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Highly confined surface waves present unique opportunities to enhance light interactions with localized
emitters or molecules. Hyperbolic dispersion in metasurfaces allows us to tailor and manipulate surface waves,
enhancing the local density of states over broad bandwidths. So far, propagation on this platform was mainly
studied in planar geometries, which facilitates the analysis but somehow limits the realm of possibilities. Here
we show that “wrapping” hyperbolic metasurfaces into tubes may greatly enrich the wave propagation dynamics
along their axis. This system shows strong interaction with fields and sources carrying optical angular momentum
and pronounced field asymmetries, and opens pathways to valley-specific excitation and routing. In addition, we
demonstrate that various parameter regimes enable strong spin/helicity momentum locking.
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I. INTRODUCTION

Propagation of surface waves along planar structures has
been a vastly studied subject over time. In the past decade,
this subject has seen increased interest in the context of
plasmonics and the emergence of metasurfaces [1]—thin
sheets of matter with a carefully engineered response to
electromagnetic fields offering new opportunities to control
and manipulate the fields. Among the numerous applica-
tions metasurfaces may have, more relevant to the present
work is the research unveiling phenomena in surface wave
propagation. To model the metasurface response, the surface
impedance concept is used in many cases [2]. Propagation
of surface waves on impedance metasurfaces has been exten-
sively studied [3–5], presenting the flexibility offered by tai-
loring the surface impedance components to control and steer
the surface wave fields. By considering additional degrees of
freedom to the metasurface response, such as anisotropy and
bianisotropy (magnetoelectric coupling) [6] we can further
tailor the overall reflection/transmission [7,8] and propagation
characteristics [4,9]. These additional parameters can lead to
exotic responses, such as hyperbolic metasurfaces [10–14],
that may support propagation of surface waves with a hy-
perbolic dispersion, allowing highly confined guiding and
Purcell enhancement over broad bandwidths. Combined with
modern nanofabrication techniques, graphene flexibility and
tunability opens a realistic route towards implementing these
phenomena in practical devices [11].

Surface waves guided along cylindrical boundaries have
also been researched, following the pioneering work of Som-
merfeld [15] that introduced wave propagation along the
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boundary of a metallic cylinder with finite conductivity. This
study was extended in [16], both elaborating on the case
of a smooth boundary, and discussing a corrugated one. In
[17] the plasma response of the metal was also considered
as a model of the material response. Azimuthal leaky surface
waves, which propagate in the ϕ̂ cylindrical direction rather
than in the axial one, were also studied in [18,19] quantifying
their radiation properties.

While several earlier works have discussed propagating
waves of the form e− jnϕe− jkzz [20], the concept of orbital an-
gular momentum of light was introduced in [21]. Since then,
many applications for such waves were found, thoroughly re-
viewed, and presented in [22]. In the context of surface waves,
and serving as an inspiration from which our work draws some
of its roots, Refs. [23,24] present perfectly conducting sheath
helices—cylinders allowing current only at a specific angle
with respect to the cylinder axis. These structures support
axial propagation of higher order, highly confined circular
modes carrying optical angular momentum (OAM), where a
mode with specific n has asymmetric guiding properties.

Upon the emergence of carbon nanotubes, a model of
a cylindrical impedance surface was employed for several
configurations [25,26] to study their electrodynamics and
wave guiding properties, a model which we later use here.
Cylindrical and spherical sheath metasurfaces have also been
considered as candidates for cloaking [27–29] and engineer-
ing nanoparticle resonant response [30]. Cylindrical surface
wave propagation was also considered in [31] for a dis-
persive plasma cylinder model, were it was shown that all
modes converge towards specific frequencies associated with
the plasma and magnetic resonance frequencies. Scattering
from such cylinders was also studied in [31,32]. With recent
advances in manufacturing techniques, we envision more
complex cylindrical surfaces made of carefully designed and
arranged inclusions. In the context of scattering, Ref. [33]
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lays the foundations for the analysis of scattering from this
type of cylindrical bianisotropic metasurface, where a method
to extract the required metasurface design for a prescribed
response is discussed. In [34], a structure made of a hyperbolic
metamaterial deposited on a glass tube is studied for direc-
tional emission and Purcell enhancement (with extraordinary
hyperbolic material axis perpendicular to the cylinder axis).
The directionality and enhancement (in terms of cylindrical
azimuthal scattering angle ϕ) arises from the metamaterial
properties in addition to an asymmetric depositing process
resulting in an azimuthal gradient of the deposition thickness.

In this work, we study a cylindrical surface made of a
planar hyperbolic metasurface (used here and throughout the
paper to indicate a surface with opposite signs of surface
admittance coefficients) rolled into a tube in various config-
urations, yielding a cylindrical sheath with opposite current
responses in two perpendicular directions. The modes prop-
agating along the cylinder axis present extreme dispersion
asymmetry. We show that by incorporating a magnetic surface
response, the asymmetries can be enhanced, and asymmetric
field distributions localized inside and outside the cylinder
can be obtained. We examine propagating waves in the
context of the electromagnetic helicity [35,36], and explore
different helicity regimes for different surface parameters.
These cylindrical metasurfaces reveal opportunities for highly
asymmetric interaction with OAM/spin carrying waves such
as unidirectional excitation of modes.

II. GEOMETRY AND FORMULATION OF THE PROBLEM

The geometry under consideration is shown in Fig. 1.
To construct the studied cylindrical sheath, it is intuitive to
think of a thin, planar surface folded (or rolled) along the
direction of a specific guide line [dashed line in both Figs. 1(a)

FIG. 1. The geometry under analysis. (a) The principal axes z′, y′

over which the constitutive relations tensors in the reference planar
surface are given. The z axis indicates the direction of the cylinder
axis, and the ϕ axis is the azimuthal direction after the folding. (b)
When rotated and folded they form a skewed reference system over
the surface of the cylinder with angle θ .

and 1(b)]. The principal axes of the planar surface are z′, y′
shown in Fig. 1(a) (with blue and red lines parallel to them,
respectively), whereas the cylinder axis z makes an angle θ

with z′. The response of the cylindrical sheath to applied
electromagnetic fields can be described using the boundary
conditions [37]

r̂ × (Ho − Hi )r=a

= Js = 1
2 Y

s

(
Ei

tan + Eo
tan

) + 1
2 a

(
Hi

tan + Ho
tan

)
, (1)

− r̂ × (Eo − Ei )

= Jms = 1
2 Z

ms

(
Hi

tan + Ho
tan

) + 1
2 b

(
Ei

tan + Eo
tan

)
, (2)

where the superscripts o (i) refer to fields outside (inside) the
cylinder. Here, Js, Jms are the tangential electric and magnetic
currents on the surface of the cylinder, Y

s
is the electric

surface admittance, Z
ms

is the magnetic surface impedance,
and a, b are the bianisotropic electric-magnetic coupling ten-
sors. The suffix tan denotes field components tangent to the
cylinder surface (ϕ̂, ẑ). Assuming lossless, reciprocal, and lo-
cal surfaces renders Y

s
, Z

ms
purely imaginary and symmetric

and a, b are real and satisfy b = −aT [37,38]. The rotation
relation between the response matrices of the planar surface in
his principal axes z′, y′ [defined as Yp

s
, Zp

ms
, ap, bp throughout

the paper, corresponding to the surface in Fig. 1(a)], and the
matrices of the cylindrical structure Y

s
, Z

ms
, a, b is detailed

in Appendix A. In the following, we assume the surrounding
medium to be vacuum.

In cylindrical coordinates, the ẑ components of the surface
wave electromagnetic (EM) fields guided along the cylinder
can be written as [39]

Ez =
{

Ai
nIn(τ r)

Ao
nKn(τ r)

}
e− jkzze− jnϕ,

(3)

Hz =
{

Bi
nIn(τ r)

Bo
nKn(τ r)

}
e− jkzze− jnϕ,

where Ai
n and Bi

n are the amplitudes of transverse-magnetic
(TM) and transverse-electric (TE) wave inside the cylinder,
and Ao

n, Bo
n outside the cylinder (this notation is used through-

out the paper) where e jωt time convention is used. In and Kn

are the modified Bessel functions of the first and second kind.
For surface waves to be guided, there needs to be a real kz solu-
tion satisfying k2

z = k2
0 + τ 2 > k2

0 , with k0 = ω
√

ε0μ0 = ω/c
the free-space wave number. In the dispersion curve, such a
mode would appear below the light lines which correspond to
propagation with wave number k0. The other field components
are calculated from Eq. (3) using Maxwell’s equations (see
Appendix A) and the properties of the impedance surface are
taken into account through the boundary conditions in Eqs. (1)
and (2). It should also be stressed that due to the complex
surface responses that we study, in general the propagating
waves do not possess a “pure” TE/TM nature, but rather a
mixed state between the two.
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III. ASYMMETRIC PROPAGATION OVER FOLDED ELECTRIC METASURFACES

We start our analysis by considering a planar surface with only a nonzero electric surface admittance tensor of the form

Yp
s

=
(

Yy′y′ 0
0 Yz′z′

)
= j

η0

(
Xy′y′ 0

0 Xz′z′

)
, (4)

We then apply the rotation operators, and obtain the surface admittance tensor in the ϕ − z coordinate system corresponding to
the cylindrical geometry

Y
s
=

(
Yϕϕ Yϕz

Yzϕ Yzz

)
= j

η0

(
Xy′y′cos2θ + Xz′z′sin2θ (Xy′y′ − Xz′z′ ) sin θ cos θ

(Xy′y′ − Xz′z′ ) sin θ cos θ Xy′y′sin2θ + Xz′z′cos2θ

)
. (5)

A. Single-direction currents

As a preliminary case, let us first gradually extend the
work in [23,24], examining the special case of Xy′y′ = 0. The
dispersion equation becomes

In
′(τa)Kn

′(τa)

In(τa)Kn(τa)
= − (−nkza + a2τ 2 cot θ )2

k2
0a4τ 2

− 1 + cot2θ

k0aXz′z′In(τa)Kn(τa)
, (6)

tending to the relation presented in [23,24] when Xz′z′ →
±∞. In

′, Kn
′ are the first derivatives of the modified Bessel

functions with respect to the argument. A dispersion plot is
shown in Figs. 2(a) for θ = π/4, Xz′z′ = −4 and since we have
chosen an inductive surface with Xz′z′ < 0, the EM fields are
quasi-TM in nature.

We see an interesting asymmetry in the band diagram
associated with the OAM direction of the mode, where a
specific mode n has different propagation features to opposite
propagation directions. This asymmetry comes from the fact
that the sheath helix has a specific “handedness.” When a
mode n propagates in opposite directions, the rotation direc-
tion of the phase flips as opposed to the handedness of the
sheath helix which stays the same, making the waves and the
helix interact differently. As expected based on time-reversal
symmetry considerations, the −n mode will have the opposite
relations. It is instructive to examine the dispersion relation
(6) in the low-frequency limit satisfying kz � k0, in a similar
manner to [24] (see additional remarks in Appendix B). This
yields

k0a = −Xz′z′

4|n| sin(2θ )(−n + kza cot θ )2. (7)

For inductive surfaces, satisfying Xz′z′ < 0, each higher-order
mode has the tangency point of its dispersion with the kza
axis shifted horizontally by approximately 	kza = tan θ . The
approximate parabolic shape of the dispersion also indicates
low-frequency symmetry around kza = n/ cot θ , rendering
this constant as a basic characteristic of the guiding structure.

This case is a platform for interesting directional effects
when such a waveguide interacts with a wave carrying angular
momentum due to the asymmetry present.

B. Folded hyperbolic metasurface

Surface wave propagation on hyperbolic metasurfaces
have been shown to support many interesting phenomena,

including broadband, highly confined surface waves, and
enhanced local density of states. In the following, we show
that the application of these properties in cylindrical tubes
combines and couples them with orbital angular momentum,
which can lead to sorting and routing of valley selective exci-
tations [40]. The asymmetry outlined in the previous section
can be pushed further if we examine a folded hyperbolic
metasurface in the same configuration, considering Xy′y′ > 0
(or in general the opposite sign of Xz′z′ ), in Eqs. (4) and (5). For
simplicity, we will focus on the special case |Xy′y′ | = |Xz′z′ | =
X with θ = 45◦. The dispersion equation in this scenario
becomes

k0a(1 − X 2τ 2a2InKnIn
′Kn

′) − 2nXkzaInKn = 0, (8)

FIG. 2. (a) Surface wave dispersion curves for the folded cylin-
drical surface when only Xz′z′ �= 0 in Eq. (4) with Xz′z′ = −4 and
θ = π/4 allowing current to flow only in a direction making 45◦

with the cylinder axis. Dashed black lines show the light lines,
k0 = ω/c. (b) Surface wave dispersion curves for a folded hyperbolic
metasurface with Xy′y′ = 4, Xz′z′ = −4 and θ = π/4. Dashed black
lines shown the light lines. The mode n = 0 is not present, as it does
not propagate. (c) Ez sampled close to cylinder surface (r = 1.02a),
when exciting with two dephased electric dipoles. The cylinder
properties correspond to the dispersion in panel (a). The black,
perpendicular panels show the electric-field intensity, where we see
the fast decay as the distance from the cylinder increases. The inset
shows the modal content of the fields near the cylinder, showing
a mixture of many modes. (d) Same as (c), but corresponding to
the cylinder properties matching the dispersion in panel (b). Highly
directional excitation is observed, and pronounced mode selectivity
with a single mode propagating (n = −3).
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and the corresponding dispersion curves are shown in
Fig. 2(b) for Xz′z′ = −X = −4. The asymmetry with respect
to the mode index is more extreme here, and positive angular-
momentum modes can propagate only to the left, whereas
negative angular-momentum propagates to the right. This
OAM-momentum coupling is reminiscent of the edge state
spin-momentum coupling in photonic topological insulators
[41] and in the vicinity of hyperbolic metamaterial slabs [42].
For n = 0 Eq. (8) has no real solutions for τ , therefore the
zero-index mode is not supported at all. Following this, if we
try to excite this waveguide with OAM neutral excitation (any
field/source pattern that would be invariant as a function of
ϕ in cylindrical coordinates), no propagation of waves will
occur since the projection of such an excitation on the prop-
agating modes will be zero [43]. Each mode has a horizontal
asymptote [red dashed lines in Fig. 2(b)] in frequencies fr,n

that satisfy (calculation remarks in Appendix B)

2π fr,na

c
= 4|nX |

4 + X 2
, (9)

corresponding to surface waves highly confined to the tube.
In this scenario, the modes have balanced TM and TE nature
(fields of both polarizations are excited in comparable inten-
sities), implying that they can strongly interact with a wide
range of polarizations, with an ideal optical response to sort
angular momentum and valley responses. Operating close to
fr,n, we expect highly mode-selective operation, due to the
significant differences in mode confinement, and cutoff of the
lower modes.

To examine these opportunities, we consider two nearby
localized emitters with same magnitude polarized along ẑ,
but with different phase, represented by yellow vectors in
Figs. 2(c) and 2(d) located at r = 1.02a. Such a source is
used as a simple version of an excitation that couples effi-
ciently to a specific value of orbital angular momentum n.
Naturally, a mode n would best couple to a current source
of the form Jz = Jz0e− jnϕ , and our two-dipole source is a
two-point sampling of this optimal current distribution. The
phase difference is chosen to couple to the n = −3 mode, and
the excitation frequency is 0.985 fr,3. We have used COMSOL
electromagnetic solver [44] to simulate the response of the
studied structure to this excitation, where the emitters were
modeled as electric point dipoles p = pẑ.

When the emitters excite the helical tube corresponding
to the dispersion in Fig. 2(a), we see in Fig. 2(c) that many
modes are excited as we cannot see a distinct a wave pattern
corresponding to a specific n. Close to the face of the cylinder
we plot Ez, and on the planar panels perpendicular to the
cylinder we plot the electric field intensity. The insets show the
relative intensity of each mode n [45], and no directionality is
noticed. Figure 2(d) shows the same excitation when applied
to the folded hyperbolic metasurface, displaying highly mode-
selective propagation and directionality. This can allow us to
design emitters that strongly couple and launch specific angu-
lar momentum values using finite tube sections. Additional in-
sights can be gained by examining the optical helicity density
S [35,46] for the modes supported by the folded hyperbolic
metasurface, as calculated in Appendix B. Since our interest
is focused on the highly confined modes, this calculation can

be greatly simplified by examining S∞ = S(kz � k0). In
particular, it follows that sgn(Si,o

∞ ) = ±sgn(X ).
This can help customize the way our waveguide interacts

with spin and helicity carrying sources, such as in the case of
valley excitons. In particular, we envision directional sorting
and routing of valley excitons [40] coupled to these cylinders,
using the aforementioned interactions when folded hyperbolic
metasurfaces are coated with excitonic layers around the
resonant frequencies of the various modes.

IV. ASYMMETRY ENHANCEMENT USING A SURFACE
MAGNETIC IMPEDANCE

By virtue of duality, folded hyperbolic metasurfaces char-
acterized by only magnetic impedance in (4) will present dual
propagation features to the case analyzed in Fig. 2. Interesting
opportunities arise if we combine these two responses, further
enhancing the asymmetry and directionality of the supported
modes. As a testbed, we first examine the case of a planar
surface with the same electric response shown in Eq. (4),
supplemented by

Zp
ms

= η2
0Yp

s
, ap = bp =

(
0 


−
 0

)
. (10)

If Xy′y′ , Xz′z′ are with opposite signs, and we combine it with
a properly tailored value of 
, the modal asymmetry manifests
through an interestingly one-sided field distribution of the
propagating fields, as shown in Fig. 3(a). The 
 response is
required to tailor the cross interaction between the electric
and magnetic fields, which gives rise to this field asymmetry,
as balanced electric and magnetic currents can excite highly
asymmetric field distribution [47].

Bearing this example in mind, we notice (Appendix A) that
high-order guided cylindrical modes contain an inherent and
rich coupling between electric and magnetic fields, allowing
us to achieve similar asymmetries in the cylindrical case,
without the need for an 
-type response. All the cases we
examine are based on an electric-magnetic surface described
[similarly to Eq. (4)] by

Yp
s

= j

η0

(
X 0
0 −X

)
, Zp

ms
= jη0

(
Xm 0
0 −Xm

)
,

ap = 0, bp = 0 (11)

and folded along θ = 45◦.
We start with the case of Xm = X , folded into a cylin-

der, with θ = 45◦ where we find two types of solutions for
each mode index n, corresponding to two distinct dispersion
branches. The dispersion equations are

8nXkzaInKn − τa[(X ∓ 2)2In
′Kn − (X ± 2)2InKn

′] = 0,

(12)

where the upper and lower signs correspond to the two distinct
solution families. The dispersion curves are shown in Fig. 3(b)
for X = −4, and the modal fields satisfy

Ei,o
z (r = a) = ± jη0Hi,o

z (r = a), (13)

regardless of X . When substituting the dispersion solutions
back into the governing equations [Eqs. (A8) in Appendix A]
to obtain the mode profile, the difference between the two
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FIG. 3. (a) Excitation of surface waves over a planar surface with
Yy′y′ = − j0.3/η0, Yz′z′ = j16.133/η0 and 
 = 0.2, corresponding to
Eq. (10). The modal fields are concentrated at the bottom surface. (b)
Surface wave dispersion curves for a cylinder with electric surface
admittance and magnetic surface impedance satisfying Zp

ms
= η2

0Yp
s
,

corresponding to X = Xm = −4 in Eq. (11). Dashed black lines are
the light lines and k0 = ω/c. Thin lines correspond to the family of
modes concentrated mostly on the outer part of the cylinder, and
thick lines correspond to the family of modes concentrated mostly
on the inner part of the cylinder, as described by Eqs. (12) and (14).
(c) Same as (b) but with X = Xm = −2.

modal solutions becomes apparent. The field amplitudes on
the tube surface [both electric and magnetic, according to
Eq. (13)] satisfy ∣∣Ei

z

∣∣∣∣Eo
z

∣∣ =
∣∣Hi

z

∣∣∣∣Ho
z

∣∣ = (X ± 2)

(X ∓ 2)
, (14)

yielding that the first set of modes is concentrated mostly
inside the cylinder (denoted by thick lines), while the second
is on the outer region (denoted by thin lines), corresponding to
the labels in Fig. 3(b). This figure also shows that, by tuning
the operation frequency to be slightly above or below fr,n, we
can control which field distribution is dominant.

When X = ±2, we maximize the contrast between inside
and outside fields, yielding slow-wave modes concentrated
purely in the interior or exterior part of the cylinder. In this
extreme scenario, the modes are not only spatially separated,
but also totally spectrally separated—they are guided in com-
pletely different frequency bands, as shown in Fig. 3(c). New
cutoff frequencies at k0,ca = √

n(n + 1) are induced in this
regime (dashed blue lines in the figure). In this scenario,
Eq. (13) ensures that sgn(Si,o

∞ ) = ∓1, coupling the helicity
to the geometrical domain where the fields are concentrated.

FIG. 4. Dispersion curves for a folded metasurface, correspond-
ing to Xm = −4/X in Eq. (11). The surface parameters are X =
4, Xm = −1, and the folding angle is θ = π/4. Black dashed lines
are the light lines, and k0 = ω/c.

Another interesting class corresponds to the same relation
as in Eq. (11), this time with Xm = −4/X . As before we
perform the folding along the θ = 45◦ line. The dispersion
equation obtained in this case is completely symmetric for
propagation to the left and right directions,

|nkz| = (k0a)(τa)

4|X |

√(
4

K ′
n

Kn
− I ′

n

In
X 2

)(
K ′

n

Kn
X 2 − 4

I ′
n

In

)
, (15)

and the curves obtained are shown in Fig. 4 for X = −4. The
asymmetry in this case is revealed when closely examining
the helicity of the propagating modes, satisfying sgn(Si,o

∞ ) =
sgn(nkz ) and exhibiting strong helicity-momentum-OAM
coupling.

Additionally, it is worth mentioning the case of Xm = −X .
Here, no such pronounced asymmetry is present, however it
allows tailoring of the TE/TM ratio of the propagating waves.
If we denote this ratio ζ (the same notation is also used in
Appendix B) we obtain

|ζ | = |Ez|
|η0Hz| =

∣∣∣∣X

2

∣∣∣∣ (16)

with a dispersion curve very similar to the previous case,
presented in Fig. 4.

V. CONCLUSIONS

In this paper, we have explored surface wave propagation
over metasurface tubes. We have shown that folded hyperbolic
metasurfaces can form an interesting platform for nanopho-
tonics and valleytronics applications. They yield highly asym-
metric propagation properties in terms of angular momentum,
enabling largely unusual responses when properly tuning their
impedance parameters. Around the resonance frequencies,
the structures obtained may strongly interact with OAM/spin
carrying waves such as the vortex Laguerre-Gauss beams [21]
(with many more examples in [22]) or spin-specific excitons
[36,48,49] which utilize the valley degree of freedom in tran-
sition metal dichalcogenides. When incorporating magnetic
response of a similar nature, these tubes also give rise to tun-
able asymmetry such as high field contrast between the inner
and outer domains in addition to the asymmetric propagation.
For all of the cases studied, strong OAM-momentum coupling
was demonstrated which can be viewed as an extension of the
spin-momentum coupling present in topological edge states.
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For each studied case, it was shown that the sign of the optical
helicity for the propagating waves is controlled and coupled
to various parameters—surface impedance, field propagation
domain, OAM, and wave number.

APPENDIX A: DERIVATION OF THE EM FIELDS AND
DISPERSION EQUATION

To obtain the dispersion equation, we start by expressing
the tangent fields using the coefficients Ai, Ao, Bi, Bo defined
in Eq. (3), arranged in a vector Ci,o = (Ai,o, Bi,o)T ,

Ei,o
tan = e− jnϕe− jkzzM

E ,(i,o)
Ci,o,

(A1)
Hi,o

tan = e− jnϕe− jkzzM
H,(i,o)

Ci,o,

with

Ci =
[

Ai
n

Bi
n

]
Co =

[
Ao

n

Bo
n

]
, (A2)

and the matrices M
E
, M

H
are defined as [24,39]

M
E ,i

=
[

nkz

τ 2 In(τa) − jk0a
τ

In
′(τa)

In(τa) 0

]
, (A3)

M
E ,o

=
[

nkz

τ 2 Kn(τa) − jk0a
τ

Kn
′(τa)

Kn(τa) 0

]
, (A4)

M
H,i

=
[

jk0a
τ

In
′(τa) nkz

τ 2 In(τa)

0 In(τa)

]
, (A5)

M
H,o

=
[

jk0a
τ

Kn
′(τa) nkz

τ 2 Kn(τa)

0 Kn(τa)

]
. (A6)

To easily substitute these relations into the boundary con-
ditions, we represent the r̂× operation that would be needed
in Eqs. (1) and (2) using a 2 × 2 matrix r̂ × Vtan = N

r
Vtan,

where Vtan is any tangential column vector of the form Vtan =
[Vϕ,Vz]T , and N

r
= (0 −1

1 0).
We also define the unitless response matrices X

s
, X

ms
,

Y
s
= jX

s
/η0, Z

ms
= jX

ms
η0. (A7)

To express the boundary conditions over the rotated and
folded cylindrical sheath, we rotate each of the fields by the
angle −θ with respect to ẑ, and then rotate the result back by
θ to the lab frame. This results in rotated response matrices
of the form m

s
= Rθmp

s
R−θ , where m

s
is any of the tensors

defined in the constitutive relations in Eqs. (1) and (2), mp
s

are the response matrices of the principal planar surface (in
axes z′, y′ as defined in the main text), and Rθ is the two-
dimensional rotation matrix by angle θ . By substituting these
into the boundary conditions in Eqs. (1) and (2) we obtain

MC =
⎡
⎣ 1

2 X
s
M

E ,i
+ (

1
2 a + N

r

)
M

H,i
1
2 X

s
M

E ,o
+ (

1
2 a − N

r

)
M

H,o(
1
2 b − N

r

)
M

E ,i
+ 1

2 X
ms

M
H,i

(
1
2 b + N

r

)
M

E ,o
+ 1

2 X
ms

M
H,o

⎤
⎦[

Ci

Co

]
= 0. (A8)

For a nontrivial solution to exist, we need Det{M} = 0, providing the dispersion equation for propagating waves.

APPENDIX B: CALCULATION OF THE HELICITY

We use the helicity density S definition from [35,46], which reads for our case

S = 1

2ω
Im{H∗ · E}. (B1)

In addition, for all cases examined in the main text, the relation between the TE and TM components can be characterized by

η0Bi,o
n = jζi,oAi,o

n (B2)

with ζ ∈ R being a unitless proportionality constant, and Bi,o
n , Ai,o

n defined in Eq. (3). This lets us write the helicity density of the
guided fields as

Si = −
∣∣Ai

n

∣∣2

2ωτ̄ 4

[
ζiI

2
n (τ̄ )

[
τ̄ 4 + n2

(
k̄2

z + ā2
)] + ζiI

′2
n (τ̄ )τ̄ 2

(
k̄2

z + ā2
) + 2InI ′

nnk̄2
z τ̄ ā

(
1 + ζ 2

i

)]
,

(B3)

So = −
∣∣Ao

n

∣∣2

2ωτ̄ 4

[
ζiK

2
n (τ̄ )

[
τ̄ 4 + n2

(
k̄2

z + ā2
)] + ζiK

′2
n (τ̄ )τ̄ 2

(
k̄2

z + ā2
) + 2KnK ′

nnk̄2
z τ̄ ā

(
1 + ζ 2

i

)]
with k̄z = kza , τ̄ = τa , ā = k0a. In our work we study the highly confined waves, with large wave numbers, letting us simplify
this expression significantly,

Si
∞ = −

∣∣Ai
n

∣∣2
ζi

2ω

[
I2
n (τ̄ ) + I ′2

n (τ̄ )
]
, So

∞ = −
∣∣Ai

n

∣∣2
ζi

2ω

[
K2

n (τ̄ ) + K ′2
n (τ̄ )

]
, (B4)

based on large-argument approximations of the modified Bessel functions [50], where we used the symbol S∞ = S(β � k0).
This result is valid as long as ζ is not strongly dependent on β̄, which is indeed the case in all of the systems examined. It is
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important to note that for any value of τ̄ the expressions in the square brackets are positive, therefore, the sign of the helicity
density is determined solely by the sign of ζ , and satisfies

sgn
(
Si,o

∞
) = −sgn(ζ i,o). (B5)

[1] S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar,
and C. R. Simovski, Phys. Rep. 634, 1 (2016).

[2] S. Tretyakov, Analytical Modeling in Applied Electromagnetics
(Artech House, Boston, London, 2003).

[3] H. J. Bilow, IEEE Trans. Antennas Propag. 51, 2788 (2003).
[4] C. L. Holloway, D. C. Love, E. F. Kuester, J. A. Gordon, and

D. A. Hill, IEEE Trans. Antennas Propag. 60, 5173 (2012).
[5] C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J.

Booth, and D. R. Smith, IEEE Antennas Propag. Mag. 54, 10
(2012).

[6] I. V Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J.
Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic
Media (Artech House, Boston, London, 1994).

[7] C. Pfeiffer and A. Grbic, Phys. Rev. Lett. 110, 197401 (2013).
[8] K. Achouri, M. A. Salem, and C. Caloz, IEEE Trans. Antennas

Propag. 63, 2977 (2015).
[9] A. Epstein and G. V. Eleftheriades, IEEE Trans. Antennas

Propag. 64, 3880 (2016).
[10] J. S. Gomez-Diaz, M. Tymchenko, and A. Alù, Phys. Rev. Lett.

114, 233901 (2015).
[11] J. S. Gomez-Diaz, M. Tymchenko, and A. Alù, Opt. Mater.

Express 5, 2313 (2015).
[12] J. S. Gomez-Diaz and A. Alù, ACS Photon. 3, 2211 (2016).
[13] O. Y. Yermakov, A. I. Ovcharenko, M. Song, A. A. Bogdanov,

I. V. Iorsh, and Y. S. Kivshar, Phys. Rev. B 91, 235423
(2015).

[14] D. R. Smith and D. Schurig, Phys. Rev. Lett. 90, 077405 (2003).
[15] A. Sommerfeld, Ann. Phys. 303, 233 (1899).
[16] G. Goubau, J. Appl. Phys. 21, 1119 (1950).
[17] I. A. Kotelnikov and G. V. Stupakov, Phys. Lett. A 379, 1187

(2015).
[18] H. Barlow, IRE Trans. Antennas Propag. 7, 147 (1959).
[19] R. S. Elliott, J. Appl. Phys. 26, 368 (1955).
[20] J. A. Stratton, Electromagnetic Theory (McGraw-Hill,

New York, 1941).
[21] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P.

Woerdman, Phys. Rev. A 45, 8185 (1992).
[22] M. J. Padgett, Opt. Express 25, 11265 (2017).
[23] J. R. Pierce and P. K. Tien, Proc. IRE 42, 1389 (1954).
[24] D. A. Watkins, Topics in Electromagnetic Theory (John Wiley

& Sons, New York, 1958).
[25] G. Y. Slepyan, S. A. Maksimenko, A. Lakhtakia, O. M.

Yevtushenko, and A. V. Gusakov, Phys. Rev. B 57, 9485 (1998).
[26] G. Ya. Slepyan, S. A. Maksimenko, A. Lakhtakia, O.

Yevtushenko, and A. V. Gusakov, Phys. Rev. B 60, 17136
(1999).

[27] P. Y. Chen and A. Alù, Phys. Rev. B 84, 205110 (2011).
[28] T. Bian, X. Gao, S. Yu, L. Jiang, J. Lu, and P. T. Leung, Optik

(Stuttg). 136, 215 (2017).

[29] T. Christensen, A. P. Jauho, M. Wubs, and N. A. Mortensen,
Phys. Rev. B 91, 125414 (2015).

[30] A. Sihvola, D. C. Tzarouchis, P. Ylä-Oijala, H. Wallén, and
B. Kong, Phys. Rev. B 98, 235417 (2018).

[31] R. Ruppin, J. Phys.: Condens. Matter 16, 5991 (2004).
[32] V. Kuzmiak and A. A. Maradudin, Phys. Rev. B 66, 045116

(2002).
[33] M. Safari, A. Abdolali, H. Kazemi, M. Albooyeh, M. Veysi,

and F. Capolino, in 2017 IEEE International Symposium on
Antennas and Propagation & USNC/URSI National Radio
Science Meeting (IEEE, Piscataway, NJ, 2017), pp. 1499–1500.

[34] L. Wang, S. Li, B. Zhang, Y. Qin, Z. Tian, Y. Fang, Y. Li, Z.
Liu, and Y. Mei, ACS Appl. Mater. Interfaces 10, 7704 (2018).

[35] F. Alpeggiani, K. Y. Bliokh, F. Nori, and L. Kuipers, Phys. Rev.
Lett. 120, 243605 (2018).

[36] K. F. Mak, K. He, J. Shan, and T. F. Heinz, Nat. Nanotechnol.
7, 494 (2012).

[37] C. Pfeiffer and A. Grbic, Phys. Rev. Appl. 2, 044011 (2014).
[38] J. A. Kong, Proc. IEEE 60, 1036 (1972).
[39] D. M. Pozar, Microwave Engineering, 4th ed. (John Wiley,

Hoboken, NJ, 2012).
[40] L. Sun, C. Y. Wang, A. Krasnok, J. Choi, J. Shi, J. S. Gomez-

Diaz, A. Zepeda, S. Gwo, C. K. Shih, A. Alù, and X. Li,
Nat. Photon. 13, 180 (2019).

[41] A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian,
A. H. MacDonald, and G. Shvets, Nat. Mater. 12, 233 (2013).

[42] P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S.
Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S.
Kivshar, G. A. Wurtz, and A. V. Zayats, Nat. Commun. 5, 3226
(2014).

[43] R. E. Collin, Field Theory of Guided Waves (Oxford University
Press, Oxford, 1995).

[44] COMSOL Multiphysics® v. 5.4. www.comsol.com, COMSOL
AB, Stockholm, Sweden.

[45] This was calculated by sampling the electric field on a circle
around the cylidner, halfway between the sources and the right
edge. the result was then fourier transformed to obtain the
modal content.

[46] K. Y. Bliokh, Y. S. Kivshar, and F. Nori, Phys. Rev. Lett. 113,
033601 (2014).

[47] J. A. Kong, Electromagnetic Wave Theory (EMW, Cambridge,
MA, 2005).

[48] A. Krasnok, S. Lepeshov, and A. Alú, Opt. Express 26, 15972
(2018).

[49] J. R. Schaibley, H. Yu, G. Clark, P. Rivera, J. S. Ross, K. L.
Seyler, W. Yao, and X. Xu, Nat. Rev. Mater. 1, 16055 (2016).

[50] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W.
Clark, NIST Handbook of Mathematical Functions (Cambridge
University Press, Cambridge, 2010).

155425-7

https://doi.org/10.1016/j.physrep.2016.04.004
https://doi.org/10.1016/j.physrep.2016.04.004
https://doi.org/10.1016/j.physrep.2016.04.004
https://doi.org/10.1016/j.physrep.2016.04.004
https://doi.org/10.1109/TAP.2003.817568
https://doi.org/10.1109/TAP.2003.817568
https://doi.org/10.1109/TAP.2003.817568
https://doi.org/10.1109/TAP.2003.817568
https://doi.org/10.1109/TAP.2012.2207668
https://doi.org/10.1109/TAP.2012.2207668
https://doi.org/10.1109/TAP.2012.2207668
https://doi.org/10.1109/TAP.2012.2207668
https://doi.org/10.1109/MAP.2012.6230714
https://doi.org/10.1109/MAP.2012.6230714
https://doi.org/10.1109/MAP.2012.6230714
https://doi.org/10.1109/MAP.2012.6230714
https://doi.org/10.1103/PhysRevLett.110.197401
https://doi.org/10.1103/PhysRevLett.110.197401
https://doi.org/10.1103/PhysRevLett.110.197401
https://doi.org/10.1103/PhysRevLett.110.197401
https://doi.org/10.1109/TAP.2015.2423700
https://doi.org/10.1109/TAP.2015.2423700
https://doi.org/10.1109/TAP.2015.2423700
https://doi.org/10.1109/TAP.2015.2423700
https://doi.org/10.1109/TAP.2016.2588495
https://doi.org/10.1109/TAP.2016.2588495
https://doi.org/10.1109/TAP.2016.2588495
https://doi.org/10.1109/TAP.2016.2588495
https://doi.org/10.1103/PhysRevLett.114.233901
https://doi.org/10.1103/PhysRevLett.114.233901
https://doi.org/10.1103/PhysRevLett.114.233901
https://doi.org/10.1103/PhysRevLett.114.233901
https://doi.org/10.1364/OME.5.002313
https://doi.org/10.1364/OME.5.002313
https://doi.org/10.1364/OME.5.002313
https://doi.org/10.1364/OME.5.002313
https://doi.org/10.1021/acsphotonics.6b00645
https://doi.org/10.1021/acsphotonics.6b00645
https://doi.org/10.1021/acsphotonics.6b00645
https://doi.org/10.1021/acsphotonics.6b00645
https://doi.org/10.1103/PhysRevB.91.235423
https://doi.org/10.1103/PhysRevB.91.235423
https://doi.org/10.1103/PhysRevB.91.235423
https://doi.org/10.1103/PhysRevB.91.235423
https://doi.org/10.1103/PhysRevLett.90.077405
https://doi.org/10.1103/PhysRevLett.90.077405
https://doi.org/10.1103/PhysRevLett.90.077405
https://doi.org/10.1103/PhysRevLett.90.077405
https://doi.org/10.1002/andp.18993030202
https://doi.org/10.1002/andp.18993030202
https://doi.org/10.1002/andp.18993030202
https://doi.org/10.1002/andp.18993030202
https://doi.org/10.1063/1.1699553
https://doi.org/10.1063/1.1699553
https://doi.org/10.1063/1.1699553
https://doi.org/10.1063/1.1699553
https://doi.org/10.1016/j.physleta.2015.02.013
https://doi.org/10.1016/j.physleta.2015.02.013
https://doi.org/10.1016/j.physleta.2015.02.013
https://doi.org/10.1016/j.physleta.2015.02.013
https://doi.org/10.1109/TAP.1959.1144741
https://doi.org/10.1109/TAP.1959.1144741
https://doi.org/10.1109/TAP.1959.1144741
https://doi.org/10.1109/TAP.1959.1144741
https://doi.org/10.1063/1.1722000
https://doi.org/10.1063/1.1722000
https://doi.org/10.1063/1.1722000
https://doi.org/10.1063/1.1722000
https://doi.org/10.1103/PhysRevA.45.8185
https://doi.org/10.1103/PhysRevA.45.8185
https://doi.org/10.1103/PhysRevA.45.8185
https://doi.org/10.1103/PhysRevA.45.8185
https://doi.org/10.1364/OE.25.011265
https://doi.org/10.1364/OE.25.011265
https://doi.org/10.1364/OE.25.011265
https://doi.org/10.1364/OE.25.011265
https://doi.org/10.1109/JRPROC.1954.274571
https://doi.org/10.1109/JRPROC.1954.274571
https://doi.org/10.1109/JRPROC.1954.274571
https://doi.org/10.1109/JRPROC.1954.274571
https://doi.org/10.1103/PhysRevB.57.9485
https://doi.org/10.1103/PhysRevB.57.9485
https://doi.org/10.1103/PhysRevB.57.9485
https://doi.org/10.1103/PhysRevB.57.9485
https://doi.org/10.1103/PhysRevB.60.17136
https://doi.org/10.1103/PhysRevB.60.17136
https://doi.org/10.1103/PhysRevB.60.17136
https://doi.org/10.1103/PhysRevB.60.17136
https://doi.org/10.1103/PhysRevB.84.205110
https://doi.org/10.1103/PhysRevB.84.205110
https://doi.org/10.1103/PhysRevB.84.205110
https://doi.org/10.1103/PhysRevB.84.205110
https://doi.org/10.1016/j.ijleo.2017.02.044
https://doi.org/10.1016/j.ijleo.2017.02.044
https://doi.org/10.1016/j.ijleo.2017.02.044
https://doi.org/10.1016/j.ijleo.2017.02.044
https://doi.org/10.1103/PhysRevB.91.125414
https://doi.org/10.1103/PhysRevB.91.125414
https://doi.org/10.1103/PhysRevB.91.125414
https://doi.org/10.1103/PhysRevB.91.125414
https://doi.org/10.1103/PhysRevB.98.235417
https://doi.org/10.1103/PhysRevB.98.235417
https://doi.org/10.1103/PhysRevB.98.235417
https://doi.org/10.1103/PhysRevB.98.235417
https://doi.org/10.1088/0953-8984/16/34/001
https://doi.org/10.1088/0953-8984/16/34/001
https://doi.org/10.1088/0953-8984/16/34/001
https://doi.org/10.1088/0953-8984/16/34/001
https://doi.org/10.1103/PhysRevB.66.045116
https://doi.org/10.1103/PhysRevB.66.045116
https://doi.org/10.1103/PhysRevB.66.045116
https://doi.org/10.1103/PhysRevB.66.045116
https://doi.org/10.1021/acsami.7b19721
https://doi.org/10.1021/acsami.7b19721
https://doi.org/10.1021/acsami.7b19721
https://doi.org/10.1021/acsami.7b19721
https://doi.org/10.1103/PhysRevLett.120.243605
https://doi.org/10.1103/PhysRevLett.120.243605
https://doi.org/10.1103/PhysRevLett.120.243605
https://doi.org/10.1103/PhysRevLett.120.243605
https://doi.org/10.1038/nnano.2012.96
https://doi.org/10.1038/nnano.2012.96
https://doi.org/10.1038/nnano.2012.96
https://doi.org/10.1038/nnano.2012.96
https://doi.org/10.1103/PhysRevApplied.2.044011
https://doi.org/10.1103/PhysRevApplied.2.044011
https://doi.org/10.1103/PhysRevApplied.2.044011
https://doi.org/10.1103/PhysRevApplied.2.044011
https://doi.org/10.1109/PROC.1972.8851
https://doi.org/10.1109/PROC.1972.8851
https://doi.org/10.1109/PROC.1972.8851
https://doi.org/10.1109/PROC.1972.8851
https://doi.org/10.1038/s41566-019-0348-z
https://doi.org/10.1038/s41566-019-0348-z
https://doi.org/10.1038/s41566-019-0348-z
https://doi.org/10.1038/s41566-019-0348-z
https://doi.org/10.1038/nmat3520
https://doi.org/10.1038/nmat3520
https://doi.org/10.1038/nmat3520
https://doi.org/10.1038/nmat3520
https://doi.org/10.1038/ncomms4226
https://doi.org/10.1038/ncomms4226
https://doi.org/10.1038/ncomms4226
https://doi.org/10.1038/ncomms4226
http://www.comsol.com
https://doi.org/10.1103/PhysRevLett.113.033601
https://doi.org/10.1103/PhysRevLett.113.033601
https://doi.org/10.1103/PhysRevLett.113.033601
https://doi.org/10.1103/PhysRevLett.113.033601
https://doi.org/10.1364/OE.26.015972
https://doi.org/10.1364/OE.26.015972
https://doi.org/10.1364/OE.26.015972
https://doi.org/10.1364/OE.26.015972
https://doi.org/10.1038/natrevmats.2016.55
https://doi.org/10.1038/natrevmats.2016.55
https://doi.org/10.1038/natrevmats.2016.55
https://doi.org/10.1038/natrevmats.2016.55

