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Transport properties of a Wigner crystal in one- and two-dimensional asymmetric
periodic potentials: Wigner crystal diode
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We study the transport properties of a Wigner crystal in one- and two-dimensional asymmetric periodic
potentials. We show that the Aubry transition takes place above a certain critical amplitude of potential with
the sliding and pinned phase below and above the transition. Due to the asymmetry the Aubry pinned phase
is characterized by the diode charge transport of the Wigner crystal. We argue that the recent experimental
observations of Aubry transition with cold ions and colloidal monolayers can be extended to asymmetric
potentials making it possible to observe a Wigner crystal diode with these physical systems and electrons on
liquid helium.

DOI: 10.1103/PhysRevB.99.155416

I. INTRODUCTION

The Wigner crystal of charged particles [1] occurs when
the energy of their Coulomb repulsion exceeds the kinetic
energy of their motion. The Wigner crystal appears in a variety
of physical systems including electrons on a surface of liquid
helium [2], electrons in two-dimensional (2D) semiconductor
samples and one-dimensional (1D) nanowires (see, e.g., [3]
and references therein), cold ions in radio-frequency traps
[4,5], and dusty plasma in a laboratory or in space [6]. The
Wigner crystal in a quasi-1D channel on liquid helium is also
studied in experiments [7].

It is important to understand how the Wigner crystal is
moving in a periodic potential in low-dimensional systems.
The periodic potential can be viewed as a simplified descrip-
tion of a crystal potential created by atoms in a solid-state
system. It also effectively appears in the frame of Little’s
suggestion [8,9] on electron conduction in long spine conju-
gated polymers with insights for possible synthesized organic
superconductors. The properties of electron conduction in the
regime of charge-density wave (CDW) are also related to the
interacting charge propagation in a periodic potential which
displays a host of unusual properties [10], including organic
superconductivity [11,12].

The numerical and analytical analysis of properties of a
1D Wigner crystal in a periodic potential had been started
in [13] with a proposal of experimental realization of this
system with cold ions in optical lattices. It was shown that
this system can be locally described by the Frenkel-Kontorova
model [14] where the static positions of interacting particles
are described by the Chirikov standard map [15]. This sym-
plectic map captures many universal features of dynamical
systems with a transition from the invariant Kolmogorov-
Arnold-Moser (KAM) curves to a global chaotic diffusion
when the last KAM curve is destroyed above the critical value
of dimensional chaos parameter K [15–17]. As a result this

map describes the behavior of a variety of physical systems
as depicted in [18]. In this frame of dynamical systems the
irrational rotation number of the KAM curve corresponds to
the fixed incommensurate density of particles in a periodic
potential corresponding to incommensurate crystals [19].

The important step in the understanding of such incom-
mensurate crystals was done by Aubry [20] showing that
above the critical value of chaos parameter K > Kc the KAM
curve with an incommensurate rotation number is replaced
by an invariant Cantor set, cantori, which has the minimal
ground state energy configuration of interacting particles in
the periodic potential. For K < Kc the chain of particles
has an acoustic spectrum of low energy phonon excitations
corresponding to a sliding phase. In contrast, for K > Kc the
spectrum of excitations has an optical gap and the chain is
pinned by the potential. The properties of low energy excita-
tions for classical and quantum Wigner crystal are analyzed in
[13,21,22] showing the existence of exponentially many low
energy configurations in the proximity of the Aubry ground
state. In a certain sense for K > Kc the Aubry cantori ground
state, which is mathematically exact, is hidden inside an
exponentially large number of spin-glass-like configurations
which are all populated in a physical system realization at
finite temperature. For the Wigner crystal the pinned Aubry
phase appears when the amplitude of the periodic potential
exceeds a certain critical value measured in units of Coulomb
interaction, while at small potential amplitudes, correspond-
ing to the KAM curve, the crystal can easily slide in the
potential.

In addition to the very interesting fundamental properties
of the Aubry transition from sliding to pinning, it was es-
tablished [23] that the pinned phase is characterized by the
exceptional thermodynamic characteristics with a very large
Seebeck coefficient and figure of merit ZT > 3 that exceeds
the largest ZT = 2.6 value reached in material science exper-
iments (see, e.g., review [24]).
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After the proposal [13], the realizations of Wigner crystal
of ions in optical lattices attracted the interest of experimental
groups [25,26]. The signatures of the Aubry-like transition
has been experimentally detected with a small number of cold
ions by the group of Vuletic with about five ions [27]. The
chains with a larger number of cold ions are experimentally
studied in [28]. Two ion chains are used in [28] to create an
effective periodic potential for ions in another chain (zigzag
transition for ions is analyzed in [29]). Such a type of cold
ion experiments can be considered as microscopic emulators
of mechanisms of nanofriction in real materials as it is argued
in [30–32].

Till now the cold ion traps are used to investigate mainly
1D or quasi-1D ionic Wigner crystal properties in periodic
lattices. Recently a new step to the investigation of a 2D
Wigner crystal in a periodic potential has been done with
experimental observation of signatures of the Aubry transition
using a colloidal monolayer on an optical lattice [33].

All previous studies considered the case of the periodic
potential being symmetric in space with a sine shape. In this
work we consider the case of an asymmetric potential with
two harmonics which is relatively easy to realize with optical
lattices (see, e.g., [34,35]). We also note that any crystal
with three or more atoms in a periodic cell in general will
generate an asymmetric potential. We show that in such a
case a moderate static dc-field Edc generates an asymmetric
current corresponding to the Wigner crystal diode with a
current flowing only in one direction. We study this diode
current for the 1D case and 2D stripes of finite width. Due
to the importance of diodes for electronic circuits (see [36]
and overview in [37]) we assume that the obtained results
will clarify the mechanisms of friction and transport on
nanoscale.

II. MODEL DESCRIPTION

For the 1D case the Hamiltonian of the system of N
interacting particles with equal charges in a periodic potential
is given by

H =
N∑

i=1

(
Pi

2

2
+ V (xi )

)
+ UC,

UC =
∑
i> j

1√
(xi − x j )2 + a2

, (1)

V (xi ) = K (sin xi + 0.4 sin 2xi ).

Here xi, Pi are a conjugated coordinate and momentum of par-
ticle i, and V (xi ) is an external asymmetric periodic potential
of amplitude K . We use the screened Coulomb interaction
UC between particles with the screening length a. Here we
write the Hamiltonian in dimensionless units where the lattice
period � = 2π and the particle mass and charge are m = e =
1. In these atomiclike units the physical system parameters
are measured in units: ra = �/2π for length, εa = e2/ra =
2πe2/� for energy, Eadc = εa/era for the applied static electric
field, va = √

εa/m for particle velocity v, and ta = era
√

m/εa

for time t .

For the 2D case the Hamiltonian has the same form with

H =
N∑

i=1

(
Pix

2

2
+ Piy

2

2
+ V (xi, yi )

)
+ UC,

UC =
∑
i> j

1√
(xi − x j )2 + (yi − y j )2 + a2

, (2)

V (xi, yi ) = K (sin xi + 0.4 sin 2xi − cos yi ),

and 2D momentum Pix, Piy conjugated to xi, yi.
Similar to [23] the dynamics of interacting charges is mod-

eled in the frame of the Langevin approach (see, e.g., [38])
with the equation of motion in 1D being

Ṗi = v̇i = −∂H/∂xi + Edc − ηPi + gξi(t ), ẋi = Pi = vi.

(3)

The parameter η phenomenologically describes the dissipative
relaxation processes, and the amplitude of Langevin force g is
given by the fluctuation-dissipation theorem g = √

2ηT . Here
we also use particle velocities vi = Pi (since mass is unity). As
usual, the normally distributed random variables ξi are defined
by correlators 〈〈ξi(t )〉〉 = 0, 〈〈ξi(t )ξ j (t ′)〉〉 = δi jδ(t − t ′). The
amplitude of the static force is given by Edc. For the 2D case
the equations of motion have the same form with the force Edc

acting in x direction.
The length of the system in the 1D case is taken to be

2πL in x direction with L being the integer number of periods
with periodic boundary conditions. In 2D we studied the case
of stripes with the width of 2πNs considering usually up to
Ns = 5 period cells in y direction with periodic boundary
conditions.

The numerical simulations are based on the combination of
Boost.odeint [39] and VexCL [40,41] libraries and employed
the approach described in [42] in order to accelerate the
solution with NVIDIA CUDA technology. Problem (1) is
solved using the fourth-order Runge-Kutta method and (2)
by the Verlet method, where each particle is handled by a
single GPU thread. Since Coulomb interactions in UC are
decreasing with distance between particles, the interactions
for the 2D case were cut off at the radius RC = 6� = 12π

that allowed us to reduce the computational complexity of the
algorithm from O(N2) to O(N log N ). In 1D in some cases we
only considered interactions between immediate left and right
neighbors, since, as shown in [13,23], the contribution of other
particles does not play a significant role. In all simulations, in
order to avoid close encounters between particles leading to
numerical instability, the screening length a = 0.7 is used. At
this value of a the interaction energy is still significantly larger
than the typical kinetic energies of particles (T � 1/a) and
the screening does not significantly affect the interactions of
particles. We usually employed the relaxation rate η = 0.1 be-
ing relatively small compared to typical oscillation timescales
in the system, but other values of η were also considered.
The source code for the 1D and 2D experiments is available
at https://gitlab.com/ddemidov/thermoelectric1d and https://
gitlab.com/ddemidov/thermoelectric2d correspondingly. The
numerical simulations were run at OLYMPE CALMIP cluster
[43] using NVIDIA Tesla V100 GPUs and partially at Kazan
Federal University using NVIDIA Tesla C2070 GPUs.

155416-2

https://gitlab.com/ddemidov/thermoelectric1d
https://gitlab.com/ddemidov/thermoelectric2d


TRANSPORT PROPERTIES OF A WIGNER CRYSTAL IN … PHYSICAL REVIEW B 99, 155416 (2019)

FIG. 1. The effective static potential Veff(x) = V (x) − Edcx for
one charge is shown by black and red/gray curves in the pres-
ence of a static force Edc at K = 0.05, the red/gray curve corre-
sponds to Edc = 0; the black curves show nonzero values of Edc in
(a) and (b).

III. STATIC CONFIGURATIONS
AND AUBRY TRANSITION

We start from the analysis of properties of static config-
urations of particles in the 1D case. The effective potential
Veff = V (x) − Edcx, acting on a particle in presence of a
static force Edc, is shown in Fig. 1. At Edc = 0 there is
one potential minimum. In the presence of the static force
Edc there are no potential minima for the force Edc > −K
pushing to the left and Edc < 1.8 K pushing to the right.
Thus the asymmetry of the potential leads to different sliding
borders for the left and right force acting on one particle. This
asymmetry is at the origin of diode transport of the Wigner
crystal.

At Edc = 0 the static configurations of the Wigner crys-
tal energy local minima are defined by the conditions
∂H/∂xi = 0 [13,14,20]. As discussed in [13], in the ap-
proximation of nearest neighbor interacting charges, these
conditions lead to the dynamical symplectic Wigner map
for equilibrium positions xi of charges in the Wigner crystal
(with Pi = vi = 0):

pi+1 = pi + Kg(xi ), xi+1 = xi + 1/
√

pi+1, (4)

where the effective momentum conjugated to xi is pi =
1/(xi − xi−1)2 and the kick function Kg(x) = −dV (x)/dx =
−K (cos x + 0.8 cos 2x).

To check the validity of the map description we find
the ground state configuration using numerical methods of
energy minimization described in [13,20]. Here the Coulomb
interaction between all electrons is used in the numerical
simulations. We use the hard wall boundary conditions at the
ends of the chain (for ions they can be created by specific
laser frequency detuning from resonant transition between
ion energy levels). This leads to the density ν of charges
along the chain being inhomogeneous since a charge in a
boundary vicinity has more pressure from other charges in
the chain (a similar inhomogeneous local density ν(xi ) = 2π/

| xi+1 − xi | appears for ions inside a global oscillator poten-
tial of a trap as discussed in [13]). Thus, as in [13], we select
the central part of the chain with approximately 1/3 of all
charges where the density is approximately constant being
close to the golden mean value ν = νg − 1 = (

√
5 − 1)/2 ≈

0.618 [or ν = νg = (
√

5 + 1)/2 ≈ 1.618] which is assumed

to be a most robust KAM curve for the Chirikov standard map
[16,17,20]. This choice corresponds to an incommensurate
phase with the golden KAM curve usually studied for the
Aubry transition [16,17,20].

The numerically obtained charge positions and momentum
xi, pi are shown in Fig. 2 for ν ≈ 0.618 (see Fig. 13 in
the Appendix for ν ≈ 1.618). From the numerical values xi

we determine the kick function g(x) which is close to the
theoretically expected relation Kg(x) = −dV/dx shown by
the dashed curve. For small potential amplitudes K < 0.0015
the chain is in the sliding phase with a continuous KAM
curve in the Poincaré section plane (x, p). For K > 0.0015
the points (xi, pi ) start to be embedded inside the chaotic
component of the phase plane corresponding to the Aubry
pinned phase. In this phase the points (xi, pi ) form a fractal
Cantor set in the phase plane and the chain is pinned by the
potential. According to the data of Fig. 1 the Aubry transition
from sliding to pinned phase takes place at the critical value
Kc ≈ 0.0015. The qualitative change of chain properties with
the transition from sliding to pinned phase can be also seen
with the help of the hull function h(x) which gives the charge
positions in a periodic potential vs unperturbed positions at
K = 0 both taken as mod 2π . For K < Kc we have a con-
tinuous function h(x) ≈ x while for K > Kc the hull function
has a form of devil’s staircase with charge positions clustering
near certain values. For ν ≈ 1.618 we find Kc ≈ 0.015 (see
Fig. 13 in the Appendix).

For the potential V (x) = −K cos x the Wigner map (4)
can be locally described by the Chirikov standard map as it
is explained in [13]. This gives the Aubry transition at the
potential amplitude

Kcν ≈ 0.034(ν/νg)3, νg = 1.618 . . . . (5)

At ν = 1.618 . . . the numerical results obtained in [13,23]
give Kc ≈ 0.0462 that is slightly above the theoretic value. We
attribute this modest difference to an inhomogeneous density
of resonances in (4) (the Chirikov standard map approxima-
tion assumes it to be constant [15]) and to nearest neighbor
interactions between charges present in the Wigner crystal.
The recent results confirm the cubic decrease of Kcν with
charge density ν [44].

In our case with two harmonics of potential the density
of resonances is increased which, according to the Chirikov
criterion of overlapped resonances, should decrease Kc value
(see [15,16]). Indeed, for ν = 1.618 we have Kc ≈ 0.015
being approximately 3 times smaller compared to the case of
one harmonic potential with Kc ≈ 0.0462. For ν ≈ 0.618 we
have Kcν ≈ 0.0015 while the cubic extrapolation like in (5)
gives Kcν ≈ 0.00084 being by 40% lower than the numerical
values from Fig. 2. We consider this as satisfactory taking into
account the approximate Kc values extracted from Figs. 2 and
13. Thus for the potential (1) we have on average the density
dependence of the critical potential amplitude of the Aubry
transition: Kcν ≈ 0.01(ν/νg)3.

We note that the significant decrease of Kc for the two
harmonic potential and especially with density ν can be rather
important for experiments with optical lattices since a smaller
potential amplitude is more accessible with low power lasers.
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FIG. 2. Functions related to the dynamical map (4) obtained from the ground state equilibrium positions xi of N = 61 charged particles for
L = 90 potential periods (with hard wall boundary conditions) for density ν ≈ 0.618 in the central chain part at K = 0.0002 (a), K = 0.001 (b),
K = 0.002 (c), and K = 0.005 (d) (charges are marked by open circles). In each panel the top subpanel shows the kick function g(x) (dashed
curve is the theoretical curve, circles are actual charge positions); the middle subpanel shows the Poincaré section of map (4) (green/gray
points) and actual charge positions (xi, pi ) (open circles); and the bottom subpanel shows the hull function h(x) (see text). The charge positions
are shown as x = xi( mod 2π ) for the central 1/3 part of the chain.

IV. DIODE TRANSPORT IN 1D

The charge transport is computed with N charges on L
potential periods with periodic boundary conditions (here we
consider Coulomb interactions only between nearest neighbor
charges as discussed in Sec. II). We compute the velocity
v(t ) of a chain at time t as an average velocity of all N
charges at that time moment. A typical dependence of v(t ) on
time is shown in Fig. 3. The system parameters correspond
to the Aubry pinned phase. We see that approximately for
t > 100 the motion of a chain is in a stationary regime with its
steady-state propagation along the potential under the applied
static force Edc. The velocity of Wigner crystal propagation
vW to the left is close to the velocity of a free particle in the
presence of force and dissipation v0 = Edc/η = 0.47 for the
case of Fig. 3. The time averaged value vleft = 0.439 is a bit
smaller than v0 showing that the potential slightly decreases
the propagation velocity. In contrast, the chain propagation to
the right has a significantly smaller velocity vright = 0.089 �
v0 for the same amplitude of static force. Also instantaneous
values of velocity v(t ) have significant fluctuations with an
even almost zero velocity at some moments of time. This data
clearly demonstrate the emergence of diode transport in the
asymmetric potential in the presence of interactions. From the
physical viewpoint the velocity to the right is smaller than to
the left since the potential has a steep slope in this direction
while moving to the left a particle follows a gentle slope. Thus
in winter it is easier to pull a sleigh along a gentle slope of a
hill than along a steep slope even if the hill height is the same
from both sides.

The dependence of Wigner crystal velocity vW on Edc is
shown in Fig. 4 for the Aubry pinned phase at K = 0.05 and

ν = N/L ≈ 0.618 for different values of temperature T . At
small T = 0.1Kc = 0.00462 � K = 0.05 we have a strongly
asymmetric diode transport appearing at finite Edc fields. With
the increase of temperature the diode transport becomes less
and less pronounced. Indeed, when the temperature is com-
parable with the potential height, e.g., T = 0.8Kc ≈ 0.037
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FIG. 3. Dependence of average chain velocity v(t ) at time t in 1D
for N = 34 particles and L = 55 periods of potential (with periodic
boundary conditions ν = 34/55). Here Edc = −0.047 (black points)
with time average Wigner crystal velocity vW = vleft = −0.439 and
Edc = 0.047 (red/gray points) with time average vW = vright = 0.088;
the system parameters are K = 0.05, T = 0.2Kc, Kc = 0.0462, η =
0.1 (time averaging is done over times above 1/2 of the whole time
interval).
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FIG. 4. Dependence of Wigner crystal velocity vW , averaged
over times t � 104, on static field amplitude Edc for propagation to
the left (black points) and to the right (red/gray points). Here ν =
N/L = 34/55, K = 0.05, η = 0.1 and temperature T/Kc = 0.1, 0.2,
0.4, and 0.8 for (a), (b), (c), and (d), respectively. Here Kc = 0.0462
is the critical amplitude of Aubry transition for ν = 1.618 . . . in a
potential with one harmonic [13,23].

∼ K = 0.05, the statistical Boltzmann fluctuations over a
potential barrier smooth the asymmetry of transport. In this
regime at small Edc fields the velocities to the left and to the
right directions become the same as it is shown in Fig. 5.

Indeed, in the linear regime limit at Edc → 0 the principle
of the detailed balance (see, e.g., [45]) guarantees that the flow
is the same in both directions. We note that this point had
been discussed in detail by Feynman for a case of asymmetric
potential [46] which became known as ratchet. Indeed, as
we show below (see Sec. VII) at small temperatures the
dependence vW (T ) is well described by the Arrhenius thermal
activation equation. At present, the term ratchet, discussed by
Feynman, is used more for a description of directed trans-
port appearing in an asymmetric periodic potential under a
time-periodic force driving (see, e.g., [47–49]). Due to these
reasons we use the term diode which is more adequate for
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FIG. 5. Zoom of Fig. 4(d) at small Edc.

FIG. 6. Same as in Fig. 4(a) but at K = 0.03 (a) and K = 0.01 (b).

the case of static force without any time-periodic driving. It
directly corresponds to the asymmetry of charge flow obtained
in our model.

At fixed temperature [e.g., at T = 0.1Kc as in Fig. 4(a)] the
asymmetry of diode transport decreases with a decrease of the
potential amplitude K as it is shown in Fig. 6. Indeed, with a
decrease of K the potential height becomes comparable with
temperature and, as above, the principle of detailed balance
leads to the same flows in both directions.

The influence of Coulomb interactions of the diode trans-
port is obtained from the comparison of Figs. 7(a), 4(a),
and 7(b) where the electron density takes values ν = N/L =
21/55, 34/55, and 34/21, respectively, with all other pa-
rameters kept fixed. All these three cases are located in the
pinned phase. We see that at N/L = 21/55 and 34/55 the
diode velocity dependence vW (Edc) on Edc remains practically
the same. We explain this by the fact that at small densities
the interactions between charges become weak compared to
the periodic potential and thus we approach the limit of trans-
port of noninteracting particles which still demonstrates the
diode flow due to potential asymmetry. The opposite tendency
appears with the increase of density to N/L = 34/21. In this
case the interactions are strong, even if we are still in the
pinned phase, and the asymmetry of potential is less pro-
nounced so that the transport flows are close to be symmetric
even if one still needs to apply a finite force Edc ≈ 0.02 to
obtain moderate velocities of Wigner crystal motion along
the periodic potential. This force can be interpreted as the
static friction force Fs ≈ Edc ≈ 0.02. We note that with the
increase of interactions (or density) we have a reduction of Fs

values. Indeed, at lower density N/L = 34/55 we have larger
values of static friction force Fs ≈ 0.03 (for left direction)
and Fs ≈ 0.05 (for right direction). Indeed, with an increase
of interactions we approach the sliding phase [the border of
Aubry transition is growing this density (5) where Fs = 0].

FIG. 7. Same as in Fig. 4(a) but for different electron densities
N/L = 21/55 (a) and N/L = 34/21 (b).
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FIG. 8. Dependence of Wigner crystal velocity vW on Edc in
the 2D case (five lines in the transverse y direction) at densities
ν = N/L = 34/55 (a), 34/21 (b), 55/21 (c), and 71/21 (d). Other
system parameters are as in Fig. 4(a).

We note that for Edc < Fs the Wigner crystal velocity vW

happens due to the Arrhenius thermal activation (see Sec. VII)
so that it drops exponentially with a decrease of temperature.
In contrast, for Edc > Fs we have a rather weak change of vW

with T (see, e.g., Fig. 4).
The above results are presented for the dissipation rate

η = 0.1. We tested also smaller values of η for which we
obtained qualitatively similar results. Thus for parameters of
Fig. 7(b) we have an approximately similar shape of vW (Edc)
dependence for η = 0.1 and η = 0.02 (see Fig. 14) with a
more sharp shape in the latter case with a smaller value
Fs ≈ 0.013. We argue that at smaller dissipation statistical
fluctuations at a given temperature have more possibilities to
overcome potential barriers that leads to a moderate decrease
of Fs.

V. DIODE TRANSPORT IN 2D

The diode properties of the Wigner crystal in 2D are stud-
ied with the Hamiltonian (2) and related Langevin equations
(3). We use periodic boundary conditions in x and y directions
with the static field Edc always acting in x direction. The
majority of the results were obtained with five cells in y giving
us Ns = 5 stripes along x with one periodic cell in each stripe
(we obtained very similar results with only Ns = 1 stripe in
y). We keep the same density ν = N/L in each stripe as in the
above 1D case. Thus the total number of charges is Ntot = NsN
with L and Ns potential periods in x and y. Similar to the 1D
case (see Fig. 2) we compute the local average charge velocity
v(t ) in x direction at instant time moment t by averaging over
all Ntot charges [an example of dependence v(t ) is shown in
Fig. 15]. In 2D simulations we usually used timescales up to
t = 5 × 104 when the crystal propagation is well stabilized.

The dependence of Wigner crystal velocity vW of Edc

in 2D is shown in Fig. 8 at different densities ν = N/L =
34/55, 34/21, 55/21, and 71/21 with all other parameters
kept fixed being also the same as in the corresponding 1D
cases. At low density N/L = 34/55 the dependence vW (Edc)

FIG. 9. Dependence of vW /v0, shown by color, on T/Kc and Edc

for the 2D case with five stripes and N/L = 34/21, K = 0.05, Kc =
0.0462, η = 0.1, v0 = Edc/η.

remains practically the same in 1D and 2D. We attribute
this to relatively weak interactions between charges so that
the diode transport is rather close to the noninteracting case.
The situation is drastically different for N/L = 34/21: in
1D the diode transport asymmetry is quite weak [Fig. 7(b)]
while in 2D we have a strong asymmetry [Fig. 8(b)] with
different values of static friction force Fs ≈ 0.025 (left) and
Fs ≈ 0.05 (right). At larger densities N/L = 55/21 and 71/21
the asymmetry is reduced due to an increase of interactions
with Fs ≈ 0.025 for both directions. Thus in the 2D case we
have a tendency similar to the 1D case with a reduction of
diode transport asymmetry with the density increase.

The global dependence of 2D Wigner crystal velocity |vW |
on temperature T and Edc is shown in Fig. 9 for density ν =
N/L = 34/21. We find that the diode transport is well visi-
ble for temperatures being smaller than the potential height
T/Kc ≈ T/K < 1 where vW is significantly smaller than v0 =
Edc/η. At large T/Kc values vW becomes close to v0 since in
this regime the potential influence becomes small. Of course,
at very small Edc values the velocity vW becomes very small
and it becomes difficult to determine exactly very small vW

values in numerical simulations on a finite timescale (here vW

appears due to exponentially rare thermal fluctuations). This
is at the origin of the peaklike structure near Edc ≈ 0 in Fig. 9.

Overall, the results for diode transport in 2D show that its
properties are similar to those of the 1D case.

We note that using GPUs in the numerical experiments
allows us to make simulations with a significantly larger
number of particles going up to Ntot ∼ 104 without a signif-
icant increase of computational times. However, this work
was focused on analysis of specific physical effects related
to diode transport for which it was sufficient to stay within
a maximal Ntot = 445 (see below). Recently, the numerical
simulations of the 2D Wigner crystal in a spatially modulated
system with up to 1600 charges has been reported in [50].
However, the possible links with the Aubry transition have
been not discussed in this work. We think that without such
links it is rather difficult to understand the physics of various
dislocation phases appearing in 2D.
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Another thing worth mentioning is the possibility of real-
ization of thermal diode discussed in [51]. On first glance it
seems natural that in the presence of a charge diode transport
one can expect the thermal diode flow to appear in our model.
However, we were not able to find a thermal diode regime
in our model. We explain this by the fact that the charge
diode transport appears at finite Edc field values. Such fields
are rather moderate on a local scale but for a large system
size they correspond to a significant voltage difference 
Vdc

applied to the sample. In contrast, the temperature difference
applied to the sample is always smaller than the sample
temperature and due to that to long sample the temperature
gradient becomes very small so that, due to the detailed
balance [45], the left and right heat flows remains equal in
this linear limit of small temperature gradient.

In the next section we characterize the structure of the
moving the Wigner crystal in 2D.

VI. FORM FACTOR OF MOVING A WIGNER CRYSTAL

To characterize the structure of a Wigner crystal in moving
and static regimes we use the form factor defined as

F (k) = 〈|Re
Ntot∑
i 
= j

exp{ik[xi(t ) − x j (t )]}|2〉/Ntot, (6)

where the average is done over all particles and ten different
moments of time homogeneously spaced on the whole com-
putational interval of time. A similar approach had been used
in [13]. It showed that the form factor captures the Aubry
transition from sliding phase with F (k) peaks at incommen-
surate values k ≈ ν j with integer j while in the pinned phase
the peaks are more pronounced at k ≈ j corresponding to
the lattice period (see Fig. 5 in Ref. [13]). Of course, in
the pinned phase the density is still incommensurate (e.g.,
ν = 1.618 . . . ) but the charges are clustered in groups where
their positions are more closely located to potential minima
with some displacements (dislocations) between clusters due
to the fractal devil’s staircase structure of the whole chain in
the pinned phase. These clusters give peaks of F (k) at k ≈ j.

For the static Wigner crystal at Edc = 0 we also find a
similar F (k) structure shown in Figs. 10(a) and 10(b) for
sliding and pinned phases, respectively. However, in the slid-
ing phase at K = 0.001 � Kc we have F (k) peaks located at
k ≈ νeff j with νeff ≈ √

ν ≈ 1.272. Indeed, in 2D the average
distance between particles becomes 1/

√
ν instead of 1/ν as it

was in the 1D case. Due to that we find peaks at k ≈ √
ν j

in Fig. 10(a). In contrast, in the pinned phase the periodic
potential imposes peaks at k ≈ j in Fig. 10(b).

The form factor of the moving Wigner crystal in the diode
regime at Edc = −0.03 and −0.045 is shown, respectively,
in Figs. 10(c) and 10(d) for the pinned phase. The main
peaks are still located at integer k ≈ j even though they are
somewhat broadened due to fluctuations of changes during
their propagation along the lattice. These fluctuations mainly
affect large peaks at large j = 3, 4, . . . but the peaks at j =
1, 2 remain. It is important to note that with the increase of
the ring size going from N/L = 34/21 to N/L = 89/55 we
recover the same form factor structure. This shows that the

FIG. 10. Form factor F (k) in the 2D case with five stripes for
(a) N/L = 34/21, K = 0.001, T = 0 (η is not important since Edc =
0); (b) N/L = 34/21, 89/55, K = 0.05, T = 0.01Kc (η is not impor-
tant since Edc = 0); (c) same as (b) but at Edc = −0.03, η = 0.1; and
(d) same as (b) but at Edc = −0.045, η = 0.1.

chosen system size corresponds to the thermodynamic limit
of the infinite system.

The dependence of F (k) on temperature T for a moving
crystal at Edc = −0.03 is shown in Fig. 11. With the increase
of T the fluctuations become stronger and the peaks are
suppressed at large T/Kc ≈ T/K values. However, the peaks
at k ≈ j = 1, 2 remain rather robust even at large T/K .

The dependence of the form factor on Edc at fixed temper-
ature is shown in Fig. 12. At moderate | Edc |< 0.05 values
in the diode regime we have F (k) peaks mainly at k ≈ j =
1, 2, 3, 4, 5, 6 (they are more pronounced for large size with
five stripes). But at a stronger field | Edc |> 0.05 we see a
transition to incommensurate structure with peaks located at
k ≈ ν̃ j with ν̃ ≈ 1.5 corresponding to an intermediate den-
sity between νeff ≈ 1.272 and ν = 1.618. Thus a sufficiently
strong dc field can change the structure of the moving pinned
Wigner crystal to the sliding incommensurate crystal. Indeed,

FIG. 11. Dependence of form factor F (k), shown by color, on
T/Kc and k; N/L = 34/21, η = 0.1, Edc = −0.03 in 2D with five
stripes.
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FIG. 12. Dependence of form factor F (k) of a moving Wigner
crystal on Edc and k for K = 0.05, T = 0.01Kc, Kc = 0.0462, η =
0.1 in 2D at N/L = 34/21 with one stripe (a) and with five stripes
(b) [color bar marks F (k) values].

at strong Edc the crystal velocity vW becomes rather large and
the periodic potential gives to this directed flow only relatively
weak perturbation.

We present the video of Wigner crystal motion in the diode
regime in the Supplemental Material [52].

VII. ANALYSIS OF APPROXIMATIONS

The performed numerical simulations use certain approx-
imations like, e.g., the Langevin approach for the thermal
bath, finite interaction range between charges. Here we briefly
justify the validity of these approximations.

Thus, in Fig. 16 we show the velocity distributions in 1D
and 2D cases. These results show that the numerical results
well reproduce the theoretical thermal Maxwell distribution
centered at the average particle velocity vW . At significant
values of Edc and related vW there is a noticeable deformation
of the distribution which we attribute to a moderate heating of
particles by the static force Edc and effects of their interactions
in the presence of a periodic potential. However, we note that
even when there is a visible deformation of the distribution
in x direction in the 2D case, the distribution in y direction
is still very well described by the Maxwell one. We note
that as it was described Sec. II in the 2D case the particles
are free to move from one stripe to another one but such
transitions happened to be rare due to repulsion between
charges.

We note that the friction force for electrons on a surface
of liquid helium can have a more complicated form due to
various low energy excitations in this system (see, e.g., [2]).
However, the Langevin approach reproduces well the thermal
distribution in the system and we consider that this approach is
reasonably justified as the first step to the investigation of this
rather complex and nontrivial system. However, we suppose
that future studies will allow us to test other forms of the
friction force in the Langevin equation that will capture the
specific features of electron friction on the surface of liquid
helium due to rich properties of low energy excitations in this
system.

Indeed, the results presented in Fig. 17 show that the
temperature dependence of Wigner crystal velocity vW is well
described by the Arrhenius thermal activation equation that
confirms that the Langevin approach provides us a reasonable
description of the thermal environment.

The obtained results for vW are not sensitive to the inter-
action radius between charges RC as it is illustrated in Fig. 18

where it is changed by a factor 50 with practically the same
profile of time dependence vW (t ), up to statistical fluctuations.
This is in agreement with the results of Fig. 2 which shows
that the chain of charges, where all interactions are taken
into account, is rather well described by the symplectic map
with only nearby interactions between charges. We also note
that the comparison between 1D chain dynamics with only
nearest neighbors interactions and the chain with interactions
of all charges had been performed in [13,23] showing that
the short range approximation for interactions provides rather
good approximation. In addition, we also show in Fig. 19 that
the dependencies vW (Edc) for the 1D case (with only nearby
interactions) and the 2D case (with 1 stripe/line) remain very
close to each other. Thus the 1D case captures the main
physical features of the system being very useful for the
description of the 2D system.

Thus, we consider that the results discussed above justify
the approximations used in our numerical simulations.

VIII. DISCUSSION

In this work we demonstrated that the Wigner crystal diode
transport appears naturally for charge motion in asymmetric
1D and 2D potential. In the presence of charge interactions
a dc field moves crystal easily in one direction while no
current appears in the opposite direction. Our results show
close similarities of diode transport in 1D and 2D. The diode
transport appears in the Aubry pinned phase.

We think that the asymmetry is rather natural for various
materials since already three different atoms in a periodic
cell create generally an asymmetric potential. An incommen-
surate charge density in such materials can be induced by
effective charge doping from other planes (e.g., like in high-
temperature cuprates superconductors) or impurities.

With recent progress in experimental studies of Aubry
transition with cold ions [27,28] and colloidal monolayers
[33] we hope to obtain a deeper understanding of mechanisms
of nanofriction on an atomic scale [31]. These experiments
can be also performed with asymmetric potentials providing
first experimental realizations of Wigner crystal diode. In-
deed, two-harmonic optical lattices had been already realized
experimentally (see, e.g., [34,35]) which opens possibilities
to study the diode regime with cold ions. The dependence
of the Aubry transition on density, obtained in [13] (see (5)
and [44]), shows that the Aurby phase can be reached with a
moderate amplitude of lattice potential created by laser fields.
Indeed, for ν ≈ 0.38 we obtain from (5) Kcv ≈ 0.00044 with
the required potential amplitude of Aubry transition being
VA = Kcνe2/(�/2π ) ≈ 0.04 K for the lattice period � ∼ 1 μm
(VA ≈ 3 K for ν = 1.618).

In addition to cold ion experiments we think that there
are promising possibilities to study the Wigner crystal diode
with electrons on liquid helium moving in a quasi-1D channel
[7]. The first experiments in this direction have been reported
recently in [53]. According to the above estimate, for electron
density ν ≈ 1.618 and � ≈ 1 μm the Aubry transition takes
place at the potential amplitude VA ≈ 3 K that is well below
the electron temperature of about 0.1 K well available for such
experiments (see, e.g., [7,53]).
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FIG. 13. Same as in Fig. 2 but for ν ≈ 1.618 with N = 89 charges for L = 51 potential periods and K = 0.002 (a), K = 0.005 (b),
K = 0.008 (c), and K = 0.02 (d).

There are also possibilities of experimental realization of a
Wigner crystal diode with colloidal monolayers extending the
experiments [33] to asymmetric potentials.

We expect that the experimental investigations of electron
and ion transport in a periodic potential at low temperatures
will allow us to understand the nontrivial mechanisms of
friction and thermoelectricity at nanoscale and then on atomic
scale with new applications for material science.
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APPENDIX

Here we present Figs. 13, 14, 15, 16, 17, 18, and 19
complementing the main text of the paper.
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FIG. 15. Time dependence of velocity in x in 2D with Ns = 5
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η = 0.1, |Edc| = 0.0438. The time averaged Wigner crystal velocities
are vW = vleft = −0.34 and vW = vright = 0.16.
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FIG. 16. Verification of the thermalization of charges in 1D and
2D (5 stripes/lines), black points show particle velocities in the time
range 200 � t � 300, the red curve shows the theoretical thermal
Maxwell distribution centered at the average velocity of particles vW

in x direction. System parameters are given in the figure panels.

FIG. 17. Dependence of the Wigner crystal velocity vW on tem-
perature T in the 1D case. (a) Numerical results for vW are shown by
small points connected by the black curve, and the red curve shows
the smoothed dependence obtained by the Savitzky-Golay filter with
polynomial order 2 (points of window 50 in ORIGIN package).
(b) Black squares show data for the smoothed red curve of (a), the
red line shows the Arrhenius thermal activation dependence with
the fit parameters ln vW = −0.163 − Ar/T at the activation energy
Ar = 0.01. The system parameters are given in the panels.

FIG. 18. Dependence of vW on time t in the 2D case
(1 stripe/line, velocity is in x direction) for different values of interac-
tion radius RC/2π = 1, 2, 6 (our main case), 50; system parameters
are given in the panel.

FIG. 19. Dependence of vW on Edc for the 1D case and 2D
case (1 stripe/line; RC/2π = 6, velocity is in x direction); system
parameters are given in the figure panel.
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