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Edge modes and Fabry-Perot plasmonic resonances in anomalous-Hall thin films
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We study plasmon propagation on a metallic two-dimensional surface partially coated with a thin film of
anomalous-Hall material. The resulting three regions, separated by two sharp interfaces, are characterized by
different Hall conductivities but identical normal conductivities. A single bound mode is found, which can
localize to either interface and has an asymmetric potential profile across the region. For propagating modes,
we calculate the reflection and transmission coefficients through the magnetic region. We find Airy transmission
patterns with sharp maxima and minima as a function of the plasmon incidence angle. The system therefore
behaves as a high-quality filter.
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I. INTRODUCTION

Much theoretical [1–8] and experimental [9–21] work
of recent years has highlighted the potential of graphene’s
two-dimensional (2D) surface plasmon polaritons in next-
generation transistors, emitters, and detectors. Their extraor-
dinary properties include, but are not limited to, small con-
finement scales at high field [12,20], long lifetimes, and
low losses [11,19], and gate tunability of the propagation
wavelength [4,22].

Plasmons are high-frequency, electronic density waves that
occur at frequencies at which the metal dielectric function
vanishes. The long lifetimes of plasmons at small momenta
stem from their inability, without the aid of impurities and
phonons [6,7,23], to excite single-electron-hole pairs. On the
other hand, their small confinement scales are due to their
weak self-interaction, which suppresses any incoherence-
causing diffraction [24]. Surface plasmons are exponentially
localized to interfaces between a metal and a dielectric (or the
vacuum).

Provided that the surface in question is capable of hosting
metallic conducting electronic states, plasmonic oscillations
may be supported. Such systems include the 2D surface of
a general 3D topological insulator [25–33]. In such cases,
the low-energy electronic states possess linear dispersions
and behave as massless Dirac fermions. When time reversal
symmetry is broken by, e.g., a local magnetization [28,34]
or a magnetic field [34–37], then gaps open in the surface
band structure. As a result, when the Fermi energy is tuned to
reside in such a magnetization gap, electrons are characterized
by a finite, frequency independent Hall conductance, in units
of e2/h [34,38], where e and h are the electronic charge
and Planck’s constant, respectively. The Hall conductivity
decreases, and eventually vanishes, when the Fermi energy
is pushed far away from the middle of the magnetization gap,
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in either the conduction or valence band. Regardless, all of
these situations have the effect of causing the emergence of a
frequency independent Hall conductance of the order of e2/h.
A similar phenomenon occurs in spin-orbit coupled metallic
thin films in the presence of a finite magnetization or magnetic
disorder [39].

In this paper, we investigate a “2D thin-film geometry,”
whereby a narrow region of a 2D metallic surface exhibits
a finite Hall conductivity (due to, e.g., a local nonvanishing
magnetization)—see Fig. 1. The interfaces separating the
three regions are assumed to be sharp relative to the plas-
mon wavelength so that boundary effects may be ignored.
Furthermore, the conductivity is assumed to be local so that
it does not depend on the plasmon wave vector. Finally,
it is assumed to be isotropic so that the conductivity ten-
sor may be decomposed into a normal diagonal part and
an antisymmetric, off-diagonal Hall part. By allowing for
these approximations, we are implicitly assuming that the
inverse of the plasmon wave vector is much larger than both
the magnetic thin-film size and the domain-wall length. (In
passing, we note that the impact of sharp variations of the
(valley-) Hall conductivity, at domain walls between AB and
BA regions, on the plasmons of bilayer graphene has been
studied in Ref. [40].)

The frequency-independent off-diagonal Hall conductivity
therefore varies stepwise between the three regions. Con-
versely, we assume that the normal frequency-dependent con-
ductivity is spatially independent, i.e., it assumes the same
value across the magnetized thin film. This approximation
is justified by the fact that the normal conductivity is much
less sensitive to variations of the magnetization whereas the
Hall conductivity, under the same conditions, jumps from zero
to a finite value. Although simplified, this model captures
the fundamental physics of the problem and lends well to
experimental testing. There, the typical plasmon wavelength
is of the order of 2π/qp ∼ 100 nm [11].

The paper is organized into four parts. First, a semi-
classical model for plasmon propagation is derived. Second,
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FIG. 1. A diagram of the system under consideration. The central
region B of width d is the thin 2D magnetic film. It is bounded on
both sides by sharp interfaces and is characterized by a Hall conduc-
tance of σH,B, while in the other two regions the Hall conductance is
σH,A. The ŷ direction is assumed to extend uniformly to ±∞ and the
x̂ direction to −∞ for x < 0 and +∞ for x > d with the thin film
located at 0 � x � d . (Note that, due to the mirror symmetry of the
problem in x, this configuration is identical to any other so long as
xR − xL = d .) Finally, the dielectric environment is assumed uniform
and equivalent to air such that ε1 = ε2 = 1.

the dispersions, lifetimes, and potential profiles of bound
interface states, which exist within the thin-film region and
are exponentially localized at the interfaces, are found. Plots
of these quantities with varying interface separation and
wave vector parallel to the interfaces are then shown and
discussed.

Thirdly, de-localized states propagating through the thin
film are investigated. Their frequency is given by the clas-
sical 2D plasmon frequency ωp(qp) and are assumed to
be undamped. The reflection and transmission coefficients
that characterize the region are found and are used to plot
transmittance spectra for varying region thickness and Hall
conductance of the thin film. Finally, typical experimental
conditions along with any potential applications and possible
extensions are discussed.

II. THE SEMICLASSICAL MODEL

To highlight the fundamental physics at play, and without
the pretense of describing a particular experimental realization
of the setup, we consider the simplest possible model: a
conducting 2D surface of helical massless Dirac fermions. In
addition, the dielectric environment is assumed to be air. In the
magnetized strip, 0 < x < d , Dirac fermions acquire a finite
mass and the Hall conductivity becomes nonzero. The system
is assumed isotropic in the ŷ direction. Such a description
applies, e.g., to electrons at the surface of a thick 3D topolog-
ical insulator [25] (such that its surfaces are electrostatically
decoupled), once the correct dielectric environment is taken
into account. It can also qualitatively describe plasmons in
spin-orbit coupled metallic thin films [39].

Surface-state electrons are described with a continuum
massless-Dirac-fermion model. We assume the system to be n
doped with a surface carrier density n, which defines a Fermi
wave vector and energy kF = √

4πn/Nf and εF = h̄vFkF, re-
spectively. Here Nf is the number of fermion flavors and vF is
the density-independent Fermi velocity.

We employ a continuum semiclassical description,
whereby the electronic flow is modelled by collective prop-
erties, i.e., the deviation of the charge density from its equilib-
rium value ρ(r, t ) and the charge current j(r, t ). The two are

connected by the continuity equation:

−iω̃ρ(r, ω̃) + ∇ · j(r, ω̃) = 0, (1)

whereas the response of the charge current to the (self-
induced) electric field obeys the linear-response Ohm’s law:

ji(r, ω̃) = σi j (r, ω̃)Ej (r, z = 0, ω̃). (2)

Here Einstein’s summation convention for Roman indices
(standing for in-plane Cartesian components) is understood,
and the local conductivity σi j (r, ω̃) is determined micro-
scopically. In Eqs. (1) and (2), ρ(r, ω̃), ji(r, ω̃), σi j (r, ω̃),
and Ej (r, z = 0, ω̃) are the Fourier components in complex
frequency space, ω̃ = ω + i/τ with τ = 1/	, of the charge
density, current, conductivity, and electric field, respectively,
and r = xx̂ + yŷ.

We assume the system to be locally isotropic. Therefore:

σi j (r, ω̃) ≡ σ (x, ω̃)δi j + σH(x, ω̃)εi j, (3)

where δi j and εi j are the Kronecker-delta and 2D antisymmet-
ric Levi-Civita symbols, respectively. To simplify the further
analysis, we assume σ (x, ω̃) to be spatially independent,
whereas the Hall component σH(x, ω̃) varies stepwise across
the interfaces:

σH(x, ω̃) = σH,A[θ (x − d ) + θ (−x)] + σH,Bθ (d − x)θ (x).

(4)

Hereafter we assume σH,A and σH,B to be frequency indepen-
dent and the interfaces to be infinitely sharp. This approxima-
tion is valid as long as the typical wavelengths of the problem
are much longer than the length scales of the interface. For the
sake of definitiveness, we write:

σ (ω̃) = iD
ω̃ + iγ

, (5)

where D is the Drude weight and γ = 1/τsc is the scattering
rate of the underlying electronic carriers.

The problem as defined by the constitutive relations (1)–
(4) is solved together with the self-induced 3D Poisson’s
equation:

∇2φ(r, z, ω̃) = −4πρ(r, ω̃)δ(z). (6)

Note that, while electrons are bounded to the 2D surface, the
electric potential extends to the whole 3D space. To determine
the plasmons of the heterostructure, we assume that no exter-
nal electric field is applied and that E(r, z, t ) = −∇φ(r, z, t ).
Since the system is assumed to be translationally invariant
in the ŷ direction, all quantities may be expanded in Fourier
components along ŷ, e.g.: ρ(r, ω̃) = ρ(x, ω̃)eiqyy. Thus the
problem reduces to that of a 1D well/barrier.

Solving the Poisson’s equation given by Eq. (6) and taking
the Fourier transform of the solution we achieve [41]:

φ̂(qx ) = L(q)ρ̂(qx ), (7)

where q = [q2
x + q2

y ]1/2. In the present case, we consider
a solitary two-dimensional surface. As such, the general
Coulomb potential at the ε1/3 − ε2 surface of a general insu-
lator of thickness a reduces, upon the reasonable assumption
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that qa � 1, as follows [42]:

L(q) = 4πε2[cosh(qa) + (ε1/3/ε2) sinh(qa)]

q
[
ε2(ε1 + ε3) cosh(qa) + (

ε1ε3 + ε2
2

)
sinh(qa)

]
≈ 4π

(ε1 + ε2)q
= 2π

q
, (8)

since the dielectric environment is assumed to be air so that
ε1 = ε2 = ε3 = 1. As such, we expect to find only a single
mode rather than two as found elsewhere [42]. It must be
noted here, however, that if the system were a Bismuth based
topological insulator this assumption would not hold: Their
dielectric constants can be orders of magnitude greater than
one [43].

Fourier transforming Eq. (1), and using Eqs. (2), (3),
and (4), we achieve:

ρ̂(qx ) = −iσ (ω̃)

ω̃
q2φ̂(qx ) − δσHqy

ω̃
[φ(0) − φ(d )e−iqxd ], (9)

where:

σH = σH,B − σH,A = ν
e2

2π h̄
, (10)

with ν as a parameter that characterizes the difference
between the Hall conductivities of each region. Note that ν can
take either positive or negative values depending on whether
the Hall conductivity varies as a well (ν < 0) or as a barrier
(ν > 0).

Combining Eqs. (7) and (9) gives a self-consistent relation
for the potential in momentum space:

ε(q, ω̃)φ̂(qx ) = −δσHqy

ω̃
L(q)[φ(0) − φ(d )e−iqxd ], (11)

where

ε(q, ω̃) = 1 + iσ (ω̃)

ω̃
q2L(q) = 1 − q

Q(ω̃)
(12)

is the dielectric function of the homogeneous surface in the
absence of the magnetized strip. ε(q, ω̃) clearly has a zero at:

q = Q(ω̃) ≡ ω̃

2πD (ω̃ + iγ ) = ω

2πD [ω + i(γ + 2	)], (13)

where ω̃ = ω + i	 has been used and any quadratic decay
terms are assumed negligible since ω � γ , 	. We denote,
from this point on, the real part of Q(ω) with qp(ω) =
ω2/(2πD), which is the bulk plasmon wave vector. Bound
interface plasmons exist for frequencies such that |qy| >

qp(ω) whilst propagating solutions for |qy| � qp(ω), which
we hereafter name the “continuum region.”

III. BOUNDED INTERFACE STATES

We start by determining the dispersion and field distribu-
tion of interface-localized plasmons, which occur for wave
vectors |qy| > qp(ω), i.e., to the right and below the bulk
plasmon continuum. These modes are exponentially local-
ized around the interfaces in a region of size ξ−1 = [q2

y −
q2

p(ω)]−1/2. At these frequencies, ε(q, ω̃) 	= 0. We are thus
free to divide Eq. (11) by the dielectric function and inverse
Fourier transform it back into coordinate space. We therefore

obtain:

φ(x) = −δσHqy

ω̃
[I (x, qy, ω̃)φ(0) − I (x − d, qy, ω̃)φ(d )],

(14)

where:

I (x, qy, ω̃) = P
∫ +∞

−∞

dqx

2π

L(q)

ε(q, ω̃)
eiqxx. (15)

To determine the bound states we impose that the potential
is continuous at the interfaces. By evaluating Eq. (14) at x = 0
and x = d we thus arrive at the following matrix equation:(

1 + KI (0, qy, ω̃) −KI (d, qy, ω̃)
KI (d, qy, ω̃) 1 − KI (0, qy, ω̃)

)(
φ(0)
φ(d )

)
= 0,

(16)

where:

K = δσHqy

ω̃
. (17)

Note that we have used I (d, qy, ω̃) = I (−d, qy, ω̃), a relation
to be shown subsequently.

Nontrivial solutions of the matrix equation (16) are found
whenever its determinant is zero. This yields the following
transcendental equation:

ω̃2 − δσ 2
Hq2

y [I2(0, qy, ω̃) − I2(d, qy, ω̃)] = 0, (18)

which, ultimately, may only be solved numerically in order to
determine the plasmon dispersion relation.

Due to the complex-valued nature of both the frequency
and the conductivity, the integral in Eq. (15) may be decom-
posed into real and imaginary parts, based on the assumption
that any term quadratic in the scattering rates γ and 	 vanishes
since ω � γ , 	, as:

I (x, qy, ω, 	) = I (x, qy, ω) − iω(γ + 2	)J (x, qy, ω). (19)

Then, using this decomposition with ω̃ = ω + i	 within
Eq. (18), two simultaneous equations for ω and 	 may be
found. The numerical solution of the first yields ω with which
the second may be solved (also numerically) for 	, as shall be
seen.

Furthermore, the I and J integrals may be evaluated using
contour integration. Due to the oscillatory Fourier exponential
in the integrals, the contours are closed in the upper (lower)
half of the complex plane when x > 0 (x < 0). In doing so,
it becomes apparent that when |qy| < qp(ω) there exist poles
at qx = ±iq0, where q2

0(ω) = q2
y − q2

p(ω) ≡ ξ−2, and branch
cuts along the imaginary axis from ±iqy to ±i∞. On the other
hand, when |qy| > qp(ω) the poles exist upon the real axis
at qx = ±k0, where k2

0 (ω) = −q2
0(ω) = q2

p(ω) − q2
y , while the

branch cuts remain unchanged.
Once this is all taken into account we find:

ω2 − δσ 2
Hq2

y [I2(0, qy, ω) − I2(d, qy, ω)] = 0, (20)

	 + δσ 2
Hq2

y (γ + 2	)[I (0, qy, ω)J (0, qy, ω)

−I (d, qy, ω)J (d, qy, ω)] = 0, (21)
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where:

{I/J }(x, qy, ω) = {I/J }P(x, qy, ω) + {I/J }B(x, qy, ω),

(22)

with the first terms as the contributions from the poles, which
are given by:

IP(x, qy, ω) =

⎧⎪⎪⎨
⎪⎪⎩

−2π
qp(ω)

q0(ω)
e−q0(ω)|x|, for |qy| > qp(ω),

2π
qp(ω)

k0(ω)
sin[k0(ω)|x|], for |qy| � qp(ω),

(23)

JP(x, qy, ω) = 2π

(
q2

y

q3
0(ω)

+ q2
p(ω)|x|
q2

0(ω)

)
e−q0(ω)|x|, (24)

and the second terms as the contributions from the branch
cuts, which are given by:

IB(x, qy, ω) = 2q2
p(ω)

∫ ∞

0
dη

e−|qyx| cosh(η)

q2
p(ω) + q2

y sinh2(η)
, (25)

JB(x, qy, ω) = 4qp(ω)q2
y

∫ ∞

0
dη

e−|qyx| cosh(η) sinh2(η)[
q2

p(ω) + q2
y sinh2(η)

]2 .

(26)

Note that Eqs. (22)–(26) depend on, etc the absolute value
of x. This is due to the fact that, for x < 0, one closes
the contour in the lower half of the complex plane and
finds an identical result. This therefore proves the relation
I (x, qy, ω̃) = I (−x, qy, ω̃), which was used earlier.

From Eq. (22) it can be seen that the contribution of the
poles is exponentially localized around x with characteristic
length ξ . On the other hand, the branch cut contributions are
superpositions of evanescent waves caused by the nonlocality
of the Coulomb interaction that acts as a transient decay
around the interfaces. As such, the behavior of the plasmonic
field is extremely complicated in the immediate vicinity of the
interface. For |qy| → ∞ equation (18) simplifies and can be
solved analytically yielding:

ω∞ = D
|δσH| , (27)

while in the limit of small qy, the plasmon tends to the
continuum region and so |qy| → qp.

The normalized eigenvectors of Eq. (16), corresponding to
the positive frequencies (negative frequencies are simply plas-
mons moving backwards in time) as obtained from Eq. (18),
are: (

φ(0)
φ(d )

)
= Nc

(
1 − KI (0, qy, ω)
−KI (d, qy, ω)

)
, (28)

where Nc = [(1 − KI (0, qy, ω, 	))2 + K2I2(d, qy, ω, 	)]−
1
2 .

Using Eq. (28) in Eq. (14) allows for solution of the spatially
dependent potential relation as:

φ(x) = [KI (0) − 1]I (x) − KI (d )I (x − d )√
[I (0) − K−1]2 + I2(d )

, (29)

where the qy, ω, and 	 dependencies of I (x, qy, ω, 	) have
been dropped for brevity. Note that K = δσHqy/(ω + i	).

Although not immediately obvious, this shows that, de-
pending on the combined sign of δσHqy, the plasmon will not
only prefer to localise to a specific interface but also do so less
strongly if this sign is negative. It is in fact the K terms in the
numerator that cause this behaviour since I (x) depends on |qy|
and q2

y only.
In the figures and results to come, we adimensionalize the

variables using the linear Dirac dispersion of the electronic
system εF = h̄vFkF where kF = √

4πn and mvF = h̄kF. Note
that we set the number of fermion flavors NF = 1, which is
equivalent to measuring kF in units of

√
NF . In addition, α∗ =

e2/(h̄vF ) (in CGS units) is the fine-structure constant of said
Dirac system. In these units the factor 2πD may be expressed
as 2πD = α∗ε2

F/(2h̄2kF) and so:

Q(ω̃) = Q(ω + i	)

kF
= 2h̄2

α∗ε2
F

[ω2 + iω(γ + 2	)]. (30)

Furthermore, the change in Hall conductivity may be
expressed as: δσH = να∗εF/(2π h̄kF), in these units. We
take α∗ ≈ 4 as a typical value for a 2D Dirac surface
state of a 3D-TI [44,45]. On the other hand, α∗ ≈ 2 in
graphene [46].

Figure 2(a) shows the energy dispersion h̄ω in units of εF,
calculated by numerically solving Eq. (18), as a function of
the momentum qy along the interface (in units of kF). Note
that Eq. (18) has only one undamped solution that exists
outside the continuum. Its key feature, compared to the single-
interface case, is the appearance of a peak whose position in
qyk−1

F and height in h̄ωε−1
F depends on both d and ν.

In Fig. 2(a) we plot two curves, for dkF = 1 and dkF =
2, which show that the position in qy and the magnitude of
the peak increase with decreasing interface separation. This is
due to the fact that, at long wavelengths, a small region, with
respect to the plasmon wavelength, will have no effect on it. In
this case, the bound mode tracks the continuum region closely
and resembles a propagating state due to its poor localization.

It must be noted, however, that for |ν| < 2 and dkF > 2
the peak loses prominence. Though it remains, since there is
also a minuscule peak in the single interface case, it is much
suppressed.

Due to the appearance of this peak in the dispersion curve,
the group velocity of an interface plasmon would be not only
zero at this maximal point but also negative at any point there-
after and very slow for points qy ≈ qc

y. Similar phenomena
have been observed in standard metallic thin films [47].

Such a plasmon wave packet with negative group velocity
would then propagate backwards against its initial momentum
direction [48]. However, due to its shorter wavelength and
thus closer proximity to the electron-hole continuum, it would
likely decay at a quicker rate than wave packets of longer
wavelengths.

Furthermore, if one were to generate a plasmon wave
packet of a single frequency with constituent waves of mo-
menta (say) q1 and q2 (before and after the peak, respectively)
then it would exhibit a beating effect due to the constructive
and destructive interference of these constituent waves within
the wave packet.
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FIG. 2. (a) The peak of the energy dispersion of bound states
decreases with increasing the interface separation from dkF = 1
(solid line) to dkF = 2 (long-dashed line). Here |ν| = 2, whereas the
short-dashed and dotted lines stand for the single-interface result and
the continuum, respectively. (b) Plotted are the plasmon lifetimes
as a function of qy for dkF = 1 (solid line) and dkF = 10 (dashed
line). The lifetime of the bound state is seen to be greatest at qy = 0,
have a turning point in qy that recedes in qy as d increases, and to
be roughly constant for all qy around τγ ∼ 1.8. (c) The potential of
the bound state localizes at one of the two interfaces, depending on
the combined sign of νqy, with a localization length that is inversely
proportional to qy. The solid, long dashed, and small dashed lines
correspond to qy = +0.2kF,+0.4kF, −0.2kF, respectively.

In Fig. 2(c) we plot the real part of the potential profile
(assuming that quadratic decay terms may be ignored) as
a function of the dimensionless x coordinate for an inter-
face separation dkF = 1. We show curves for four different
values of qy, namely qy = ±0.2kF and qy = ±0.4kF. The
former (latter) occurring before (after) the turning point of
the dispersion curve of Fig. 2(a). Interestingly, the potential
may be seen to decay across the region in a nonexponen-
tial manner reflecting the nature of the plasmon to local-
ize within the region to the interfaces and to then decay
outside.

The effect of the interfaces can be seen: The mode transi-
tions from being confined within the whole region 0 < x < d
at small wave vectors to being completely localized at large qy

to only one of the two interfaces, depending on the combined
sign of νqy. In the latter case the mode reproduces the short-
wavelength limit of the single-interface result, as shown in
Fig. 2(a). This explains the origin of the turning point in the
energy dispersion, which develops because of the transition
between these two extremes.

At all wavelengths the energy of the double-interface mode
exceeds that of the single-interface one. This is due to the
fact that the two interfaces, due to the opposite jumps in δσH,
have opposite chiralities. As a consequence, if they would
be infinitely separated, each of them would host low-energy
plasmons propagating in one preferred direction. The latter,
being determined by the combined sign of νqy, is opposite
for the two interfaces. Since the plasmon mode is shared by
both of them, one of which has the “wrong” chirality, a higher
energy is required for it to exist.

This “wrong chirality” effect may be seen most apparently
in the potential plot of Fig. 2(c). When νqy > 0 the plasmon
localizes to the interface at x = 0. On the other hand, when
νqy < 0 the plasmon not only localizes to the other interface
but also does so with a reduced amplitude. This effect is as a
result of the inclusion of damping and shows the energetically
unfavorable nature of the plasmon residing upon the ‘wrong’
interface. So the strongest localization occurs when ν and qy

are both negative or both positive.
In Fig. 2(b) we plot the dimensionless lifetime of the

plasmon mode as a function of the wave vector qy. As may
be seen, the lifetime possesses a turning point that recedes in
qy as d is increased. However, the lifetime remains roughly
constant for all wave vectors and is of order τγ ∼ 1.8. This
minimum corresponds with the point at which the plasmon
is shared equally between the two interfaces of opposing
chiralities. Hence, its lifetime is negatively affected (albeit
minimally) as a result of this energetically unfavorable sharing
mechanism.

IV. PROPAGATING STATES

Propagating states cannot be found by using the above
method. The latter is in fact only applicable for bound
states, whose wave vectors satisfy |qy| > qp(ω), and for which
the bulk dielectric function ε(q, ω) [Eq. (12)] is nonzero.
In the present case, as we will show momentarily, the plas-
mon wave vector is q = qp(ω). The bulk dielectric function
therefore vanishes, and thus care must be taken in perform-
ing the inverse Fourier transform of Eq. (11). Furthermore,
since the plasmonic energies considered here are smaller yet
than the bound state energies, the approximation that ω � 	

will not hold. Thus, a more in depth analysis will be required
to include the decay within this section. As such, we now
set γ = 	 = 0 such that J (x, qy, ω) = 0 and so I (x, qy, ω) =
I (x, qy, ω).

When Eq. (11) by ε(q, ω), since the latter is zero at
q = qp(ω), we have to introduce terms proportional to the
Dirac delta functions δ(q ± qp) on its right-hand side. The
latter indeed vanish when multiplied by ε(q, ω), returning
Eq. (11).
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As a result, after this treatment and an inverse Fourier
transform, Eq. (11) becomes:

φ(x) = −δσHqy

ω
[I (x, qy, ω)φ(0) − I (x − d, qy, ω)φ(d )]

+ C+

2π
eik0x + C−

2π
e−ik0x. (31)

The last two terms in this equation appear as a result of
the added Dirac delta functions. Here ±k0 are the positions
of the poles on the real axis, with k2

0 (ω) = q2
p(ω) − q2

y , and
I (x, qy, ω) is the same integral as defined in Eq. (15). The
poles of its integrand are now on the real axis at ±k0, rather
than at ±iq0 as previously.

In order to determine the scattering coefficients r and t that
characterize the magnetic region, we impose that there are no
left-moving waves in the region x > d , i.e., terms proportional
to e−ik0x sum to zero. Thus, the potentials in x < 0 and x > d ,
far from the interfaces, are:

φ(x) =
{

eik0x + re−ik0x, x → −∞,

teik0x, x → +∞,
(32)

where the calculation of r and t is laid out in the Appendix.
The reflectance and transmittance of the region are then given
by R = |r|2 and T = |t |2, respectively, where R and T must
satisfy R + T = 1 by construction.

We express the coefficients r and t in terms of the angle of
incidence at x = 0 using qy = qp sin(θ ) and k0 = qp cos(θ ).
They thus read:

r = 4π i[cos(θ )[IB(d, θ ) − IB(0, θ ) cos(d̃ cos(θ ))] + (2π − iK̃−1 cot(θ )) sin(d̃ cos(θ ))]eid̃ cos(θ )

cos2(θ )
[
[K̃ sin(θ )]−2 + I2

B(d, θ ) − I2
B(0, θ )

] + 4iπ cos(θ )[IB(0, θ ) − IB(d, θ )eid̃ cos(θ )] + 4π2[1 − e2id̃ cos(θ )]
, (33)

t = cos2(θ )
[
[K̃ sin(θ )]−2 + I2

B(d, θ ) − I2
B(0, θ )

] + 4π cos(θ )IB(d, θ ) sin[d̃ cos(θ )]

cos2(θ )
[
[K̃ sin(θ )]−2 + I2

B(d, θ ) − I2
B(0, θ )

] + 4iπ cos(θ )[IB(0, θ ) − IB(d, θ )eid̃ cos(θ )] + 4π2[1 − e2id̃ cos(θ )]
, (34)

where the ω dependencies are still dropped for brevity. Here
we have also introduced K̃ = δσHqp(ω)/ω, d̃ = qp(ω)d and
IB(x, θ, ω) ≡ IB(x, qy = qp(ω) sin(θ ), ω).

Interestingly, the sign of δσH has no effect on the re-
flectance, R = |r|2, and transmittance, T = |t |2, of the region.
This is as a result of its appearance in r and t as part of either
a squared term or an imaginary term.

As a final note, we have presented r ≡ rL and t ≡ tL, i.e.,
the scattering coefficients from left to right. However, due to
the mirror symmetry of the magnetic region, it follows that
rR = r and tR = t .

In Fig. 3 we plot the transmittance of propagating modes
as a function of the plasmon angle of incidence θ from the
normal to the interface. In panel (a) we show two curves for
two distinct values of the dimensionless interface separation
dkF = 40 and dkF = 400 with the same ν parameter |ν| = 1.

The interface separation has a dramatic effect: Small-width
regions exhibit selective angle-dependent transmission, how-
ever with rather poor quality factor. On the other hand, for
large-width regions, many sharp side transmission peaks are
seen to appear. The central peak remains broad in both cases.
Furthermore, we find that if dkF < 40, the peaks disappear.
This is because the plasmon will again not see the region
and will instead propagate through it unaffected. Note that
the spectrum shows the typical “Airy-disk” characteristic of
Fabry-Pérot resonance, wherein the linewidth is directly re-
lated to the region width [49,50].

In panel (b) we plot instead the transmittance as a function
of the incident angle but for a fixed dkF = 200 and two values
of the parameter |ν|: |ν| = 1/2 and |ν| = 2. In this case it
can be seen that the quality factor (sharpness) of all peaks
is increased. However, the transmittance of the side peaks is
suppressed as a result of the increasing ν parameter.

Thus there is a tradeoff. To have transmission peaks with
high quality factor, the ν parameter must be large yet this
increase diminishes the strength of said peaks. The same goes

by changing the width d . The quality factors of the peaks
increase as d increases. However, the peaks become closer to
each other and hence more and more difficult to resolve.

V. SUMMARY AND CONCLUSIONS

To summarize, we developed a semiclassical description
of plasmonic excitations in the presence of a frequency in-
dependent step-wise-varying off-diagonal Hall conductivity.
We found that a plasmon can propagate confined between
the interfaces. For a given energy, said plasmon has a larger
wave vector than the bulk ones and therefore can be excited
separately. Its energy dispersion shows a turning point at
which the plasmon has zero group velocity. The mode is
bound to one of the interfaces depending on the combined sign
of the momentum along the interface and the “filling factor”
ν that parametrizes the differences in Hall conductivities
between the regions, in units of e2/h. The bound plasmon
also shows a typical localization length which is inversely
proportional to this momentum. By studying the scattering
process for an incident plasmon through the region, we calcu-
late the reflection and transmission coefficients. The number
of side transmission peaks depends heavily on the interface
separation, while their intensity and sharpness decrease with
the parameter ν.

As can be seen in Fig. 2, the interface state localizes
very strongly to the region as a whole with preference for
either of the interfaces; depending on the sign of the jump
is Hall conductance, as the wave vector increases. As such,
the thin film geometry could find application as a plasmonic
waveguide.

The fact that the bound state dispersion curve exhibits a
maximum, at which point the group velocity vanishes, may be
exploited to confine interface plasmons within a finite region
without the need of a solid barrier. We recall indeed that the
wave vector at which the plasmon dispersion peaks, as well
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FIG. 3. (a) The number of transmittance peaks at fixed plasmon
frequency increases with decreasing dimensionless interface sepa-
ration dkF. In this plot, the plasmon frequency is h̄ω = εF/2 and
|ν| = 1. Importantly, the peak strengths do not decay heavily as the
angle is increased for small ν; this is shown further in the |ν| = 1/2
case in panel (b). (b) The maximum transmittance of the side peaks
is seen to decrease while they become much sharper with increasing
|ν|. Here, h̄ω = εF/2 and dkF = 200. This strongly improves the
quality factors of all transmission peaks but suppresses the intensity
of any side peaks, i.e., a large ν causes the film to become a strong
mirror except in a narrow region around θ ≈ 0 and a damped selector
for certain angles besides. On the other hand, a small ν causes
the film to become transparent as the quality factors of side peaks
decreases.

as the peak energy, depend on the geometrical parameters of
the structure. In particular, the peak lowers in frequency with
increasing interface separation. Therefore, one could imagine
to shape the region in such a way that a wave packet with a
fixed frequency will eventually stop propagating and bounce
back when the group velocity vanishes. This is achieved by
adiabatically increasing the interface separation away from
the point where the wave packet is created in such a way
that its dispersion evolves adiabatically while it propagates. If
the thin film widens in both directions, then the wave packet
would be confined within the region and would thus become
a confined standing wave. Such a plasmon may be seen in
Fig. 4.

For propagating modes, the fact that the side transmission
peaks may be modulated in number, intensity, and quality
factor through the variation of d , ν, and ω could be used
to generate monochromatic plasmons. By constructing a res-
onator with a given width d and ν, a plasmon with a certain
frequency may be made to pass through alone by sending
it at a specific angle θ . Thus, incident plasmons of specific
frequencies may be selected for by detecting them at an angle
after the magnetic region. Furthermore, the opacity of the

FIG. 4. A contour plot of the potential profile of a bound plasmon
within an adiabatically widening thin film. Here, for consistency,
the parameters are identical to those of Fig. 2: ν = 2, ω = 0.48εF

with qy as the smaller positive solution to Eq. (18) with this chosen
frequency. The width of the region is varied from dkF = 1 to dkF = 2
over a suitably large range of y: 0 � ykF � 500. The localization
of the plasmon to the left-hand side of the thin film may be seen
(albeit faintly) in addition to the ‘invisible’ barrier to its ŷ-directional
propagation whereat the plasmon ceases to exist and so ‘reflects’
back.

region to plasmons of certain energies depending on d and
ν could be used to confine plasmons of such energies between
two regions. However, if a plasmon were to lose energy during
its propagation, i.e., through any form of decay, then the
regions would appear transparent to the plasmon at certain
energies thus hampering the confinement quality.

Finally, we wish to comment on the feasibility of our setup.
Candidates for the realization of these phenomena are metallic
Dirac-like 2D surface states (e.g., those at the surface of a
3D TI, accounting for the proper dielectric environment) as
mentioned in the introduction. Such systems exhibit typical
surface electronic number densities of n ∼ 1012 cm−2 and a
Fermi energy of εF = h̄vFkF. Thus, the Fermi momentum
(in units of

√
NF ) for the system is given by kF = √

4πn ∼
3.5 × 106 cm−1 = 0.35 nm−1. Moreover, their typical Fermi
velocity is vF ∼ 108 cms−1 and so the Fermi energy is εF ∼
0.23 eV. (Note that taking NF = 4, as in graphene, would
halve both the Fermi momentum and the Fermi energy.)
Finally, taking a typical experimental electron scattering time
of τsc = 50 fs [51], we may see that the lifetime of the bound
plasmon is τ ∼ 1.8τsc and so τ ≈ 100 fs = 0.1 ps. This result
is at least two orders of magnitude smaller than the results
of Ref. [40]. However, these numbers are merely used as
ball-park figures in order to convey a general sense of the
scales involved in the system. These quantities may all be
modulated at will given suitable materials or to suit certain
experimental conditions.

Considering these ball-park figures, observation of
zero/negative group velocity for the bound interface states
would require separations of d � 1 nm and a change in AQH
conductivity of |ν| � 2. For dkF � 1, the second interface be-
comes irrelevant so the mode localizes to the single dominant
interface. Whereas, for d < 1 nm, the semiclassical method
breaks down as effects due to the underlying crystal lattice
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begin to dominate and the position of the zero group velocity
turning point tends towards the electron-hole continuum that
begins at qy ∼ kF. Such a large stepwise change in the Hall
conductivity is also unlikely to be able to be implemented
experimentally.

The use of the studied heterostructure as a plasmonic
waveguide has much better chances. We find that plasmons
can be bound within magnetic strips satisfying d � 20kF ∼
7nm and |ν| < 1. In this case, the bound plasmon would
localize to either of the interfaces, depending on the sign of
νqy, rather than inside the region, as explained above. For,
say positive ν, a plasmon with qy > 0 moving ‘up’ the region
would localize to the interface at x = 0 while a plasmon
with qy < 0 moving ‘down’ would localize to the other in-
terface at x = d . Yet, the rather small lifetime might render
it difficult to utilize. Nevertheless observation ought not to be
impossible.

Peaked transmission spectra require rather large sepa-
rations in the range 40 nm < d � 400 nm, well within the
studied semiclassical regime. Heterostructures working as
plasmon filters could therefore be well realized experimen-
tally, and their theoretical description does not require the
consideration of quantum effects. The upper limit of 400 nm
is not a strong one since a larger region would simply see an

increase in the number of peaks in the transmission spectrum.
Admittedly, when the number of peaks becomes too large
they blur together and cease to be resolvable, thus making
the region practically transparent for all angles. Conversely,
the lower limit of 40 nm is a stringent one: Below that,
peaks do not occur. Frequency selection of plasmons could
well be seen within experimental conditions. In fact, typical
plasmonic energies of metallic surfaces are of order h̄ω ∼
εF/2 ∼ 0.1eV [11] and therefore observable under typical
experimental conditions.
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APPENDIX: CALCULATION OF THE SCATTERING COEFFICIENTS r AND t

The boundary conditions that specify C+ and the ratio of φ(0) and φ(d ) are generated by the imposition of continuity of the
potential at the interfaces, while C− is specified by the imposition that there are only right-moving waves in x > d . By evaluating
Eq. (31) at x = 0 and x = d we find:

1

2π
(C+ + C−) = [1 + KIB(0)]φ(0) − K

[
2π

qp

k0
sin(k0d ) + IB(d )

]
φ(d ), (A1)

1

2π
(C+eik0d + C−e−ik0d ) = [1 − KIB(0)]φ(d ) + K

[
2π

qp

k0
sin(k0d ) + IB(d )

]
φ(0), (A2)

where any dependence on qy and ω in qp(ω), k0(ω), and IB(x, qy, ω) has been dropped for brevity and K = δσHqy/ω.
To find the reflectance and transmittance through the central region from x < 0 to x > d , we impose that there are no left

moving waves (∝ e−ik0x) in the region x > d , i.e., [from Eq. (31)]

C−

2π
= iπK

qp

k0
[φ(0) − φ(d )eik0d ]. (A3)

Then, far from the interfaces, the potentials have the following form:

φ(x) =
{

Aeik0x + Be−ik0x, x → −∞,

Ceik0x, x → +∞,
(A4)

such that the reflection and transmission coefficients are simply r = B/A and t = C/A. A, B, and C may then be found by solving
Eqs. (A1) and (A2) for C+ and φ(0)/φ(d ), with C− given by Eq. (A3), and then plugging the results back into Eq. (31).

Firstly, solving for C+ by substituting Eq. (A3) into Eq. (A1) yields:

C+

2π
=

[
1 + KIB(0) − iπK

qp

k0

]
φ(0) + K

[
iπ

qp

k0
(2eik0d − e−ik0d ) − IB(d )

]
φ(d ). (A5)

Then, secondly, the ratio φ(0)/φ(d ) may be determined by using Eqs. (A2), (A3), and (A5) together as:

φ(0)

φ(d )
= k0(1 + K[IB(d )eik0d − IB(0)]) − 2iπKqp(e2ik0d − 1)

k0([1 + KIB(0)]eik0d − KIB(d ))
. (A6)
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Thus, A, B, and C may be found now as the appropriate coefficients of e±ik0x as in Eq. (31). Explicitly, we have:

A = C+

2π
− iπK

qp

k0
[φ(0) − φ(d )e−ik0d ], (A7)

B = C−

2π
+ iπK

qp

k0
[φ(0) − φ(d )eik0d ], (A8)

C = C+

2π
+ iπK

qp

k0
[φ(0) − φ(d )e−ik0d ], (A9)

and thus, through the use of Eqs. (A3), (A5), and (A6) and after some lengthy algebra, we arrive at:

A =
[

k2
0

(
1 + K2

[
I2
B (d ) − I2

B (0)
]) + 4iπK2qpk0[IB(0) − eik0d IB(d )] + 4π2K2q2

p(1 − e2ik0d )

k2
0 (eik0d + K[IB(0)eik0d − IB(d )])

]
φ(d ), (A10)

B =
[

4iπKqp[Kk0[IB(d ) − IB(0) cos(k0d )] + (2πKqp − ik0) sin(k0d )]eik0d

k2
0 (eik0d + K[IB(0)eik0d − IB(d )])

]
φ(d ), (A11)

C =
[

k0
(
1 + K2

[
I2
B (d ) − I2

B (0)
] + 4πK2qpIB(d ) sin(k0d )

)
k2

0 (eik0d + K[IB(0)eik0d − IB(d )])

]
φ(d ), (A12)

from which we find the scattering coefficients as r = B/A and t = C/A. Finally, taking qy = qp(ω) sin(θ ) and k0 = qp(ω) cos(θ )
along with simple rearrangement yields the forms of r and t as quoted in Eqs. (33) and (34).

The same analysis may be applied to the reverse case where the scattering occurs from right to left. The result may be seen to
be identical in such a case: rL = rR = r and tL = tR = t , due to the mirror symmetry of the region in the line x = d/2.
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