreement is best at densities higher
than 4.5 g/cm3 and temperatures higher than 106 K, where
the contributions to the EOS from the ions (the ion-thermal
contributions) are less significant than those from the thermal
electrons (see Fig. 7).

At intermediate-low densities (0.23–2.3 g/cm3), we ob-
serve a discrepancy between MECCA and the DFT-MD/X2152
data, and it grows larger as temperature decreases further
below 105 K. This is because the MECCA simulations are
performed using static configurations with two atoms in the
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FIG. 6. Percent difference in internal energy of BN between
ACTEX and X2152 along several isochores. The compression ratio
(with respect to ρ0 = 2.258 g/cm3) are labeled at the top of the
plotting area. The reference points for ACTEX and X2152 are both
at ρ0 and ambient temperature.

B2 (cesium chloride) structure, which do not include ion
motion, and we have thus approximated the ion-thermal effect
by adding ideal-gas corrections to the pressures and energies.
However, at the low-temperature conditions, the nuclei show
significant correlations by forming polymers, such as N-N
pairs or B-N structures, that are characterized by the strong
fluctuations in the radial pair distribution function at 104 K
and shown in Figs. 8(a)–8(c). Therefore, by disregarding the
vibrational and rotational contributions, the ideal-gas model
underestimates the EOS at these conditions. As temperature
exceeds 5 × 104 K, the features in the pair distribution func-
tion quickly smooth out because the polymeric structures
are destabilized by thermal effects, which makes the ideal-
gas approximation for the ions work better and explains the
improved agreement between the EOS from DFT-MD and
MECCA. Moreover, we note that the agreement between the
EOS from X2152 and MECCA can be improved by replacing
the ideal-gas correction with the ion-thermal model from
X2152. The differences at ρ > ρ0 reduce more by applying a
constant shift to the MECCA pressures to anchor the pressure-
zero point at ρ0 and 300 K. These findings explain the good
consistency between the shock Hugoniot predicted by X2152
and MECCA EOS data, which we address in Sec. V C.

At densities higher than 2.26 g/cm3, the radial distribution
function also shows significant pair correlations at tempera-
tures below 105 K [Figs. 8(d)–8(f)]. However, the agreement
between the EOS from MECCA and those from DFT-MD are
far better than at lower densities. This is the regime where
the cold-curve contribution dominates the EOS, as Fig. 7
implies. The excellent agreement between MECCA and DFT-
MD EOS indicates the effects of the simulation cell and the
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EOS calculations are shown with “+” symbols.

nonideal ion-thermal contribution are less significant in the
more strongly compressed (ρ � 5 × ρ0) regime.

At 2.26 g/cm3 and T < 2 × 104 K, we also observe dif-
ferences between X2152 and DFT-MD. This can be explained

FIG. 8. Comparison of the nuclear pair correlation function ob-
tained from DFT-MD (PAWpw) for BN using 24-atom (red) and
96-atom (dark) cells at two different densities and three temperatures.
The reference density ρ0 is 2.26 g/cm3. The peaks at 104 K indicate
a polymeric structure of the liquid. Differences between small and
large cells are evident at 4000 K, indicating a significant finite-
size effect. This effect is stronger at higher densities and becomes
negligible at temperatures higher than 5 × 104 K.

by the differences in the cold curve between X2152 and
DFT-MD. The energy minimum in X2152 is set to ρ0 =
2.26 g/cm3 corresponding to h-BN, while DFT-MD tends
to stabilize c-BN because of the cubic simulation cell being
implemented for the liquid simulations. In fact, we found that
altering the cold curve in X2152 such that the ρ0 is more
in line with the ambient density of c-BN allows for better
agreement with these low-temperature points.

We compare the EOS data from SQ with those from PIMC,
FOE, and MECCA along two different isotherms: 1.01 × 106

and 1.35 × 106 K. Their values are listed in Table III and
the differences shown in Figs. 9(a) and 9(b) for pressures
and energies, respectively. Our FOE and SQ pressures are in
excellent agreement with each other (differences are less than
1%). This can be explained by the use of all-electron ONCV
potentials and the DFT-MD nature of both methods. The FOE
energies are slightly lower than the SQ values by 1%–2%
of the corresponding ideal-gas values. The small differences
can be attributed mainly to different discretization errors
in the two approaches, whereas differences associated with
trajectory lengths, pseudopotentials, and exchange-correlation
functionals were determined to be an order of magnitude
smaller.

Our PIMC data at these temperatures scatter around the
DFT values because of the longer paths and larger error bars
at such conditions. The differences between PIMC and SQ are
<4% in pressure and �1 Ha/atom (or �3% when normalized
by the ideal-gas value) in energy, which is typical of what
we found about differences between PIMC and DFT-MD in
previous work on B [3] and hydrocarbon systems [3,67].
MECCA data also agree with SQ and FOE at these conditions,
with differences <3% in pressure and <0.4 Ha/atom (or
<1.5% when normalized by corresponding ideal-gas values)
in energy. The cross validation of the different DFT methods
and their consistency with PIMC predictions strongly suggest
both the PIMC and the DFT-MD approaches, albeit carrying
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FIG. 9. EOS differences of PIMC (red), FOE (black), and MECCA

(blue) relative to SQ along two isotherms (1.01 × 106 and 1.35 ×
106 K). Because of the different references chosen in the EOS data
sets, all energies have been shifted by the corresponding value at
15.80 g/cm3 and 1.35 × 106 K. The energy differences are normal-
ized by the corresponding ideal-gas values (21kBT per BN). The
statistical error bars correspond to the 1σ uncertainty of the FOE
and PIMC data.

approximations in each, are reliable for studying the EOS of
warm-dense matter.

Figure 9 and Table III also show the standard error bars
of our EOS data, determined by statistical averaging of the
MD (for FOE and SQ) or PIMC data blocks. At the tempera-
tures of 1.01 × 106–1.35 × 106 K, PIMC errors are 2%–3%
in pressure and ∼0.6 Ha/atom in energy; FOE errors are
0.05%–0.8% in pressure and 0.01–0.08 Ha/atom in energy.
In comparison, the statistical error bars of the SQ data are
significantly smaller (see Table III). These results establish
SQ as an accurate method capable of calculating the EOS
of partially ionized, warm-dense plasmas with high precision
and accuracy comparable to PIMC.
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FIG. 10. Comparison of the Hugoniot of BN from experiment to predictions from PIMC and DFT-MD (PAWpw) simulations and the
X2152 model in (a) pressure-density and (b) pressure-compression ratio representations. The initial densities of corresponding Hugoniots are
shown in the legend. In (a), equal-temperature conditions along the two Hugoniot curves are connected with lines (as guides to the eyes) to
approximate the location of isotherms. The corresponding temperatures are labeled in colored texts. Note that the deviation between PIMC
and X2152 curves at above 106 GPa is due to the electron relativistic effect, which is considered in X2152 but not in PIMC.

B. Comparison between theory and experiment

In this section, we compare our experimental measure-
ments of the pressure-density relation of BN with our theoreti-
cal predictions. The experimental data are along the Hugoniot
curve, which varies depending on the properties of the sample
material. Figure 10 compiles the experimental and theoret-
ical Hugoniot curves corresponding to two different initial
densities (ρi): Omega data with ρi of 3.45 g/cm3 and the
Rusbank data [18] with ρi of 2.15 g/cm3. The corresponding
theoretical predictions by X2152 are shown with dark curves.
We also show the PIMC and the DFT-MD predictions for
3.45 g/cm3 and 2.15 g/cm3.

The comparison in Fig. 10 shows very good consistency
between the measurements and the theoretical predictions.
Assisted by the theoretical predictions, we are able to estimate
Hugoniot temperatures for the experimental data. We label the
Hugoniot temperatures for selected DFT-MD data points with
blue-colored text in Fig. 10. We find the Omega data points
are in the temperature range of 104–105 K. Our results also
show that the PIMC and DFT-MD predicted Hugoniot are in
remarkable agreement with X2152 for both initial densities,
which span the Hugoniot curves over a wide range in the
phase space. This further shows the validity of the fitting and
construction procedure and the quality of our X2152 table.
Our calculations and the X2152 model predict BN to have
a maximum compression ratio of 4.59 at 9.8 × 104 GPa for

ρi = 2.15 g/cm3 and 4.47 at 1.8 × 105 GPa for ρi =
3.45 g/cm3. We also note that the pressure-density Hugoniots
predicted by our different tabular models are very similar
(see Fig. 3) at the pressure regime (103–3 × 103 GPa) ex-
plored in our current experiments. We expect future, accurate
experiments at higher pressures (e.g., near the compression
maximum) to further check our predictions.

C. Comparison of different EOS methods

Finally, we make a comprehensive comparison of the shock
Hugoniot curves for BN predicted by our different EOS meth-
ods. The pressure-compression and temperature-compression
Hugoniot curves from ACTEX, TF, MECCA, and X2152 are
shown in Fig. 11. We note that ACTEX and X2152 each
intrinsically accounts relativistic effects in the free-particle
Hamiltonian, thus the Hugoniot deviates from the nonrela-
tivistic ideal electron gas limit of 4 at very high temperatures
(> 108 K). In comparison, the relativistic correction has not
been applied to the TF calculation and the MECCA calculations
are based on scalar relativistic calculations, which do not
change the asymptotic ideal electron gas limit.

At pressures of ∼104–106 GPa and temperatures ∼3 ×
105–2 × 107 K, ACTEX, X2152, and MECCA yield very similar
Hugoniot profiles and a maximum compression of ∼4.55 for
ρi of 2.26 g/cm3, while the peak is more broadened according
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FIG. 11. Comparison of the pressure-compression Hugoniot of
BN from different theories and LEOS models. The initial density of
every Hugoniot curve is 2.26 g/cm3. Two sets of DFT-MD (PAWpw)
Hugoniots constructed with a difference of the cohesive energy
(Ecoh ∼ 7.1 eV/atom [127]) in the initial energy are also shown for
comparison. Note that all MECCA pressures in the EOS have been
shifted relative to the value at the initial density and 300 K. The
deviations at pressures above 106 GPa and 2 × 107 K are due to
the fully relativistic treatment of the free electrons in Purgatorio and
ACTEX.

to the TF model and the maximum compression ratio is lower
by ∼0.2. The peak is associated with the K-shell ionization
of B and N, which is smoothed out in the TF model because
electronic shell effects are missing in this approach but cap-
tured by the other methods. The slightly larger compression
predicted by ACTEX than X2152 is consistent with the �2%
larger values of the ACTEX EOS data than X2152 (Figs. 5 and
6). The slightly lower compression predicted by MECCA than
X2152 can be explained by the nonperfect reconciliation in
pressure and energy terms in the Hugoniot function (MECCA

pressures are slightly lower while energies are similar in
comparison to SQ and PIMC, as shown in Fig. 9).

In the low-temperature condensed matter regime, we find
that, with a constant pressure shift in the EOS, our MECCA

predictions for the Hugoniot are in good consistency with
those of X2152. This indicates the efficacy of using the
ideal-gas model to approximate the ion-thermal effect when
constructing EOS using small-size, fixed-lattice models (as
in MECCA). Our TF results predict BN to be stiffer in this
regime because the initial energy in TF is estimated using an
average-atom method (described in Appendix B), which may
be higher than the actual value because of the excess energy
release due to bonding. We also show differences between
X2152 and our DFT-MD (PAWpw) predictions, in particular
in Hugoniot temperatures [Fig. 11(b)]. This is because of
the EOS differences between h-BN and c-BN that we have
elaborated previously in Sec. V A.

D. EOS and Hugoniot of isoelectronic materials

Our EOS models and results for BN enable us to investi-
gate the difference with C, an isoelectronic material of BN.
Figure 12 compares the Hugoniot of BN and of C based on
X2152 and LEOS 9061, setting their initial densities to be the
same (2.26 g/cm3). LEOS 9061 is the a multiphase EOS table

FIG. 12. (a) Pressure- and (b) temperature-density Hugoniot of
BN in comparison with C. The electron-thermal contribution to both
tables is based on Purgatorio. The initial density of both materials is
set to be 2.26 g/cm3.

constructed for C by using a Purgatorio table for the electron-
thermal term and fitting DFT and PIMC data [128] to obtain
the ion-thermal term, similar to our present work on BN.

The Hugoniot comparison shows that, at temperature
regimes of both 105–106 K and >107 K, the compression
ratio of BN is higher than C. The compression peak is thus
slightly narrower for C. This is because the K level of C
is in-between those of B and N. The differences between
BN and C in the low-pressure condensed-matter region (T <

105 K) reflect differences in the cold-curve and ion-thermal
contributions to the EOS. These differences are physically
consistent with the influence of different types of interactions
between atoms in the two materials. BN has slightly higher
ionic character than C due to the differences between the elec-
tronegativity of B and N, associated with dipolar interactions
between the nonidentical atoms.

E. Zero-point motion effects

We have also examined the effect of zero-point motion
(ZPM) on the EOS and Hugoniot of BN. In order to do this,
we implement the Debye model [129] to estimate the mag-
nitude of the EOS contributions due to ZPM. This correction
reasonably accounts for the nuclear quantum effects that have
been neglected in the our Born-Oppenheimer MD simula-
tions. According to the Debye model, the harmonic vibration
energy can be approximated by δE = 9kB
D(V )/8, where

D(V ) is the volume-dependent Debye temperature and is
related to the ambient density via 
D(V ) = 
D(V0)(ρ/ρ0)γ

with γ being the Grüneisen parameter, and the corresponding
pressure δP = 9γ kB
D(V )/8V . We take the values 
D(V0) =
1900 K and γ = 1.1 for c-BN from previous measurements
and calculations [14,22], apply the corrections to our EOS
data from DFT-MD (PAWpw), and evaluate the changes in
the Hugoniot curve. The results are summarized in Fig. 13.

Our results show that ZPM causes a pressure increase by
over 10% at 6.7 × 103 K and ambient density. This percent-
age difference decreases gradually to ∼1% at 20 g/cm3. The
differences dramatically decrease as temperature becomes
higher, more so at lower densities. The effect of ZPM on
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FIG. 13. Zero-point motion effects on the pressure of BN as a
function of density along several isotherms. The inset shows the
percent increase in pressure for the EOS (black) and along the
Hugoniot (red) and percent decrease in compression ratio along the
Hugoniot (blue).

Hugoniot, however, is small. For example, the compression
ratio decreases by up to 0.01 (0.4%) for the temperature range
6.7 × 103–5.1 × 105 K considered in our DFT-MD (PAWpw)
simulations. This is similar to what we have seen in carbon-
hydrogen systems [67]. These findings indicate that the ZPM
should be carefully addressed when studying the the low-Z
materials in the condensed matter regime, but is negligible
for studying the shock Hugoniot of them in the high-energy
density plasma state.

VI. CONCLUSIONS

In this work, we present a comprehensive study of the
EOS of BN over a wide range of pressures and temperatures
by implementing several computational methods, including
PIMC, DFT-MD using standard plane-wave basis and PAW or
ONCV potentials, ACTEX, FOE, SQ, MECCA, and TF. We use
the PIMC, DFT-MD, and ACTEX data to construct two EOS
tables (X2152 and X2151) for BN using the QEOS model.

Our EOS data [130] by PIMC, FOE, SQ, and MECCA show
good consistency at 106 K where 1s electrons are ionized.
Our findings establish SQ as an accurate method capable
of calculating the EOS with high precision and accuracy
comparable to PIMC. Our detailed EOS comparison provides
strong evidences that cross validate both the PIMC and the
DFT-MD approaches for EOS studies of the partially ionized,
warm-dense plasmas.

At 2.5–3.2 × 106 K and 1.0–1.3 × 105 GPa, our PIMC,
ACTEX, and MECCA calculations uniformly predict a maximum
compression of ∼4.55 along the shock Hugoniot for h-BN
(ρi = 2.26 g/cm3), which originates from K-shell ionization.
This compression is underestimated by TF models by ∼0.2.
The maximum compression decreases to 4.47 for c-BN (ρi =
3.45 g/cm3) and increases to 4.59 for ρi = 2.15 g/cm3.

We also report Hugoniot data up to ∼2650 GPa from
experiments at the Omega laser facility. The measured data
show good agreement with our theoretical predictions based
on DFT-MD.

By comparing QEOS models with the electron-thermal
term constructed in different ways (Purgatorio, TF, or hybrid),
we find that the shock Hugoniot can be well reproduced
by fitting the QEOS models to the pressures in the EOS
calculated from first principles. Consistent with our previ-
ous studies, we find that the Purgatorio-based EOS mod-
els provide the best agreement with both internal energies
and pressures from first-principles calculations. Because the
largest differences in the Hugoniot response of the models
occur near peak compression, performing experiments for
materials near peak compression [131–135] would provide a
rigorous experimental test of our understanding of electronic
structure in high-energy density plasmas. It would also be
worthwhile to pursue experiments that provide measurements
of the temperature and the pressure in either Hugoniot or off-
Hugoniot experiments, which would provide data to validate
the first-principles calculations.

We find the shock Hugoniot profiles of isoelectronic mate-
rials BN and C are very similar, with the compression peak of
C being slightly sharper. This is explained by the differences
between the 1s level of C and those of B and N. Based on
the similarities of these materials in the laser-induced shock
regime, BN ablators would be expected to behave similarly
to HDC ablators. While the impact of the condensed phase
microstructure of the materials may also be an important
consideration in the compressive, ICF regime where much
of the ablator is still present during the implosion phase, the
microstructure should be less consequential to the behavior
of exploding pushers where most of the ablator has been
vaporized.
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TABLE IV. Parameters used to generate ONCV psuedopotentials
for B and N. Bulk properties calculated from these pseudopotentials
were benchmarked against VASP PAWs and regularized Coulomb
potentials. rc and Kcutoff denote the local potential core radius and the
kinetic energy cutoff, respectively. The potentials for SQ are similar
to those in FOE, but used higher continuity at rc to remove cusps and
improve convergence.

Species Valence rc (bohrs) Kcutoff (Ha) Note

B 2s22p1 1.125 35 ONCVpw
B 1s22s22p1 0.6 160 FOE
B 1s22s22p1 0.6 170 SQ
N 2s22p3 1.2 35 ONCVpw
N 1s22s22p3 0.65 160 FOE
N 1s22s22p3 0.65 170 SQ

the United States government nor Lawrence Livermore Na-
tional Security, LLC, nor any of their employees makes any
warranty, expressed or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed,
or represents that its use would not infringe privately owned
rights (Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer,
or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United
States government or Lawrence Livermore National Security,
LLC.). The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
government or Lawrence Livermore National Security, LLC,
and shall not be used for advertising or product endorsement
purposes.

APPENDIX A: OPTIMIZED NORM-CONSERVING
VANDERBILT PSEUDOPOTENTIALS

We employed ONCV pseudopotentials [81] for a subset
of DFT-MD calculations, in addition to the FOE and SQ
calculations. Fully nonlocal two-projector norm-conserving
pseudopotentials were generated. The resulting potentials
have an accuracy in electronic structure properties comparable
to VASP PAW and all-electron calculations. Due to the wide
range of density and temperature grids used in the EOS
table generation, we have constructed two versions of ONCV
pseudopotentials for B and N to reduce projector overlap
and core-state ionization under these extreme conditions.
The first set of ONCV pseudopotentials have 2s2 and 2p1

valence states for B and 2s2 and 2p3 valence states for N,
respectively. The second set of ONCV pseudoptentials are
all-electron pseudopotentials that include 1s2 valence. The pa-
rameters associated with the corresponding psuedopotentials
are listed in Table IV. To cross-check the accuracy of the
ONCV pseudopotentials, we compared calculated pressures
with regularized Coulomb potentials (rc = 0.02 bohrs and
kinetic-energy cutoff of 6000 Ha) for solid c-BN phase at
each density-temperature point in the DFT-MD simulations.
The overall agreement between ONCV pseudopotentials and
regularized Coulomb potentials is within 1% except a few
points slightly greater. As an example, Fig. 14 shows the

FIG. 14. Percent pressure difference between calculations using
ONCV all-electron pseudopotentials and regularized Coulomb po-
tentials for BN in the cubic phase. For most of the phase points
examined in this study, the difference is within 1% except a few cases
where the difference is slightly greater.

percent difference of pressure between all-electron ONCV
pseudoptentials and Coulomb potentials for c-BN within the
density-temperature grid employed in the DFT-MD simula-
tions. The pressure difference ranges from −0.6% to 1.4%,
with the larger differences in the low-temperature, low-density
regions.

APPENDIX B: MEAN-FIELD THOMAS-FERMI AND
AVERAGE ATOM-IN-JELLIUM (PURGATORIO)

Our EOS models are developed on a broad grid in phase
space, spanning many decades in both temperature and pres-
sure. As such, we require efficient methods for computing the
electron-thermal contribution to the EOS. In this work, we
apply two methods for this purpose, both of which are based
on density functional theory. Our TF calculations are based on
the generalized theory of Feynman et al. [136]. In contrast to
the TF approach, which assumes a uniform Fermi distribution
of states and thus does not explicitly include discretized states,
Purgatorio solves the electronic structure problem for an
atom-in-jellium within LDA self-consistently, and thus allows
for the inclusion of discretized states [137,138].

For computing the EOS of mixtures, such as BN, from
either Purgatorio or TF, we apply a constant electron pressure
mixing rule, following the prescription outlined in Ref. [139].
Briefly, if x1 and x2 represent concentrations of the two ions,
then the Wigner-Seitz (WS) volume per ion of the plasma is
required to be the weighted sum of the WS volumes of its two
constituent ions:

x1A1 + x2A2

NAρ
= x1

A1

NAρ1
+ x2

A2

NAρ2
. (B1)

In the above, ρ, ρ1, and ρ2 are the densities of the plasma
and its ionic components, A1 and A2 are atomic weights of
the constituent ions, and NA is the Avogadro constant. This
equation is supplemented by the requirement that the free-
electron density of the plasma be unique:

pe(1) = pe(2). (B2)
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Moreover, since the pressure in the TF theory depends only
on T and μ, it follows that the electron density in the plasma
is also unique ne(1) = ne(2). In the TF method, the free-
electron density ne(i) associated with ion i is determined by
solving the TF equations for the ion at specified values of
temperature T and density ρi. At a given value of T , Eqs. (B1)
and (B2) provide two equations that can be solved to give
values of the unknown densities ρ1 and ρ2. Inasmuch as ne(i)
is a monotonic function of μi, it follows that the chemical
potential is also unique μ1 = μ2.

To create an EOS table for two-ion plasmas, we first choose
a T grid uniformly spaced on a logarithmic scale. For each
temperature on the T grid, we solve the TF equations for
the two ions on density subgrids ranging from 1

2 to 5 times

the respective cold-matter densities. The properties of ion 2,
ρ2, p2, and μ2, considered as functions of electron density
ne(2) are interpolated onto the electron density grid of ion 1.
In this way, Eq. (B2) is automatically satisfied at each point
on the ne(1) grid. We can verify that this procedure leads to
p = p2 = p1 and μ = μ2 = μ1 for the interpolated values.
Furthermore, we can now determine the density ρ of the
two-ion plasma at each point on the ne(1) grid using Eq. (B1).
In this way, an EOS table is created for p as a function of ρ

and T . The approach is similar for a Purgatorio-based EOS
table for a multicomponent material: we perform Purgatorio
calculations for the individual elements on a (ρ, T ) grid and
mix the tables according to the pressure equality denoted in
Eq. (B2).
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