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We develop an approach to design, engineer, and measure band structures in a synthetic crystal composed of
electric circuit elements. Starting from a nodal analysis of a circuit lattice in terms of currents and voltages, our
Laplacian formalism for synthetic matter allows us to investigate arbitrary tight-binding models in terms of wave-
number-resolved Laplacian eigenmodes, yielding an admittance band structure of the circuit. For illustration, we
model and measure a honeycomb circuit featuring a Dirac cone admittance bulk dispersion as well as flat band
admittance edge modes at its bearded and zigzag terminations. We further employ our circuit band analysis to
measure a topological phase transition in the topolectrical Su-Schrieffer-Heeger circuit.
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Introduction. Electrons in a periodic lattice potential [1,2]
is one of the most central problems in the history of condensed
matter research. As our understanding of it progressed over
the decades, revolutionary concepts have kept arising, such as,
most recently, relativistic particle dispersions in graphene [3]
or topologically nontrivial insulators and semimetals [4–6].
In this context, synthetic matter has emerged as a comple-
mentary branch to realize lattice potential environments for
alternative degrees of freedom. This includes, among others,
atoms in optical lattices, exciton polaritons in semiconductor
platforms, photons in cavities and waveguides, mechanical
and acoustic settings, and several more [7–12]. The common
purpose of synthetic matter research is to either accomplish a
highly tunable simulator for a given electronic lattice problem,
or to establish a framework in which an intricate lattice model
can be experimentally realized in the first place.

Electric circuit networks [13,14] naturally present them-
selves as yet another physical system in which a lattice
potential along with tunable lattice connectivity can be real-
ized. While most applications in electrical engineering do not
specifically necessitate a translationally invariant arrangement
of circuit elements, electric circuit networks still represent a
prototypical candidate for such synthetic matter. In the realm
of topological matter, it has recently been discovered that a
two-dimensional topological crystalline insulator can be built
in an electric circuit [15–17], which was subsequently gener-
alized to the prescription for modeling topological insulators,
topological semimetals, and higher-order topological states of
arbitrary dimension in topolectrical circuits [18,19].

In this Rapid Communication, we develop the framework
to build and measure admittance band structures in an electric
circuit in a way that allows for a precise translation from
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a given tight-binding model to its circuit realization. We
employ a Laplacian formalism put forward by us [18] to
connect the nodewise currents of the circuit with the nodewise
voltages measured against the ground. For a translationally
invariant system, the circuit Laplacian, whose eigenvalues
form the circuit admittance spectrum, then inherits a block
diagonal form due to a wave-number component k per pe-
riodic direction. As such, the energy band structure from a
given abstract tight-binding model translates into an admit-
tance band structure for the circuit derived from the Fourier
analysis of site-resolved voltages and currents, lending itself
to immediate measurability. The reconstruction of the band
structure is thereby straightforwardly accessible in a system-
atic and scalable measurement in terms of an electrical circuit
environment. We illustrate our admittance band engineering
for a two-dimensional periodic circuit lattice reminiscent of
graphene, its different surface terminations, and the topologi-
cal phase transition in the Su-Schrieffer-Heeger (SSH) model
as a function of the ratio between the intracell and intercell
hopping amplitude.

Admittance band analysis. We label each node in the circuit
by an index j, where the voltage at that node, Vj , is measured
with respect to the ground. The input current, which defines
the current flowing into the circuit at that node from the
outside world, is denoted by I j . With this, we are able to
arrange the components I j and Vj in a vector form linked by
using Ohm’s and Kirchhoff’s law (see Supplemental Material
A) [20],

I = J (ω)V. (1)

J denotes the grounded circuit Laplacian and ω the ac driving
frequency of the excitation current applied to the circuit [18],
which takes the role of an external parameter.

The response of the system to a given input current signal
is governed by the eigenstates of J . The impedance resonance
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frequencies ω(n)
res are the roots of the Laplacian’s eigenvalues

jn(ω), n ∈ {1, . . . , dim[J]} [18].
The circuits we investigate are composed of a repeating

minimal set of M nodes and conductances, which together we
call the circuit unit cell. The nodes of a circuit representing
a D-dimensional network can be labeled by two indices
j ≡ (ρ, α), where ρ is an index denoting the unit cell and
α ∈ {1, . . . , M} the nodes within a unit cell. D specifies the
synthetic dimension of circuit lattice periodicity, which is
determined by the maximum number of linearly independent
Bravais lattice vectors Rρ .

Note that, as one central difference from a solid state
lattice, there is no fixed length or orientation of the Bravais
vectors, as the circuit lattice truly is a graph, and as such
solely determined by lattice connectivity. This implies an
equivalence class of different choices of Bravais vectors, and
thus gives an additional gauge for the circuit lattice network
(Supplemental Material B) [20].

Once we fix a Bravais vector gauge {Rρ}, we can diagonal-
ize a translationally invariant J by performing a Fourier trans-
form to D-dimensional reciprocal space k into M-dimensional
block matrices,

Jαβ (k, ω) =
∑

ρ

Jαβ (Rρ, ω) exp
[ − iR�

ρ k
]
. (2)

To find the eigensystem of the Laplacian matrix, and hence the
admittance band structure, we diagonalize the block matrices
Jαβ (k, ω).

The Laplacian matrix in reciprocal k space forms an
irreducible representation of the translation group. The ad-
mittance band structure can then be seen as the irreducible
representation of the space group incorporating the periodic
circuit configuration in graph space.

Admittance band measurement. We apply an input current
at one specified node of the circuit and measure the response
of the circuit given by the complete voltage vector with respect
to that input current. If we apply an input current at node j,
we can compute the impedances

Gi j = V ( j)
i /I j = J−1

i j . (3)

V ( j)
i represents the voltage measured at node i when the only

input current to the circuit is given by I j .
As the matrix G is the inverse of the circuit Laplacian J

[18], the complex valued admittance eigenvalues are obtained
by inverting the eigenvalues of G. Note that by analogy,
such site-resolved measurements are out of reach in generic
transport or scattering experiments on physical crystals. For a
randomized system of N nodes, the measurement procedure
of exciting one node and measuring the whole voltage profile
needs to be repeated N times to recreate the matrix G by use of
(3), where each of the N measurement processes features an
input current at a different node. If we are dealing with a fully
periodic system, however, only M nodes are inequivalent. In
this case, we thus restrict ourselves to repeating the outlined
measurement procedure M times, where each sublattice needs
to be supported once (Supplemental Material C) [20]. The
data of the voltage and the current vector are then Fourier
transformed to reciprocal space, and the (M × M ) impedance
matrix is recovered for each k by use of (3). We determine

the complex Laplacian matrix and its eigenvalues for each k
separately, and thus restore the band structure. The measure-
ment principle readily extends to the case of open boundary
conditions for any synthetic circuit dimension.

Honeycomb circuit. As introduced in Ref. [18], with a unit
cell depicted in the inset of Fig. 1(a), we consider the analog
to a honeycomb structure in a circuit network.

We thus have M = 2 and three equivalent capacitive con-
ductances C per node to other nodes,

Jhc(k) =iω

[(
3C − 1

ω2L

)
1 − C(1 + cos(kx ) + cos(ky))σx

− C(sin(kx ) + sin(ky))σy

]
, (4)

yielding a two-band structure given by

j (±)
hc (k) =iω

[(
3C − 1

ω2L

)

± C
√

3 + 2 cos(kx ) + 2 cos(kx − ky) + 2 cos(ky)

]
.

(5)

The ac driving with the characteristic resonance frequency
ω0 = 1/

√
3LC eliminates the offset proportional to identity

and symmetrizes the honeycomb lattice spectrum around zero
admittance. In the absence of dissipative losses such as im-
posed by serial resistances, the spectrum is purely imaginary.

For the experimental implementation, we devise standard
printed circuit boards (PCBs), and fit them with commercially
available electronic components (Supplemental Material D)
[20]. The PCB modules for the honeycomb circuit are de-
signed to contain 6 × 6 unit cells with the option of selecting
specific components at the edge termination. We serially
connect the edges in both spatial dimensions to fuse several
PCB modules and set the circuit termination to either provide
periodic or open boundary conditions. The driver current is
fed into a particular sublattice site from the ground.

The measurements of the ac voltages are done by Stan-
ford Research 530 lock-in amplifiers. The driving current
is detected as a voltage drop through a shunt resistor. The
driving frequency is set to the respective operational reso-
nance frequency, which is identified in the impedance spec-
trum recorded by a B&K Precision 894 LCR meter. The
reconstructed band structure measurement is summarized in
Fig. 1. As seen, the data are in good correspondence to the
theoretical prediction (5). The deviations of large admittance
eigenvalues from theory are greater due to reduced excitation
of the corresponding eigenstates (Supplemental Material D)
[20]. The red/black data points in Fig. 1(a) correspond to
the red/black path taken in the Brillouin zone as shown in
Fig. 1(b). To illustrate the Bravais gauge, we have picked
the Brillouin zone to take the form of a square (brick wall
type) which, upon suitable reciprocal folding, appears as a
distorted hexagon (Supplemental Material C) [20]. While the
spectrum from (5) is gauge invariant, the map onto wave
vector momenta is not, leading to the distorted spectrum for
the chosen gauge.

Open boundary termination. We adjust the honeycomb
circuit PCBs to exhibit open boundary conditions in one brick
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FIG. 1. (a) Admittance band structure of the honeycomb circuit (two-node unit cell shown in the upper central inset). Gray dashed lines
highlight the continuum theoretical admittance dispersion. In the absence of any fixed length scale entering the circuit system of connected
nodes, there is an equivalence class of individually scaled and oriented (reciprocal) lattice vectors as long as lattice connectivity and number of
nodes per unit cell is preserved. The red × and black + data points were measured for 18 × 18 unit cells for the red and black trajectory through
the Brillouin zone depicted in (b). In contrast to a usual honeycomb reciprocal lattice vector structure, the gauge for the circuit Brillouin zone is
chosen to be quadratic (straight white), which upon folding takes the form of a distorted hexagon (dashed white). The heat map of admittance
in reciprocal space stresses the dominant low spectral regime around the K/K ′ points, hence dominating the impedance read-out.

wall direction while keeping periodic boundary conditions for
the other. Due to two sublattice components and two choices
of termination of the resulting cylindric geometry, different
settings can be investigated. Figure 2 shows the predicted and
measured admittance band structure for different choices of
termination, where we put an emphasis on those exhibiting
flat surface admittance modes. Viewed together, Figs. 2(a) and
2(b) display one complete flat band of admittance eigenvalues,

which is doubly degenerate because of the two identical
edges. The flat band splits into a regime |k| > 2π/3 and
|k| < 2π/3 between the A-B zigzag and bearded termina-
tion, respectively. For the B-B bearded/zigzag termination,
Fig. 2(c) displays a nondegenerate flat band where, if it were
resolved with respect to the two edges, the same distribution
between the bearded and zigzag edge would be observed as
for Figs. 2(a) and 2(b).
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FIG. 2. Admittance band analysis of different graphene circuit edge terminations given by (a) A-B zigzag, (b) B-A bearded, and (c) B-B
bearded/zigzag termination, where A (green) and B (red) used in the schematic honeycomb geometry label the different nodes of the circuit unit
cell. The admittance band structure data (black × points) are derived from an cylindric circuit geometry with 18 unit cells along the periodic
and 5 along the open direction, where the gray dashed lines highlight the theoretical expectation for the bands. Depending on the termination,
flattened spectral admittance features are visible whose eigenstates localize at the termination. For the Brillouin zone gauge chosen in Fig. 1,
(a) yields a flat spectrum at zero admittance for |k| > 2π/3 while (b) shows the complementary flattening for |k| < 2π/3. Independent of the
Brillouin zone gauge, the B-B terminated circuit in (c) exhibits a flat admittance band.
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FIG. 3. (a) Absolute value of impedance as a function of ac
frequency ω for the open boundary SSH circuit (unit cell depicted
at the upper right inset) at the critical value t = 1 (blue, 10 unit
cells), t = 1.7 (red, 19 unit cells) contained in the topologically
trivial regime t > 1, and t = 0.59 (black, 20 unit cells) contained in
the nontrivial regime t < 1. At ω = ω0, the topolectrical boundary
resonance (TBR) related to the topological SSH midgap states is
resolved. (b) Admittance band structure measured for the periodic
SSH circuit. For t = 1 (+ sign, continuum theory curve in dashed
blue), the band structure appears critical at k = π . In the periodic
case, t = 1.7 and t = 0.59 yield the same bands (× sign, continuum
theory curve in dashed red) due to spectral self-similarity under
t → 1/t , with an admittance gap at k = π .

Topological phase transition. The admittance band mea-
surement we propose also allows us to track the bulk
topological phase transition of a topolectrical circuit. As its
most elementary representative, we study the Su-Schrieffer-
Heeger (SSH) circuit, an M = 2 one-dimensionally connected
circuit whose admittance band structure corresponds to that
of the SSH tight-binding model for polyacetylene [18,21,22].
The conductances are given by capacitors with capacitance C1

inside the unit cell (intracell) and C2 between adjacent unit
cells (intercell) described by the paramter t = C1/C2. Each
node is also connected to the ground by an inductor with
inductance L [see the inset in Fig. 3(a)]. The SSH PCBs are
designed to contain ten unit cells, with the option to have
different edge terminations and to stack several circuit boards
by connecting them in a series. The circuit Laplacian is given
by [18]

JSSH(k) =iω

[(
C1 + C2 − 1

ω2L

)
1 − [C1 + C2 cos(k)]σx

− [C2 sin(k)]σy

]
, (6)

yielding the admittance band structure

j (±)
SSH(k) =iω

[(
C1 + C2 − 1

ω2L

)

±
√

C2
1 + C2

2 + 2C1C2 cos(k)

]
. (7)

Figure 3(a) depicts an open boundary impedance measure-
ment for the parameters t = 1 as well as t = 0.59 and its
inverse t = 1.7. In the topologically nontrivial regime t <

1, at ω0 = 1/
√

L(C1 + C2), the circuit exhibits an admit-
tance midgap state at the boundary, which manifests as an
impedance peak. In the dissipationless limit and for an ex-
act zero admittance SSH midgap state, this peak would be
divergent, but in reality becomes damped due to serial circuit
resistance and component disorder [18]. This peak is absent
for t > 1. Figure 3(b) shows the reconstructed bulk admit-
tance band structures. Because of the duality under t → 1/t ,
the bulk spectrum is identical for t = 0.59 and its inverse,
showing a bulk admittance gap. The phase transition occurs
at t = 1, where the admittance gap closes at k = π .

Conclusions and outlook. Electric circuit networks, to-
gether with the admittance band measurement protocol de-
veloped in our work, establish a promising platform for
the design, engineering, and measurement of tight-binding
models. In comparison to alternative frameworks of synthetic
matter, electric circuits offer unique advantages. First, electric
circuits are placed in the infinite tight-binding limit, and as
such are arbitrarily scalable. Second, the circuit boundary
conditions can be conveniently switched between open and
periodic, allowing us to investigate bulk band properties and
edge states in the same experimental sample. Third, while
we have not yet exploited it in this work, arbitrary longer
ranged hopping can be straightforwardly considered, along
with realizing lattices of arbitrary dimension and connectivity.
Here, the graph property of electric circuits will allow for the
implementation of symmetries independent of the physical
embedding space which are in part inaccessible to physical
crystals. Together with their feasibility and accessibility, elec-
tric circuit networks promise to yield fundamental insights
into topological band structures [16–19,23,24] and beyond.

Note added. Recently, we became aware of a contem-
poraneous work [25] providing an experimental realization
for a Weyl circuit [18]. An inductive nodal measurement is
performed to reconstruct energy band dispersion which is not
rigid, i.e., sensitive to the energy offset, while we reconstruct
rigid admittance bands, i.e., insensitive to the grounding ad-
justment of admittance.
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