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Electronic structure of full-shell InAs/Al hybrid semiconductor-superconductor nanowires:
Spin-orbit coupling and topological phase space
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We study the electronic structure of full-shell superconductor-semiconductor nanowires, which have recently
been proposed for creating Majorana zero modes, using an eight-band �k · �p model within a fully self-consistent
Schrödinger-Poisson scheme. We find that the spin-orbit coupling induced by the intrinsic radial electric field
is generically weak for subbands with their minimum near the Fermi energy. Furthermore, we show that the
chemical potential windows consistent with the emergence of a topological phase are small and sparse and
can only be reached by fine-tuning the diameter of the wire. These findings suggest that the parameter space
consistent with the realization of a topological phase in full-shell InAs/Al nanowires is, at best, very narrow.
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Hybrid semiconductor-superconductor (SM-SC) nano-
wires have recently become the subject of intense research in
the context of the quest for topological Majorana zero modes
(MZMs) [1,2]. Motivated by the promise of fault-tolerant
topological quantum computation [3,4] and following
concrete theoretical proposals [5–7], this nanowire-based
MZM search has shown impressive experimental progress
in the past few years [8–17]. Nonetheless, reaching the level
of the definitive demonstration and consistent realization
of isolated MZMs requires further development and
improvement. The lack of definitive evidence of topological
Majorana behavior, e.g., correlated tunneling features at the
opposite ends of the system [18], and the real possibility
of having trivial low-energy Andreev bound states (ABSs)
mimicking the MZM phenomenology [19–24], instead of
actual MZMs, underscore the importance of being able to
finely control the electrochemical potential in gated devices
and to engineer structures with large effective g factors
and spin-orbit couplings, which represent key necessary
conditions for creating/stabilizing nanowire-based MZMs.

To alleviate some of these rather stringent requirements
and the associated problems, an alternative path to creating
MZMs, which uses magnetic flux applied to SM wires coated
with a full SC shell, was recently proposed [25,26]. This
scheme eliminates the need for a large Zeeman splitting
(i.e., large effective g factor or large magnetic field) and
also generates a more uniform and reproducible electrostatic
environment (which may help avoid creating trivial ABSs).
The main disadvantages of this approach are the impossi-
bility of directly controlling the chemical potential using
gates and absence of a large electric field across the wire
to ensure strong spin-orbit coupling. While the chemical
potential can be tuned by controlling the diameter of the
wire (i.e., using different samples), a spin-orbit coupling
strength on the order of 200 meV Å (or larger) is required
to access the topological phase [26]. Since these parameters

cannot be directly measured experimentally, obtaining reliable
theoretical estimates represents an essential task. To capture
the basic physics, it is critical to take into account (i) the
multiorbital nature of the SM bands (by incorporating at least
s- and p-orbital contributions) and (ii) the electrostatic effects
(by self-consistently solving a Schrödinger-Poisson problem).
We note that these are crucial issues for the entire research
field of SM-SC hybrid nanostructures, but they have only
recently started to be addressed, and only within single-orbital
approaches [27–31].

In this work, we determine the spin-orbit coupling, chem-
ical potential, and effective mass for full-shell InAs/Al
nanowires based on an eight-band �k · �p model [32] using
a mean-field treatment of the long-range electron-electron
interaction within a fully self-consistent Schrödinger-Poisson
scheme. We find that the chemical potential windows consis-
tent with the emergence of a topological phase form a sparse
set and require extreme fine-tuning of the wire diameter.
Furthermore, we find that the spin-orbit coupling is weak (on
the order of 30–60 meV Å) for all physically relevant values
of the wire diameter and SM-SC work function difference,
making any emergent topological superconducting phase very
weakly protected by a small gap. Based on these findings,
we conclude that realizing topological superconductivity and
MZMs in full-shell SM-SC nanowires represents a low-
success-probability target. If realized, the topological phase is
likely to be characterized by a small topological gap. We also
provide suggestions for possible optimizations of the full-shell
scheme.

We consider a cylindrical full-shell nanowire, as repre-
sented schematically in Fig. 1(a). The SM core is modeled
using an eight-band �k · �p model [32–34] in the presence of a
mean-field effective potential,

H = H�k· �p − eφ(r), (1)
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FIG. 1. (a) Cross section of a full-shell nanowire consisting of
an InAs core (blue) and an Al shell (gray). The SC-SM interface
(characterized by the work function difference W ) is treated as
a Dirichlet boundary condition. (b) Low-energy conduction-band
structure obtained by solving Eqs. (1) and (2) self-consistently. The
colors designate pairs of bands corresponding to given mJ quantum
numbers (labeling the z component of total angular momentum). The
chemical potential μ and zero-point energy E∗ are marked by the
dashed and dashed-dotted lines, respectively.

where the mean-field potential φ(r) is induced by the net
charge inside the SM wire and must be determined self-
consistently. While other approaches, such as density func-
tional theory and empirical tight-binding methods [35,36],
are known to accurately capture the electronic structure of
semiconductors, �k · �p methods are much less computationally
demanding and are quite accurate near the high-symmetry
points of the Brillouin zone, which are of interest here [37].
Note that InAs nanowires grown along the [111] crystal-
lographic direction have a hexagonal cross section, but the
cylindrical approximation used here for simplicity is expected
to be quite accurate [38]. In addition, we adopt the so-called
axial approximation, which amounts to promoting the under-
lying atomic fcc lattice symmetry to a full rotation symmetry
abut the z axis [32], so that the z component of the angular
momentum, Jz, is conserved (see the Supplemental Material
for details [39]).

The mean-field potential φ(r) is determined by solving the
Poisson equation

∇2φ(r) = −ρ(r)

ε
, (2)

where ρ is the charge density corresponding to the occupied
conduction-band states and ε = εrεo, with εr = 15, is the
lattice dielectric constant of InAs. The chemical potential is
determined by the work function difference between the SM
and the SC (W ) and by the energy of conduction-band edge
(Eo for bulk InAs). In the full-shell geometry, W and Eo

are not independent parameters (as they are in a “standard”
gated configuration, where the chemical potential μ is tuned
independently) and they can be combined as

μ = W − Eo. (3)

With this definition of the chemical potential, the boundary
condition at the SM-SC interface [28–30] becomes φ(R) =
0, as the global band shift due to the work function dif-
ference is already incorporated in μ. Finally, we note that
the SC shell is not explicitly included in our model, but
serves as an electrostatic boundary condition (through the
work function difference W ). While the presence of a SC is
known to renormalize the band structure of the hybrid system
[21,28–30,45–47], the goal of this work is to determine the
“bare,” i.e., unrenormalized wire parameters characterizing
the self-consistent electronic structure of the full-shell system.

The Schrödinger equation, H� = E�, where � is an
eight-component spinor, and the Poisson equation (2) are
solved self-consistently. For the cylindrical geometry and
within the axial approximation, we have

�mJ (�r, kz ) = gmJ (r, kz )√
r

eikzzei(mJ −Ms )ϕ, (4)

where gmJ (r, kz ) is an eight-component spinor, mJ ∈ (Z + 1
2 )

labels the z component of the total angular momentum, and
Ms = diag( 1

2 ,− 1
2 , 3

2 , 1
2 ,− 1

2 ,− 3
2 , 1

2 ,− 1
2 ) is a diagonal matrix.

The first two entries represent s orbitals, the next four are p
orbitals with angular momentum j = 3/2, and the last two are
p orbitals with j = 1/2.

The band structure for a prototypical full-shell wire of
radius R = 45 nm with μ = 62 meV is shown in Fig. 1(b).
Only the conduction subbands are shown. At zero magnetic
field, the states corresponding to mJ and −mJ have the same
energy, hence all subbands are double degenerate. Note that
each mJ value corresponds to two subbands separated by a
finite energy gap. The subbands consist of nearly opposite
spin states with dominant orbital angular momentum � and
� + 1. All states up to the chemical potential μ (dashed line in
Fig. 1) are filled. The energy E∗ corresponding to the bottom
of the conduction band is the zero-point energy due to finite
size confinement and the mean-field effective potential φ(r).

The emergence of a topological SC phase supporting
MZMs in cylindrical full-shell nanowires requires a finite
magnetic field inducing a phase winding in the supercon-
ducting order parameter and a chemical potential lying near
the bottom of an mJ = 1

2 subband [26]. To determine the
likelihood of the chemical potential satisfying this condition,
we calculate the band structure of a nanowire of radius R =
45 nm as a function of μ, i.e., the work-function difference
W . The (total) number of occupied mJ � 1

2 subbands, as well
as the number of mJ = 1

2 subbands, are shown in Fig. 2(a).
While W and Eo (hence μ) are not precisely known, one
would expect a chemical potential on the order ∼102 meV.
As shown in Fig. 2(a), this corresponds to a large number
of occupied subbands (tens of bands). In addition, the system
has a few occupied mJ = 1

2 subbands (red dashed line). The
values of μ consistent with the chemical potential being
within ±0.5 meV of the bottom of an mJ = 1

2 subband (i.e.,
within an energy window about four times the induced gap)
are marked by the green shadings. These regions correspond
to (rather optimistic estimates of) parameter values consistent
with the emergence of MZMs [26]. Note that the width
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FIG. 2. (a) Number of occupied mJ � 1
2 and mJ = 1

2 subbands
as a function of μ are shown in black (solid) and red (dashed) lines,
respectively, for a wire of radius R = 45 nm. Green shaded regions
show when the bottom of an mJ = 1

2 subband is within 0.5 meV of
the chemical potential. (b) Dashed lines show boundaries of when
mJ = 1

2 subband is within 0.5 meV of the chemical potential as a
function of μ and R. Note that for any μ there is a subband crossing
for a suitable radius R.

of these regions increases with μ, because the mean-field
potential increases and it becomes more “expensive” to add
charge to the system. At the same time, however, the “green
regions” become more sparse. Basically, Fig. 2(a) demon-
strates that, for a full-shell wire of radius R = 45 nm, the
likelihood of satisfying conditions (i.e., having W and Eo

values) consistent with the emergence of MZMs is rather low.
To establish the dependence of this likelihood on the wire
radius, we perform self-consistent band-structure calculations
for different values of R and identify the regions of “suitable”
chemical potential. The results are shown in Fig. 2(b). Note
that the intervals between the “suitable” regions decrease with
increasing radius. Also, since μ should be independent of R
(as is determined by the SC-SM work-function difference W ),
Fig. 2(b) shows that the system can be brought into a regime
consistent with the emergence of MZMs by (finely) tuning the
radius of the wire within the 30–60 nm range. Note, however,
that the fine-tuning requirement becomes more stringent at
large values of the chemical potential. This also implies that,
if a wire of radius R supports a topological SC phase, wires
with slightly different radii, e.g., R ± 5 nm, should not be
able to support topological phases. Finally, we emphasize that
these considerations hold under the assumption that the value
of the work-function difference, W , is relatively stable from
device to device (otherwise, the realization of the topological
condition becomes purely a matter of chance and wild luck).

Next, we investigate the spin-orbit coupling and extract
effective parameters for the two-band model Hamiltonian Heff

recently used to study the topological properties of full-shell
nanowires [26]. Explicitly, we have

Heff = h̄2k2

2m∗ − μ + αr̂ · [�σ × �k], (5)

FIG. 3. (a) Spin-orbit coupling coefficient α as a function of μ

for the first three mJ = 1
2 subband pairs (green, red, and blue lines,

respectively) in a wire with R = 45 nm. The subband bottoms lie
within ±0.5 meV of the chemical potential within the corresponding
shaded regions [see also Fig. 2(a)]. (b) Spin-orbit coupling coefficient
α for the mJ = 1

2 subband pair at chemical potential crossings as a
function of R. The colors correspond to those in panel (a) with the
solid and dashed lines denoting the first and second crossing of a
subband pair, respectively.

where m∗ is the effective mass, μ is the chemical potential,
σi (i = x, y, z) are the Pauli spin matrices, and α is a phe-
nomenological spin-orbit coupling coefficient. Again, since
the system has cylindrical symmetry, mJ ∈ (Z + 1

2 ) is a good
quantum number and each mJ value labels a pair of subbands
separated by a kz-dependent energy gap. We determine the
spin-orbit coupling α and the effective mass m∗ by fitting
a given pair of subbands of the full eight-band model with
the corresponding mJ pair of the effective Hamiltonian (5).
The details of the extraction procedure are provided in the
Supplemental Material [39].

The effective spin-orbit coupling coefficients correspond-
ing to the mJ = 1

2 states for a wire of radius R = 45 nm are
shown in Fig. 3. Only the first three pairs are represented,
as the higher energy pairs occur for μ > 200 meV, but we
checked that the main features hold for larger values of the
chemical potential. The spin-orbit coefficient associated with
the first mJ = 1

2 pair (shown in green) increases nearly linearly
with μ, i.e., with the work-function difference W [see panel
(a)]. However, this pair is relevant for topological physics
only in the regime μ < 10 meV, when it is close enough to
the chemical potential (shaded green ranges). Similarly, the
relevant values of α associated with the higher energy pairs are
those within the corresponding “topological” windows, as de-
termined in Fig. 2(a). For example, if μ ≈ 175 meV, the only
relevant contribution to a possible topological phase is given
by the second component of the third mJ = 1

2 pair, which is
characterized by α ≈ 37 meV Å. Although the second pair
has α ≈ 58 meV Å and the first pair has an even larger spin-
orbit coupling, they are very far from the chemical potential
and cannot induce a topological quantum phase transition.

The main result shown in Fig. 3(a) is that the effective
spin-orbit coupling of mJ = 1

2 subbands located in the vicinity
of the chemical potential does not exceed 50 meV Å in a
wire of radius R = 45 nm, regardless of the work-function

161118-3



WOODS, DAS SARMA, AND STANESCU PHYSICAL REVIEW B 99, 161118(R) (2019)

difference. To determine the dependence of the spin-orbit
coupling strength on the radius of the wire, we calculate the
effective coupling of mJ = 1

2 subbands that lie in the vicinity
of the chemical potential for wires with 30 � R � 60 nm.
The results are shown in Fig. 3(b). First, we note that for a
given mJ = 1

2 pair the spin-orbit coupling (at the chemical
potential) decreases with increasing wire radius. Qualitatively,
this can be understood as follows: increasing R reduces the
interband spacings, so that the chemical potential crossing
(for a given subband) will occur at a lower value of μ, i.e.,
in the presence of less charge inside the wire, hence a weaker
mean-field potential. In turn, the reduced potential generates
a weaker spin-orbit coupling. The second property revealed
by the results shown in panel (b) is that the overall magnitude
of the spin-orbit coupling for mJ = 1

2 subbands in the vicinity
of the chemical potential remains small (i.e., α < 75 meV Å)
regardless of radius, i.e., for wires with 30 � R � 60 nm and
arbitrary work function (so that 0 < μ < 200 meV). We re-
mind the reader that the predicted spin-orbit coupling strength
required for the realization of topological superconductivity
is on the order of 200 meV Å (or larger) [26]. The central
result of this work, shown in Fig. 3, demonstrates that such
values of the effective spin-orbit coupling cannot be realized
in full-shell InAs nanowires. Note that reducing the radius
of the wire may increase the effective spin-orbit coupling,
but finding a radius that is consistent with the emergence
of topological superconductivity may become a challenging
task, as discussed in the context of Fig. 2(b). The whole
procedure then becomes a matter of time-consuming trial and
error dependent on getting “lucky.”

To better understand the physical reason behind the small
spin-orbit coupling values at the chemical potential, we cal-
culate the wave functions of the first six mJ = 1

2 states at
kz = 0 for a wire of radius R = 45 nm with μ = 57 meV.
The results are shown in Fig. 4. Note that the wave-function
amplitudes are shifted with respect to the bottom of the mean-
field potential (gray shading) by the energies of the corre-
sponding states, allowing us to visualize the effect of φ(r)
on various states. The first two states (p = 1) are localized
near the surface of the SM wire (i.e., the SM-SC interface).
This is not surprising, as their energy is below the top of
the mean-field potential, which effectively pushes them away
from the center of the wire. Since the electric field E = −∇φ

is maximum in the outer region 30 � r � 45 nm, one would
expect a relatively strong spin-orbit coupling for this pair of
states (α > 80 meVÅ; see Fig. 3). By contrast, the second
and third pairs of states have energies well above the potential
maximum and are weakly affected by φ(r). As a result, these
states are extended throughout the entire cross section of
the wire and the effect of the radial electric field will be
strongly suppressed, resulting in lower values of the spin-orbit
coupling (α ≈ 47 meV Å in Fig. 3). In conclusion, we studied
the electronic structure of full-shell InAs/Al hybrid nanowires
using an eight-band �k · �p model which was solved within a
fully self-consistent Schrödinger-Poisson scheme. We found
that the spin-orbit coupling of the mJ = ± 1

2 subbands near
the chemical potential is generically small α < 70 meV Å,
regardless of the chemical potential (i.e., the work-function
difference between the SM wire and the SC shell) or the

FIG. 4. Wave function profiles, |ψ |2, of the first six mJ = 1
2 states

at kz = 0 for a wire of radius R = 45 nm and μ = 57 meV. The
states are shifted vertically by their energies. The effective mean-field
potential is also shown as a dotted line (gray filling), while the
chemical potential is marked by the black dashed line. The mJ = 1

2
states dominated by � = 0 and � = 1 components are shaded blue
and red, respectively. Notice that the first two states are confined
within the outer region 30 � r � 45 nm where the radial electric
field is maximum, while the other states are distributed over the entire
cross section of the wire.

wire diameter. In addition, we demonstrated that bringing
the bottom of an mJ = ± 1

2 subband close to the chemical
potential requires fine-tuning the wire radius. More specifi-
cally, within the range 30 � R � 60 nm one should expect
to find about two small windows (each a few nanometers
wide) consistent with the presence of an mJ = ± 1

2 subband
near the chemical potential. Since the existence of low-energy
mJ = ± 1

2 subbands with strong effective spin-orbit coupling
is critical for the emergence of a topological phase in full-
shell nanowires, our findings suggest that the parameter space
consistent with such a phase may be, at best, very narrow. As
a possible solution for enhancing the spin-orbit coupling, we
suggest using core-shell SM wires, with a wide gap material
(e.g., GaAs) for the core and a narrow-gap SM (e.g., InAs)
for the shell. In essence, the presence of the core will push
the states toward the outer region, where the radial electric
field is large, increasing the spin-orbit coupling. Another
possibility is to grow InAs in a wurzite phase, which is
known to have larger spin-orbit coupling [48,49]. Finally, we
note that the presence of symmetry-breaking perturbations
(e.g., due to the hexagonal wire geometry) is unlikely to
generate a dramatic increase of the spin-orbit coupling and
will not change our findings regarding the requirement to
fine-tune the wire radius. We conclude, therefore, that finding
topological Majorana modes in full-shell nanowires will be
quite challenging and will depend on considerable trial and
error to achieve a lucky sweet spot in optimizing the spin-orbit
coupling and chemical potential. The lack of a suitable tuning
parameter in situ is a serious problem in this respect.

This work is supported by Microsoft Q, Laboratory for
Physical Sciences, and NSF DMR-1414683.
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