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Perturbation calculations on interlayer transmission rates from symmetric to
antisymmetric channels in parallel armchair nanotube junctions
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Partially overlapping two parallel armchair nanotubes are investigated theoretically with the π orbital tight
bonding model. Considering the interlayer Hamiltonian as perturbation, we obtain approximate analytical
formulas of the interlayer transmission rates Tσ ′,σ from channel σ to σ ′ for all four combinations (σ ′, σ ) =
(±, ±) and (±,∓), where suffixes + and − represent symmetric and antisymmetric channels, respectively,
with respect to the mirror plane of each tube. Landauer’s formula conductance is equal to the sum of them
in units of 2e2/h. According to the perturbation calculation, the interlayer Hamiltonian is transformed into the
parameter wσ ′,σ that determines the analytical formula of Tσ ′,σ . By comparison with the exact numerical results,
the effective range of the analytical formulas is discussed. In the telescoped coaxial contact, the off-diagonal part
T−,+ + T+,− is very small compared to the diagonal part T+,+ + T−,−. In the side contact, on the other hand, the
off-diagonal part is more significant than the diagonal part in the zero energy peak of the conductance.
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I. INTRODUCTION

In the growing area of carbon nanotubes (NT) [1,2] and
graphenes (GR) [3], interlayer interaction has important roles.
In the NT system, it brings about pseudogaps [4], nearly
free electron states [5], and formation of single wall NT
ropes [6]. In the multilayer GR, it causes band gaps under
the electric field [7] and superconductivity of twisted bilayer
GR [8]. The two inequivalent Fermi points K and K ′ of the
single layer are called valleys. Effective mass theory shows
that a boundary between monolayer and bilayer GR works
as valley current filters [9]. Since interlayer bonds are much
weaker than intralayer bonds, interlayer sliding and rotation
occur keeping the honeycomb lattice. Telescopic extension
of multiwall NTs has been investigated experimentally [10]
and theoretically [11] as GHz oscillators and nanosprings.
Interlayer interaction energy and force were calculated for a
stack of GR flakes [12] and for a NT on a GR layer [13].
Molecular dynamic calculations indicate that AB stacking is
the most stable in the NT-GR connection [14]. The interlayer
force is usually classified to van der Waals force caused
by virtual dipole-dipole interaction that could exist without
the interlayer orbital overlap [15]. The electronic structures,
however, are described well by the tight binding (TB) model
with the interlayer transfer integrals that originate from the
interlayer orbital overlap [16]. In the present paper, the inter-
layer transfer integral is termed the interlayer bond. Interlayer
‘covalent’ bonds induced by beam irradiation, heating, and
defects [17] are excluded in our discussion as they hinder the
nearly free interlayer motion.

Among various multilayer systems, a single layer ↓ par-
tially overlapping with another single layer ↑ is outstanding in
the relation between the interlayer bonds and the conductance.
It is represented by (L,↓)-(D,↓,↑)-(R,↑) where interlayer
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bonds are limited to the overlapped region D. Connecting the
source and drain electrodes to single layer regions L and R,
respectively, we can force the net current to flow through the
interlayer bonds. In contrast to this ↓ - ↑ junction, the net cur-
rent between ↓ and ↑ is zero in the junctions (L,↓)-(D,↓,↑)-
(R,↓) where both the source and drain electrodes are con-
nected to ↓ [18]. The ↓ - ↑ conductance was measured for
the telescoped NTs [19]. The Landauer’s formula conductance
of ↓ - ↑ junctions has been reported. The combinations ↓ - ↑
are GR-GR [20], NT-GR [21], and NT-NT. Telescoped coaxial
contacts [22,23,25–26] and side contacts [27,28] were dis-
cussed for the NT-NT junctions. Comparisons between the
two contacts were also reported [29,30].

The Landauer’s formula conductance is the sum of the
interlayer transmission rates Tσ ′,σ of which indexes σ ′ and σ

denote channels of R and L, respectively. Wave numbers k1

and k2 of region D appear in the dependence of Tσ ′,σ on the
overlapped length as the periods of the beating, 2π/|k1 − k2|
and 2π/|k1 + k2|. In addition to this (k1, k2) characteristic, we
can show that Tσ ′,σ is proportional to |W |2 considering the
interlayer bond W as perturbation [23,26,30]. It is termed the
|W |2 characteristic here. The (k1, k2) and |W |2 characteristics
appear in the period and in the amplitude of the oscillation,
respectively, while both originate from W . Whereas the nu-
merical calculation method about Tσ ′,σ has been established
[31], it does not diminish the value of the perturbation cal-
culation producing analytical formulas. Without the perturba-
tion calculation, one might assume an analytical formula of
which fitting parameters are optimized for the coincidence
with the numerical results. In this fitting method, however,
the fear is that choice of the formula may become arbitrary.
When we know the exact eigenstates of the unperturbed
Hamiltonian, however, we can derive the unique perturbation
expansion [15].

In the present paper, ↓ and ↑ are chosen to be parallel
(n↓, n↓) and (n↑, n↑) armchair NTs, because their mirror
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FIG. 1. Geometrical structures of (a) the side contact and (b) the
telescoped coaxial contact. The single wall armchair NTs are denoted
by ↓ and ↑. The z axis is chosen to be the axis of tube ↓. The
atomic z coordinates in tubes ↓ and ↑ are a j/2 and a j/2 + �z,
respectively, with integers j, the lattice constant a = 0.246 nm,
and a small translation |�z| < a/4. Tubes ↓ and ↑ have the open
edges at zR = a jr/2 and zL = �z + a( jl + 1)/2, respectively. The
geometrical overlap length is zR − zL while the integer overlap length
N is defined as N = jr − jl + 1 = 2 + 2(zR − zL + �z)/a. Without
losing generality, jl = −1, 0.

symmetry and small unit cell enable us to perform the analyt-
ical perturbation calculation. Figure 1 shows the (a) side con-
tact and (b) telescoped coaxial contact. The mirror symmetry
of each NT is indicated by σ = + and σ = − in the suffixes
of Tσ ′,σ . The (k1, k2) characteristic does not appear in the
nonparallel crossed NT junction without periodicity in region
D [32]. In the chiral NT junctions, the large unit cell of region
D makes the (k1, k2) characteristic complicated [26,30]. In the
reported theoretical works on the (n↑, n↑)-(n↓, n↓) junctions,
the diagonal transmission rates T+,+ and T−,− and the sum∑

σ

∑
σ ′ Tσ ′,σ have been discussed, but the off-diagonal trans-

mission rates T+,− and T−,+ have been neglected. In this paper,
we derive the analytical formulas of all four Tσ ′,σ and show
how the |W |2 and (k1, k2) characteristics appear there.

II. GEOMETRICAL STRUCTURE AND
TIGHT BINDING MODEL

As is shown by Fig. 1, the tube axis of ↓ is chosen to be
the z axis. The atomic z coordinates in tubes ↓ and ↑ are
a j/2 and a j/2 + �z, respectively, with integers j, the lattice
constant a = 0.246 nm, and a small translation |�z| < a/4.
The atomic y coordinates of tube ξ (=↓,↑) are represented by
Rξ sin θ

ξ
j,i with the tube radius Rξ =

√
3a

2π
nξ . The angles θ

↓
j,i =

χ j,i

n↓
and θ

↑
j,i = χ j,i

n↑
− 2π

3n↑
+ �θ are measured in the opposite

direction with positive integers i, χ j,i ≡ π (i − (−1)i

6 − (−1) j

2 ),
and a small rotation |�θ | < π/n↑. Thus the atomic x coordi-
nates are R↓ cos θ

↓
j,i for tube ↓ and D + R↑ + R↓ − R↑ cos θ

↑
j,i

j j
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FIG. 2. Interlayer configuration of (a) the side contact and
(b) the coaxial contact for the case where (n↓, n↑) = (10, 15) and
(�θ, �z) = (0, 0).

for tube ↑. Here D = 0.32 nm is the interlayer distance for
the side contact while D = −R↓ − R↑ for the coaxial contact.
The former is the same as Ref. [28]. When |n↓ − n↑| = 5,
the interlayer distance of the coaxial contact is close to that
of graphite. For example, Fig. 2 shows the interlayer config-
uration in the case where (n↓, n↑,�θ,�z) = (10, 15, 0, 0).
Tubes ↓ and ↑ have ‘AB’ and ‘ab’ sublattices where odd i
sites correspond to ‘A’ and ‘a’ sublattices. In Fig. 2(a) for the
side contact, 1A and 1a (2B and 2b) sites correspond to i = 1
(i = 2). The interlayer configuration in the side contact is
similar to the Ab stacking of the bilayer GR when (�θ,�z) =
(0, 0), ( −2π

3n↑
, 0).

The π orbital TB equations with energy E in region D are
represented by

E�c (D)
j =

1∑
� j=−1

H ( j,� j)�c (D)
j+� j, (1)

where t�c (D)
j = ( t�c (D,↓)

j , t�c( D,↑)
j ). The matrix H ( j,� j) is par-

titioned as

H ( j,� j) =
(

h( j,� j)
↓ , W ( j,� j)

tW ( j+� j,−� j), h( j,� j)
↑

)
. (2)

The blocks h and W correspond to intralayer and interlayer
elements, respectively. Figure 3 shows a schematic diagram
of the tight binding Hamiltonian. As H ( j,� j) is the block of
the Hamiltonian matrix partitioned by the half lattice constant
a/2, H ( j+2,� j) = H ( j,� j). The (i, i′) element of W ( j,� j) is
defined by t1e

d−r
Lc �(r − rc)| cos φ| where φ = θ

↓
j,i + θ

↑
j+� j,i′ ,

t1 = 0.36 eV, d = 0.334 nm, Lc = 0.045 nm, the cutoff ra-
dius rc = 0.39 nm, r denotes the atomic distance, and � is the
step function defined by �(x) = 1 for negative x and �(x) =
0 for positive x. The elements between nearest neighbors are
h( j,0)

ξ,2m−1,2m, h( j,0)
ξ,2m,2m−1, h(1,±1)

ξ,2nξ ,1
, h(1,±1)

ξ,m−1,m, h(2,±1)
ξ,1,2nξ

, and h(2,±1)
ξ,m,m−1

with integers m. They are equal to the negative constant −t =
−2.75 eV while the other elements of h( j,� j)

ξ are zero. Since
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FIG. 3. Schematic diagram of the tight binding Hamiltonian.
Since h(1,0)

ξ = h(2,0)
ξ and h( j,1)

ξ = h( j,−1)
ξ , we use the abbreviations h(0)

ξ

and h(1)
ξ .

h(1,0)
ξ = h(2,0)

ξ and h( j,1)
ξ = h( j,−1)

ξ , we use the abbreviation h(0)
ξ

and h(1)
ξ in Fig. 3. On the other hand, relations W (1,0) = W (2,0)

and W ( j,1) = W ( j,−1) do not generally hold. The latter relation
W ( j,1) = W ( j,−1) is valid only when �z = 0.

Our calculation and Refs. [25,33] are the same in the TB
model except that t1 has two values 0.36 eV and 0.16 eV
in Refs. [25,33]. As this multivalued t1 model was derived
from first principle calculation data on multiwall NTs, it
may not be effective for the side contact. In our calculation,
t1 is fixed at the single value 0.36 eV and the geometrical
structure is simplified compared to the actual one as a first
guess.

III. METHOD OF CALCULATION

In order to obtain the transmission rate, we calculate the
scattering matrix (S matrix). The S matrix has two useful
characteristics. Firstly, unitarity t S∗ = S−1 is guaranteed by
conservation of the probability. When there is time reversal
symmetry, t S = S also holds. These symmetries proved in
Appendix A can be used as verification of the obtained results.
Secondly, S matrix is directly related to the ratio between
incident and scattered wave amplitudes. It leads us to an
intuitive formula showing that multiple reflection between the
two boundaries causes the transmitted wave.

A. Exact numerical calculation

Equation (1) enables us to obtain the transfer matrix

(D) that satisfies (t�c (D)

2m+1,
t�c (D)

2m+2) = (t�c (D)
2m−1,

t�c (D)
2m ) t
(D).

Replacing W ( j,� j) with zero, we also obtain the transfer
matrices 
(L) and 
(R) for regions L and R. With a set of
linearly independent eigenvectors �u (μ)

l satisfying 
(μ)�u (μ)
l =

λ
(μ)
l �u (μ)

l , we can expand �c (μ)
j as(

�c (μ)
2m−1

�c (μ)
2m

)
=

2nμ∑
l=−2nμ

�u (μ)
l

(
λ

(μ)
l

)m
γ

(μ)
l , (3)

where l 
= 0, λ
(μ)
−l = 1/λ

(μ)
l , nL = n↓, nR = n↑, and nD =

nL + nR. The eigenvectors are ordered according to the fol-
lowing rules (i) for propagating waves and (ii) for evanescent
waves. Here Nμ denotes the channel number of region μ.
(i) When 1 � l � Nμ, |λ(μ)

l | = 1, �u (μ)
−l = (�u (μ)

l )
∗
, and the

probability flow of �u (μ)
l is positive. Note that |�ul |2 
= 1. The

normalization of �u (μ)
l is defined by Appendix A. (ii) When

Nμ + 1 � l � 2nμ, |λ(μ)
l | < 1.

The boundary conditions for the LD junction are⎛⎜⎝�c (L)
jl+1

�c (L)
jl

0

⎞⎟⎠ =

⎛⎜⎝�c (D,↓)
jl+1

�c (D,↓)
jl

�c (D,↑)
jl

⎞⎟⎠ +

⎛⎜⎝
1

h
( jl ,1)
↓

W ( jl,1)�c (D,↑)
jl+1

0

0

⎞⎟⎠ (4)

and those of the DR junction are⎛⎜⎝�c (R)
jr

�c (R)
jr+1

0

⎞⎟⎠ =

⎛⎜⎜⎝
�c (D,↑)

jr

�c (D,↑)
jr+1

�c (D,↓)
jr+1

⎞⎟⎟⎠ +

⎛⎜⎝
1

h( jr+1,1)
↑

tW ( jr,1)�c (D,↓)
jr

0

0

⎞⎟⎠, (5)

where jl and jr denote j at the boundaries as is shown
by Fig. 1. The geometrical overlapped length equals zR −
zL = −�z + ( jr − jl − 1)a/2. Without losing generality, jl is
either −1 or 0. Derivation of Eqs. (4) and (5) is shown by
Appendix B. Since Eq. (3) must not diverge at j =
±∞, γ

(L)
l = 0 and γ

(R)
−l ′ = 0 when l > NL and l ′ > NR.

Thus the number of nonzero variables is Mvar = 2nL +
2nR + NL + NR + 4nD. On the other hand, the number
of conditions is Mcond = 2nL + 2nR + 4nD to which con-
tributions of Eqs. (4) and (5) are 4nL + 2nR and 4nR +
2nL, respectively. Accordingly the number of independent
variables is Mvar − Mcond = NL + NR. Choosing t �γ (L′ )

+ =
(γ (L)

1 , γ
(L)

2 , · · · , γ
(L)

NL
) and t �γ (R′ )

− = (γ (R)
−1 , γ

(R)
−2 , · · · , γ

(R)
−NR

)
for the independent variables, we obtain the scattering matrix
SRL satisfying(

�γ (L′ )
−

�γ (R′ )
+

)
=

(
rLL, tLR

tRL, rRR

)(
�γ (L′ )

+
�γ (R′ )

−

)
, (6)

where SRL is partitioned into reflection blocks rLL, rRR and
transmission blocks tLR, tRL. Detail of the numerical calcula-
tion is shown by Appendix B. The energy E we consider here
is close to zero so that NL = NR = 2.

B. Approximate analytical calculation

We consider the Bloch state (t�c (D)
2m−1,

t�c (D)
2m) = eikam t�b

for the periodic system corresponding to region D.

155407-3



RYO TAMURA PHYSICAL REVIEW B 99, 155407 (2019)

FIG. 4. Relation between Sec. III A and Sec. III B in notation of
the vectors.

Equation (1) is transformed into the eigenvalue equation
El

�bl = H (k)�bl with the Hamiltonian

H (k) =
(

H (1,0), H (1,1)

H (2,−1), H (2,0)

)

+
(

0, e−ikaH (1,−1)

eikaH (2,1), 0

)
. (7)

In the perturbation calculation, H (k) = H0(k) + βV (k) where
H0(k) and βV (k) correspond to intralayer h( j,� j)

↑,↓ and inter-
layer W ( j,� j), respectively. The constant β = 1 is introduced
for counting the times the perturbation V enters, namely,
El and �bl are expanded as �bl = �b [0]

l + β�b [1]
l + β2�b [2]

l + · · ·
and El = E [0]

l + βE [1]
l + β2E [2]

l + · · · . We choose the unper-
turbed states near zero energy,

E [0]
σ,τ = σ t

(
2 cos

ka

2
− 1

)
(8)

�b [0](ζ )
σ,τ =

( �d [0](ζ )
σ,τ

exp
(
i k

2 a + iπ
)�d [0](ζ )

σ,τ

)
, (9)

where

t �d [0](ζ )
σ,τ = (t�g↓,σ , τ f (ζ )

σ
t�g↑,σ

)
(10)

t�gξ,σ = 1√
8nξ

(1, σ, 1, σ, · · · , 1, σ ) (11)

with a constant factor f (ζ )
σ . The auxiliary index ζ = ±

indicates that the wave number k is close to ζ2π/(3a).
Relation of �b, �d,�g to notation of Sec. III A is illustrated
by Fig. 4. In Eqs. (8) and (9), index l is replaced by

(σ, τ ) = (+,+), (−,+), (+,−), (−,−) where σ indicates
the mirror symmetry of the isolated tubes. Since we con-
sider energy region |E | � t and the Brillouin zone |ka| �
π , the phase π of Eq. (9) is necessary. If we deleted the
phase π of Eq. (9), Eq. (8) would be changed into E [0]

l =
−σ t (2 cos ka

2 + 1). In this notation, the wave number k at
zero energy would be ±4π/(3a) outside the Brillouin zone
|k| � π/a.

The matrix element of the perturbation V (ζ )
(σ ′,τ ′|σ,τ ) =

t (�b [0](ζ )
σ ′,τ ′ )

∗
V (ζ 2π

3a )�b [0](ζ )
σ,τ is represented by

V (ζ )
(σ ′,τ ′|σ,τ ) = τ f (ζ )

σ w
(ζ )
σ,σ ′ + τ ′( f (ζ )

σ ′ w
(ζ )
σ ′,σ

)∗
, (12)

where k is approximated by ζ2π/(3a),

w
(ζ )
σ ′,σ = η

(ζ )
A,a + σσ ′η(ζ )

B,b + σ ′η(ζ )
A,b + ση

(ζ )
B,a (13)

η
(ζ )
s,s′ =

2∑
j=1

n↓∑
i=1

n↑∑
i′=1

(W ( j,0) − W̃ ( j,1)(ζ ) )2i+s,2i′+s′

8
√

n↑n↓
(14)

W̃ ( j,1)(ζ ) = eiζ π
3 W ( j,1) + e−iζ π

3 W ( j,−1). (15)

In Eq. (14), sublattice indexes (A,B) and (a,b) are translated
to integers (−1, 0) in the same way as Fig. 2.

As E [0]
σ,+ = E [0]

σ,−, we perform the perturbation calcula-
tion for the doubly degenerate states [15]. The conditions
t (�b [0](ζ )

σ,τ )
∗�b [0](ζ )

σ ′,τ ′ = δσ,σ ′δτ,τ ′ and V (ζ )
(σ,+|σ,−) = 0 for this calcu-

lation require us to choose the factor f (ζ )
σ as

f (ζ )
σ =

(
w(ζ )

σ,σ

)∗∣∣w(ζ )
σ,σ

∣∣ . (16)

The first order formulas are

E [1]
σ,τ = V (ζ )

(σ,τ |σ,τ )

= 2τ
∣∣wσ,σ

∣∣ (17)

and

�b [1](ζ )
σ,τ =

∑
τ ′=±

V (ζ )
(−σ,τ ′|σ,τ )

2E [0]
σ,τ

�b [0](ζ )
−σ,τ ′ , (18)

where we use relation E [0]
σ,τ − E [0]

−σ,τ ′ = 2E [0]
σ,τ . In Eq. (17),

index ζ is omitted as |w(+)
σ,σ | = |w(−)

σ,σ |. Using Eqs. (8), (17),
and E = E [0]

σ,τ + E [1]
σ,τ , the wave number k is approximated by

kσ,τ = ζ
2

a

(
π

3
− σ

E − 2τ |wσ,σ |√
3t

)
(19)

with the group velocity dE
h̄dk = −ζσ

√
3ta

2h̄ . The set {�b(ζ )
σ,τ } has a

common wave number k 
 ζ2π/(3a) while we have to pre-
pare the set {�u1, �u2, �u3, �u4} of Eq. (3) with a common energy
E and positive velocities. Replacing (E [0]

σ,τ , ζ ) by (E ,−σ ) in
Eq. (18), we obtain the latter set. The error caused by this
replacement is a higher order term and negligible.

Equation (11) is the repetition of the reduced vector �g ′
ξ,σ ≡

1√
8nξ

(1, σ ) as �gξ,σ = (�g ′
ξ,σ ,�g ′

ξ,σ , · · · ,�g ′
ξ,σ ). Replacing �gσ,τ

by �g ′
ξ,σ in Eqs. (9), (10), and (18), �d [n](ζ )

σ,τ is reduced to the

vector �d ′[n](ζ )
σ,τ . Since we neglect the evanescent modes, we can
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use the simple formula t�c (D′ )
j = ( t�c ′(D)

j , t�c ′(D)
j , · · · , t�c ′(D)

j )
where

�c ′(D)
j =

1∑
n=0

� j+1U [n]
D �γ (D′ )

+ + (
� j+1U [n]

D

)∗�γ (D′ )
− (20)

U [n]
D = (�d ′[n](−)

+,+ , �d ′[n](+)
−,+ , �d ′[n](−)

+,− , �d ′[n](+)
−,−

)
. (21)

From Eq. (19), we derive

� =
(

�−1�0, 0
0, ��0

)
, �0 =

(
�0, 0
0, �0

)
, (22)

where

� =
(

eiθ+ , 0
0, eiθ−

)
, �0 =

(
eiϕ+ , 0

0, eiϕ−

)
(23)

ϕσ = E√
3t

+ σ
2π

3
, θσ = 2|wσ,σ |√

3t
. (24)

Equations (19) and (24) are related as ϕσ = π + (kσ,+ +
kσ,−)a/4 and θσ = −(kσ,+ − kσ,−)a/4 for the positive veloc-
ity ζσ = −1. Though �0 does not appear in Eq. (20), it will be
referred to later. In the relation between Eq. (3) and Eq. (20),
we should note that λ

(D)
l = �2

l,l 
= �l,l . The reduced vectors
of single layer regions (μ = L, R) are represented by

�c ′(μ)
j = 1

2
√

nμ

(
1, 1
1, −1

) ∑
s=±

�
s( j− j′μ )
0 �γ (μ′ )

s , (25)

where j′l = jl and j′r = jr + 1. From Eqs. (4), (5), (20), and
(25), we derive(

X [0]
μ + X [1]

μ

)�y (μ)
out = −(

X [0]∗
μ + X [1]∗

μ

)�y (μ)
in , (26)

where outgoing �y (μ)
out and incoming �y (μ)

in at boundary μ are
defined by

�y (L)
out
in

= (�±( jl+1)�γ (D′ )
± , �γ (L′ )

∓ ) (27)

�y (R)
out
in

= (�∓( jr+2)�γ (D′ )
∓ , �γ (R′ )

± ). (28)

Substituting �y (μ)
out in Eq. (26) by �y (μ)

out = (S[0]
μ + S[1]

μ )�y (μ)
in , we

derive

S[0]
μ = −(

X [0]
μ

)−1
X [0]∗

μ ,

S[1]
μ = −(

X [0]
μ

)−1(
X [1]

μ S[0]
μ + X [1]∗

μ

)
. (29)

Equation (29) enables us to obtain

SL = 1

2

⎛⎜⎜⎝
−F−2, F−2,

√
212

F−2, −F−2,
√

212√
212,

√
212, 0

⎞⎟⎟⎠

+ 1√
2E

⎛⎜⎝ −α+σx, −iα−σy, −F ∗G∗σx

iα−σy, α+σx, F ∗G∗σx

−σxF ∗G∗, σxF ∗G∗, 0

⎞⎟⎠ (30)

SR = −1

2

⎛⎜⎝ 12, 12, −√
2F

12, 12,
√

2F

−√
2F,

√
2F, 0

⎞⎟⎠

+ 1√
2E

⎛⎜⎝−α∗
+σx, −iα∗

−σy, −σxG

iα∗
−σy, α∗

+σx, −σxG

−Gσx −Gσx, 0

⎞⎟⎠ (31)

with the 2 × 2 unit matrix 12, diagonal matrices

F =
(

f (−)
+ 0

0, f (+)
−

)

=
(

eiA+ 0

0, eiA−

)
(32)

G =
(

w
(+)
+,− 0

0, w
(−)
−,+

)

=
(|w+,−|eiB+ 0

0, |w−,+|e−iB−

)
, (33)

Pauli matrices

{σx, σy, σz} =
{(

0, 1
1, 0

)
,

(
0, −i
i, 0

)
,

(
1, 0
0, −1

)}
, (34)

and

α± = 1√
2

( f (+)
+ w

(+)
+,− ± f (−)

− w
(−)
−,+). (35)

In Eqs. (32) and (33), the phases of f (−σ )
σ and w

(+)
−σ,σ are

denoted by Aσ and B−σ , respectively. As (w(−)
σ ′,σ )∗ = w

(+)
σ ′,σ , we

omit the index ζ in the absolute value |w(ζ )
σ ′,σ |. See Appendix C

for details of the calculation.
In order to combine SL and SR into the SRL matrix of

Eq. (6), we partition Eqs. (30) and (31) into reflection blocks
and transmission blocks as

Sμ =
(

r[0]
μ , t t [0]

μ

t [0]
μ , 0

)
+

(
r[1]
μ , t t [1]

μ

t [1]
μ , 0

)
. (36)

The transmission matrix tRL in Eq. (6) is represented by the
superposition of the multiple reflection waves as

tRL = tR�N
∞∑

m=0

(rL�N rR�N )m ttL (37)

with the overlap length integer N = jr − jl + 1. The integer
m in Eq. (37) is the number of times of the round trip between
j = jl and j = jr before the transmission. Replacing rμ, tμ by
r[0]
μ , t [0]

μ in Eq. (37), we obtain the zero order t [0]
RL. That is a

diagonal matrix showing the diagonal transmission rates

Tσ,σ = 4 sin2(Nθσ ) cos2 (Aσ − Nϕσ )

cos4(Nθσ ) + 4 sin2(Nθσ ) cos2 (Aσ − Nϕσ )
(38)

with the phases defined by Eqs. (24) and (32).
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TABLE I. The parameters defined by Eq. (13) for the junctions
of Figs. 5 and 6 in units of eV.

w+,+ w−,− w−,+ w+,−

Fig. 5 7.7 × 10−3 −9.5 × 10−3 −8.4 × 10−3 9.5 × 10−3

Fig. 6 9.4 × 10−2 0 2.0 × 10−2 0

On condition that �N 
 �N
0 , the first order term t [1]

RL of
Eq. (37) approximates to p(0)

1 + p(0)
0 + p(1)

1 + p(1)
0 where(

p(0)
n

p(1)
n

)
=

(
t [n]
R �N

0
t t [1−n]

L

t [0]
R �N

0 r[n]
L �N

0 r[1−n]
R �N

0
t t [0]

L

)
. (39)

The superscript (m) and subscript n of p(m)
n indicate the

times of the round trip and the position of the first order
matrix, respectively. The condition �N 
 �N

0 is satisfied in
the region N < min(1/|θ+|, 1/|θ−|) = √

3t/(2w) where w ≡
max(|w+,+|, |w−,−|). The diagonal elements of Eq. (39) equal
zero while the off-diagonal elements of Eq. (39) are repre-
sented by (

p(0)
1

)
−σ,σ

= −w
(−σ )
−σ,σ

E
eiNϕσ

(
p(0)

0

)
−σ,σ

= −w
(σ )
−σ,σ

E
eiNϕ−σ (40)

and p(1)
n = − exp (i 2NE√

3t
)p(0)

n . From the first order t [1]
RL, we can

derive the off-diagonal transmission rate

T−σ,σ = 16
|w−σ,σ |2

E2
cos2

(
B−σ + Nπ

3

)
sin2

(
NE√

3t

)
(41)

with the phase B−σ defined by Eq. (33). In Eq. (41), −σ and
σ correspond to tubes ↑ (R) and ↓ (L), respectively.

IV. RESULTS AND DISCUSSIONS

First we consider the case where �z = 0 and Aσ = Bσ =
0. Figures 5 and 6 show the transmission rates Tσ ′,σ for
the side contact (E = 0.08 eV) and the coaxial contact (E =
0.3 eV), respectively, in the case where n↓ = 10 and n↑ =
15. The horizontal axis is the integer N = jr − jl + 1. The
geometrical overlapped length equals (N − 2)a/2 as is shown
by Fig. 1. Equations (38) and (41) do not depend on jl when N
is fixed. As the author has confirmed that this insensitivity to jl
also approximately holds in the exact results, displayed exact
results are limited to the case where jl = −1. The interval of
N in each line is three and the attached numbers 0, 1, and 2
are mod(N, 3). Symbols (σ ′, σ ) in Fig. 5 indicate subscripts
of Tσ ′,σ . For the coaxial contact of Fig. 6, w−,σ = 0 and the
exact numerical values of T−,σ are negligibly small compared
to T+,σ . Thus T−,σ is not shown in Fig. 6 [34]. In Figs. 5,
6, and other following figures, the dashed lines represent the
approximate formulas (38) and (41) while the exact data are
shown by solid lines.

The values of Eq. (13) for Figs. 5 and 6 are listed in
Table I. In order to understand a large difference between
the side and coaxial contacts in Table I, we should note
cancellation between W ( j,0) and W ( j,1) in Eq. (14) where

overlap length integer N
0 50 100 150 200

0.4

0.8

tra
ns

m
is

si
on

 ra
te

(-,-) 2

(+,+) 1

(-,-) 1

(+,+) 2

(+,+) 0
(-,-) 0

0.2

0.1tra
ns

m
is

si
on

 ra
te

(+,-) 0

(-,+) 0

(+,-) 
1,2

(-,+) 1,2

(a)

(b)

FIG. 5. (a) Diagonal Tσ,σ and (b) off-diagonal T−σ,σ transmission
rate of the side contact (n↓, n↑) = (10, 15), jl = −1, �θ = 0, �z =
0 with the energy E = 0.08 eV. The horizontal axis is the integer N .
The geometrical overlapped length equals (N − 2)a/2 as is shown
by Fig. 1. Solid and dashed lines represent the exact results and
the approximate formulas, respectively. By the attached symbols,
subscripts of Tσ ′,σ and integers mod(N, 3) are indicated. The labels
‘(±,∓)1’ and ‘(±,∓)2’ are not displayed for the solid lines in (b).
Among the four solid lines without the labels, that of (+,−) 1 is
slightly larger than the others.

W ( j,−1) = W ( j,1) and W̃ ( j,1)(±) = W ( j,1). This cancellation
originates from phase π in Eq. (9). For reference, Fig. 7 shows
the interlayer configurations of the bilayer GR of which the
lower ‘AB’ and upper ‘ab’ sublattices are numbered along
the armchair chain. In Fig. 7(a), A1-a1, B1-b1, and B1-a3
elements of W ( j,0) cancel A1-a2, B1-b2, and B1-a2 elements
of W ( j,1) completely. Thus only the A1-b1 element of W ( j,0)

contributes to Eq. (13) and wσ ′,σ = σ ′ηAb. It indicates that
only the vertical bonds contribute to Eq. (13). In the same
way, wσ ′,σ = σηBa in Fig. 7(b) and wσ ′,σ = (1 + σσ ′)ηAa

in Fig. 7(c). Since Fig. 2 is similar to Fig. 7 in the local
configuration, vertical bonds indicated by ovals are dominant
in Eq. (13) where all the vertical bonds have similar positive
values in W ( j,0). As is shown in Fig. 2, the number of the
vertical bonds in Eq. (13) is considerably larger in the coaxial
contact than in the side contact. This is the reason why w+,+ of
the coaxial contact is remarkably larger than w+,+ of the side
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overlap length integer N

T+,-

(a)

(b)

0 40

0.1

6020

0.2

0.6

0.05

T+,+

1

1 2

0

2

0

0

0

1

2, 1

2

0

FIG. 6. Transmission rates (a) T+,+ and (b) T+,− of the coax-
ial contact (n↓, n↑) = (10, 15), jl = −1, �θ = 0, �z = 0 with the
energy E = 0.30 eV. The horizontal axis is the integer N . Solid
and dashed lines represent the exact results and the approximate
formulas, respectively. The attached integers 0, 1, and 2 represent
mod(N, 3).

contact. In the side contact, the interlayer bonds are limited
to the contact line θ↑ 
 θ↓ 
 0 with the Ab stacking, namely,
wσ ′,σ 
 σ ′ηA,b. In the rest of this paragraph, we discuss the
coaxial contact. In contrast to the side contact, the vertical
bonds appear in all four terms in Eq. (13). As the vertical
bonds have similar lengths, the four η’s are close to each other.

a1

a2
b1

b2

A1

A2
B1

B2
a3 a3
b3

A3
B3

a1

a2
b1

b2
A1

A2
B1

B2

a1

a2
b1

b2

A1

A2
B1

B2

(a) (b) (c)

FIG. 7. Interlayer configuration of bilayer graphenes with (a) Ab,
(b) Ba, and (c) Aa stacking. Here (A,B) and (a,b) denote sublattices
in lower ↓ and upper ↑ layers, respectively.

It explains the relation w+,+ > |w+,−|, |w−,+|, |w−,−|. Rela-
tions (ηA,a, ηA,b) = (ηB,a, ηB,b) and w+,− = w−,− = 0 hold
on the condition that mod(n↑, 3) = 0 and |n↓ − n↑| = 5. This
vanishing of w is called the threefold cancellation in Ref. [25].
In Fig. 2(b), for example, �, ♦, and � bonds cancel �′,
♦′, and �′, respectively. Whether the threefold cancellation
occurs or not, w+,+ is dominant among the four w’s. Here
we should remember that Eq. (41) has been derived under
the condition N <

√
3t/(2w). The difference between the two

contacts in w = max(|w+,+|, |w−,−|) appears in maximum
N for the effectiveness of Eq. (41). Namely, coincidence
between solid and dashed lines is limited to region N < 20
in Fig. 6(b), while that is seen in the wider range N < 100
in Fig. 5(b). Considering that Eq. (38) reaches unity at N =√

3tπ/(4wσ,σ ), we notice that approach of Eq. (38) to unity
loses effectiveness of Eq. (41). On the other hand, effective-
ness of Eq. (38) is not influenced by Eq. (41) as is shown in
Fig. 5(a) and Fig. 6(a). With a fixed N , Eq. (41) reaches its
maximum 16 cos2(Nπ/3)w2

−σ,σ N2/(3t2) at E = 0. Thus the

maximum of Eq. (41) in its effective range N <
√

3t/(2w)
is estimated to be 4w2

−σ,σ /w2. As w2
−σ,σ /w2 is remarkably

larger in the side contact than in the coaxial contact, we
concentrate our attention on the side contact below.

Dependence of Eq. (38) on N is determined by the phases
Nθσ and Nϕσ . As a function of N , the former and the latter
correspond to slow and rapid oscillations, respectively. Con-
necting data points with the interval of three, the rapid oscilla-
tion is smoothed in Fig. 5. Since θσ is independent of E , only
ϕσ determines the dependence of Eq. (38) on E . In Fig. 5(a),
the line (σ, σ )-1 is similar to the line (−σ,−σ )-2 in the period
since mod(Nϕσ , 2π ) = 2π

3 σmod(N, 3) + EN√
3t

. The first nodes
of (σ, σ )-0 in Fig. 5(a) and the first peaks in Fig. 5(b) have the
common horizontal position N = π

√
3t/(2|E |) 
 93.

Figure 8 shows (a) T +,− and (b) Landauer’s for-
mula conductance

∑
σ ′,σ T σ ′,σ for the energies E =

0.05, 0.08, 0.1, 0.15 eV where T (N ) ≡ 1
3

∑1
j=−1 T (N + j)

denotes the ‘smoothed’ transmission rate. In the transforma-
tion of T into T , the rapid oscillation with the wave length
3a/2 is smoothed out. Effectiveness of Eq. (41) is confirmed
for the energies E = 0.15, 0.1, 0.08 eV in Fig. 8(a). The
peak positions of solid lines are consistent with those of
dashed lines (N, T +,−) = (π

√
3t/(2|E |), 8w2

+,−/E2). As will
be clarified later, this peak is important for the smoothed
Landauer’s formula conductance in Fig. 8(b). When E =
0.05 eV, however, the solid lines are suppressed compared
to the dashed line in Fig. 8. This suppression is also found
in Fig. 9 showing Tσ ′,σ as a function of E with N = 81, 82.
In Fig. 9, the approximate formulas satisfactorily reproduce
the exact results except overestimation of the peak height at
(N, E ) = (81, 0). This suppression of the zero energy peak is
caused by the pseudogap. As Eq. (19) shows no gap, ND = 4
in the perturbation calculation. On the other hand, pseudogap
regions ND = 2 appear near E = 0 in the exact dispersion
lines as is shown by Fig. 10. Compared to the pseudogap, the
width of the real gap ND = 0 is negligibly small. The solid
lines are similar to the dashed lines in the energy difference
between the neighboring lines while crossing occurs only
in the dashed lines. Thus the pseudogap width is estimated
to be 4w. Since Eq. (41) is effective outside the pseudogap
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E (eV) =0.05
       0.08
    0.1
0.15 T+,-

overlap length integer N

0

0.1

0.2

0.3
(a)

0 50 100 150 200
0

0.4

0.8

1.2

1.6
(b)

E (eV) =0.05
           0.08
          0.1
       0.15

Tσ',σ
σ',σ

FIG. 8. (a) T +,− and (b)
∑

σ ′=±
∑

σ=± T σ ′,σ for the energies
E = 0.05, 0.08, 0.1, and 0.15 eV. Solid and dashed lines represent
the exact results and the approximate formulas, respectively. Here
T σ ′,σ (N ) denotes the smoothed transmission rate of the junction of
Fig. 5 defined by 1

3

∑1
j=−1 Tσ ′,σ (N + j).

|E | > 4w, the maximum of Eq. (41) is estimated to be
w2

−σ,σ /w2. Outside the pseudogap, Eq. (41) can reach its

maximum at N = π
√

3t/(2|E |) in its effective range N <√
3t/(2w). The diagonal Tσ,σ has zero energy peak only when

mod(N, 3) = 0, while off-diagonal T−σ,σ has it irrespective of
mod(N, 3). This difference between Tσ,σ and T−σ,σ becomes
more obvious in Fig. 11 showing the smoothed T with N = 82
as a function of E . The zero energy peaks of T σ,σ are replaced
by the dips while those of T −σ,σ resist the suppression by the
pseudogap. We can also find that the rise of the conductance
with lowered E in Fig. 8(b) comes from the off-diagonal part
T+,− + T−,+, although T+,− + T−,+ is less than the diagonal
part T+,+ + T−,− in Fig. 11 outside the pseudogap.

The analytical formulas (38) and (41) enable
us to discuss the |W |2 and (k1, k2) characteristics
mentioned in Sec. I. When �z = 0, N � √

3t/|wσ,σ |
and N � √

3t/|E |, Eqs. (38) and (41) are unified into
16
3 (wσ ′,σ /t )2N2 cos2(Nπ/3). It clearly indicates that all four

parameters wσ ′,σ have the same |W |2 characteristic. As a
function of the overlapped length Na/2, Eqs. (38) and (41)
show superposition of the rapid and slow oscillations. It can
be considered as a beat with the wave number Eq. (19). The
periods of Eq. (38) are consistent with |kσ,+ − kσ,−| = 4θσ /a
and |kσ,+ + kσ,−| = 4|ϕσ − π |/a. In the same discussion

(a)

(b)

(c)

E (eV)
0 0.1 0.2- 0.1- 0.2

0.3

0.2

0.1

0

0.2

0.4

0

0.2

0.4

0

82 81

81

8281

81

82

81

T+,+

T-,-

T+,-
T-,+

FIG. 9. Transmission rates (a) T+,+, (b) T−,−, and (c) T±,∓ of the
junction of Fig. 5 as a function energy E when N = 81, 82. Solid
and dashed lines represent the exact results and the approximate
formulas, respectively. In (c), solid lines with closed symbols and
dashed lines with open symbols correspond to T−,+.

on the off-diagonal transmission, however, we are not clear
how to choose (τ, τ ′) in the calculation of |k+,τ − k−,τ ′ |
and |k+,τ + k−,τ ′ |. Neglecting wσ,σ in Eq. (19), we
can obtain approximations |k(−)

+,τ − k(+)
−,τ ′ | 
 4π/(3a) and

|k(−)
+,τ + k(+)

−,τ ′ | 
 4|E |/(
√

3ta) that agree with the periods of
Eq. (41). Here we explicitly show the index ζ in superscripts
of kσ,τ for the explanation.

Figure 12 illustrates the multiple reflection between the
two boundaries jl and jr with the notation of Eq. (39) in
the case where symmetric (+) channel is incident from re-
gion L. The circles and triangles represent transmission tμ
and the reflection rμ at j = jμ, while the closed and open
symbols correspond to the first and zeroth order, respectively.
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E 
(e

V
)

-0.1

0.05

0.1

0

2.06 2.08 2.1 2.12
ka

4w-,-

4w+,+
-0.05

FIG. 10. The dispersion relation corresponding to region D of the
junction of Fig. 5. Solid and dashed lines represent the exact results
and the approximate formulas (19), respectively.

The rectangles indicate the phase Nϕσ accumulated in σ

channel along a one-way path either jl → jr or jl ← jr. The
+ channel (dashed line path) changes into the − channel
(solid line path) after an encounter with the closed symbol.
Relative phases between p(m)

1 and p(m)
0 with a common m

are (Nϕ+ − B−) and (Nϕ− + B−) where the phase B− comes
from the closed symbols. It explains the factor |ei(Nϕ+−B− ) +
ei(Nϕ−+B− )|2 = 4 cos2(B− + πN/3) in Eq. (41). Compared to
the p(0)

m path, on the other hand, the p(1)
m path has an additional

round trip with the phase factor ei(ϕ−+ϕ+ )N . At the same
time, we also have to consider factor (−1) in the relations
t [0]
R r[1]

L r[0]
R = −t [1]

R and r[0]
L r[1]

R
t t [0]

L = −t t [1]
L . With these fac-

tors, we see the factor |1 − ei(ϕ−+ϕ+ )N |2 = 4 sin2(NE/
√

3t ) in
Eq. (41). The analytical formulas (38) and (41) are effective
for general �z and �θ . Figures 13 and 14 show the transmis-
sion rate Tσ ′,σ as a function of �θ and �z, respectively, in
the case where (n↓, n↑) = (10, 15), N = 82, E = 0.05 eV. In
Figs. 13 and 14, �z and �θ are fixed to zero, respectively.
In Fig. 13, the off-diagonal transmission rate vanishes at
�θ = −π/(3n↑), 2π/(3n↑) with the common mirror plane.

E (eV)
0 0.1 0.150.05

0.2

0.1

0

T+,+

T-,-
T+,-

T-,+

FIG. 11. Smoothed transmission rates 1
3

∑1
j=−1 Tσ ′,σ (N + j) as

a function of the energy E for the junction of Fig. 5 when N = 82.
Solid and dashed lines represent the exact results and the approxi-
mate formulas, respectively.
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(p1     )−,+
(0)

(p0     )−,+
(0)

(p1     )−,+
(1)
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(1)

FIG. 12. Multiple reflection with the notation of Eq. (39) in the
case where the symmetric (+) channel is incident from region L.

The exact results are reproduced well by Eqs. (38) and (41)
also for the dependence on �θ and �z. Although the phases
Aσ and Bσ are irrelevant to the band structure (19), they are
essential for the dependence of Eqs. (38) and (41) on �z.
The data are shown for the discrete values �θ = mπ/(150n↑)
and �z = ma/400 with integers m. The discontinuous change
in Figs. 13 and 14 comes from the cutoff radius rc of the
interlayer Hamiltonian W . If more realistic interlayer Hamil-
tonian were used, the lines would be continuous. We choose
the range |�z| < 0.015 nm in Fig. 14 because we have to
consider W ( j,±2) outside the range.

When N >
√

3t/(2w), the approximation �N 
 �N
0 be-

comes invalid and many terms other than Eq. (39) contribute
to t [1]

RL. It is the reason why random oscillation replaces
Eq. (41) when N >

√
3t/(2w). It corresponds to the case

where we cannot neglect ambiguity about (τ, τ ′) in the discus-
sion on the (k1, k2) characteristic. The (k1, k2) characteristic
appears in both Eqs. (38) and (41) in this way, but the
absolute values of the off-diagonal parameters |w+,−|, |w−,+|
are irrelevant to it. On the other hand, we cannot derive the
maximum of the transmission rate from the (k1, k2) charac-
teristic. The effect of Eq. (17) on S[1]

μ can be neglected as
higher order when |E |(
 |E [0]|) is much larger than |E [1]|.
This condition |E [0]| � |E [1]| corresponds to the outside of
the pseudogap |E | > 4w. Accordingly only the off-diagonal
parameters w+,− and w−,+ appear in Eq. (41) while they
have no relation to Eq. (19). Conversely the diagonal ωσ,σ is
irrelevant to Eq. (41), though it determines the energy shift
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FIG. 13. Transmission rate Tσ ′,σ as a function of �θ in the
case where (n↓, n↑) = (10, 15), N = 82, �z = 0, jl = −1, and E =
0.05 eV. Solid and dashed lines represent the exact results and
the approximate formulas, respectively. The data are limited to the
discrete �θ = mπ/(150n↑) with integers m.

(17) and the dispersion (19). As ω+,− and ω−,+ cannot be
detected by the energy spectrum, the measurement of the off-
diagonal transmission rate (41) will enrich our understanding
of the interlayer Hamiltonian.

Formulas similar to Eq. (38) have been reported in
Refs. [28] and [24]. The parameters k, κ and L of Ref. [28]
are related to those of Eq. (38) as k = 2ϕσ /a, κ = 2θσ /a, L =
Na/2. Replacing ε, cos(k1 − k2)L and sin [(k1 + k2) L

2 + θ ] by
1/2, sin [(kσ,+ − kσ,−) Na

4 ] and cos [Aσ + (kσ,+ + kσ,−) Na
4 ],

- 0.01 0 0.01

(+,+) 

(-,-) 

(+,-) 

(-,+) 

Δz    [nm]

0

0.1

0.2

tra
ns

m
is

si
on

 ra
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FIG. 14. The transmission rate Tσ ′,σ as a function of �z in
the case where (n↓, n↑) = (10, 15), N = 82, �θ = 0, jl = −1, and
E = 0.05 eV. Solid and dashed lines represent the exact results and
the approximate formulas, respectively. The data are limited to the
discrete �z = ma/400 with integers m.

respectively, we can transform the formula of Ref. [24] into
Eq. (38). The formulas, however, are not explicitly related
to the TB Hamiltonian elements and energy in Refs. [28]
and [24]. The explicit relation shown by Eqs. (16), (24),
and (32) makes their discussions quantitative and is also
essential in our discussion. Furthermore we also present the
analytical formula of the off-diagonal transmission rate (41)
which has been neglected so far in other works. It is clarified
that Eq. (41) is more significant than Eq. (38) for the zero
energy peak in the side contact. The analytical calculation for
the zigzag NT junctions is complicated since the reduction
of the vector dimension �g → �g ′, �b → �d → �d ′, �c → �c ′ in
Sec. III B is impossible. This difficulty might be overcome
by the effective mass theory and is left for a future study.
Though the TB Hamiltonian is only a first guess, Eqs. (38)
and (41) can be applied to a more precise one derived from
the first principle calculation with geometrical optimization
because our systematic approximation is free from ‘fitting
parameters’ in a sense that wσ ′,σ is uniquely determined by
the Hamiltonian.

APPENDIX A: SYMMETRY OF S MATRIX AND
NORMALIZATION

The TB equation is represented by

t Q(m+1)
1

�fm+1 + Q(m)
0

�fl + Q(m)
1

�fm−1 = E �fm (A1)

= ih̄
∂

∂t
�fm, (A2)

where t �f (μ)
m ≡ ( t�c (μ)

2m−1,
t�c (μ)

2m ). When 1 � m � N
2 ,

Q(m)
0 =

(
H (1,0), H (1,1)

t H (1,1), H (2,0)

)
(A3)

with H ( j,� j) defined by Eq. (2). When 2 � m � N
2 ,

Q(m)
1 =

(
0, H (1,1)

0, 0

)
. (A4)

Deleting unnecessary blocks from H ( j,� j) in Eqs. (A3) and
(A4), we can obtain Q(m)

0 and Q(m)
1 for other values of m.

Equations (A1) and (A2) enable us to derive the conservation
of the probability 0 = −Jm+1 + Jm and ∂

∂t | �fl |2 = −Jm+1 + Jm,
respectively, with the probability flow

Jm ≡ 2

h̄
Im

(
t �f ∗

m Q(m)
1

�fm−1
)

(A5)

between z = (m − 1)a and z = ma. As we discuss the steady
state corresponding to Eq. (A1), Jm does not depend on m.

Using Eq. (3), we obtain

Jm = 2

h̄
Im

⎡⎣∑
l,l ′

Il ′,l (λ
∗
l ′λl )

mγ ∗
l ′ γl

⎤⎦, (A6)

where

Il ′,l ≡ t�u ∗
l ′ Q1�ulλ

−1
l . (A7)

Since �fm = λm
l �ul is a solution of Eq. (A1),(
Q0 − E + λl

t Q1 + λ−1
l Q1

)�ul = 0. (A8)
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Multiplying t�u ∗
l ′ by Eq. (A8), we derive

t�u ∗
l ′ (Q0 − E )�ul + λ∗

l ′λl I
∗
l,l ′ + Il ′,l = 0. (A9)

Exchanging l and l ′ in complex conjugate of Eq. (A9), we
obtain

t�u ∗
l ′ (Q0 − E )�ul + λ∗

l ′λl Il ′,l + I∗
l,l ′ = 0. (A10)

Eliminating I∗
l,l ′ in Eqs. (A9) and (A10), we obtain

[1 − (λlλ
∗
l ′ )

2]Il ′,l = (λlλ
∗
l ′ − 1) t�u ∗

l ′ (Q0 − E )�ul . (A11)

Equation (A11) indicates that Il,l ′ = I∗
l ′,l except when

λlλ
∗
l ′ = 1. (A12)

Thus only the terms satisfying Eq. (A12) contribute to
Eq. (A6) being independent of m. When l = 1, 2, · · · , Nμ, �ul

is normalized as

Im(Il,l ) = ±
√

3

4
t, (A13)

where double signs ± are consistent with those of l . The
constant Jm with the normalization (A13) is represented by

J =
√

3t

2h̄

NL∑
l=1

∣∣γ (L)
l

∣∣2 − ∣∣γ (L)
−l

∣∣2
(A14)

=
√

3t

2h̄

NR∑
l=1

∣∣γ (R)
l

∣∣2 − ∣∣γ (R)
−l

∣∣2
(A15)

= J (D)
eva +

√
3t

2h̄

ND∑
l=1

∣∣γ (D)
l

∣∣2 − ∣∣γ (D)
−l

∣∣2
. (A16)

In Eq. (A16),

J (D)
eva ≡ 2

h̄

2nD∑
l>ND

Im
(
I (D)
l,l ′ γ

(D)
l γ

(D)∗
l ′ + I (D)

l ′,l γ
(D)

l ′ γ
(D)∗

l

)
(A17)

comes from the evanescent modes where l ′ is less than −ND

and determined by Eq. (A12). Equations (A14) and (A15)
indicate the relation |�γ (L′ )

+ |2 + |�γ (R′ )
− |2 = |�γ (L′ )

− |2 + |�γ (R′ )
+ |2

that is equivalent to the unitarity t S∗
RL = S−1

RL.
The wave function � is approximated by linear combi-

nation of real and orthonormal π orbitals φ
(ξ )
j,i . When � =∑

i, j

∑
ξ=↑,↓ c(ξ )

j,i φ
(ξ )
j,i satisfies the Schrodinger equation, �∗ =∑

i, j

∑
ξ=↑,↓ c(ξ )∗

j,i φ
(ξ )
j,i also does. It indicates compatibility be-

tween Eq. (6) and(
�γ (L′ )∗

+
�γ (R′ )∗

−

)
=

(
rLL, tLR

tRL, rRR

)(
�γ (L′ )∗

−
�γ (R′ )∗

+

)
(A18)

that is equivalent to relation S−1
RL = S∗

RL. As SRL is also unitary
(S−1

RL = t S∗
RL), SRL is symmetric ( t SRL = SRL). In the single

junction with the infinite length of region D, J (D)
eva = 0 because

either γ
(D)

l or γ
(D)

l ′ must be zero in Eq. (A17) to avoid
the divergence in region D. Since Sμ corresponds to the single
junction with zero J (D)

eva , Sμ is also symmetric and unitary in
the same way as SRL. However, it should be noted that J (D)

eva is
not zero for the double junction L-D-R with a finite length of

region D. The exact calculation of SRL includes the effect of
Eq. (A17) as is explicitly shown by Appendix B.

For the propagating waves l = ±1,±2, · · · ,±N , we can
derive

t�u ∗
l H (k)�ul = E |�ul |2 (A19)

from Eq. (A1) where λl = eika and

H (k) = (Q0 + t Q1eika + Q1e−ika). (A20)

In Sec. III B, Eq. (A20) is denoted by H0 + V . Differentiating
Eq. (A19), we obtain

t�u ∗
l

dH (k)

dk
�ul = dE

dk
|�ul |2, (A21)

where we use the relations d t�u ∗
l

dk H (k)�ul = E d t�u ∗
l

dk �ul and
t�u ∗

l H (k) d�ul
dk = E t�u ∗

l
d�ul
dk . From Eqs. (A7), (A20), and (A21),

we derive

2aIm(Il,l ) = dE

dk
|�ul |2. (A22)

Equation (A22) shows that the probability flow Im(Il,l ) and
the group velocity dE

dk have the same sign. Normalization

|�ul |2 = 1 (A23)

used in Sec. III B is an approximation to normalization (A13)
where the group velocity dE

dk is approximated as ±
√

3
2 ta. In

the exact calculation of Sec. III A, however, we use Eq. (A13)
while Eq. (A23) is not used.

APPENDIX B: EXACT NUMERICAL CALCULATION

The transfer matrix derived from (1) is represented by


(μ) =
(

−♠2, ♦(μ)
2

−♦(μ)
1 ♠2, −♠1 + ♦(μ)

1 ♦(μ)
2

)
, (B1)

where h( j,1)
μ ♦(μ)

j = E1 − h( j,0)
μ and h( j,1)

μ ♠(μ)
j = h( j,−1)

μ with

the notation hL = h↓, hR = h↑ and hD = H . Though ♠(L)
j and

♠(R)
j are equivalent to the unit matrices, ♠(D)

j 
= 1 when �z 
=
0. When we allocate Eq. (3) to �c j as

�c j =

⎧⎪⎨⎪⎩
�c (L)

j ( j � jl )

�c (D)
j ( jl + 1 � j � jr )

�c (R)
j ( jr + 1 � j).

(B2)

TB equations at the boundaries j = jl, jr are represented by

E�c (L)
jl

= h( jl,1)
↓ �c (L)

jl−1 + h( jl,0)
↓ �c (L)

jl
+ h( jl,1)

↓ �c (D,↓)
jl+1

+W ( jl,1)�c (D,↑)
jl+1 (B3)

E�c (D)
jl+1 =

(
h( jl+1,1)

↓
tW ( jl,1)

)
�c (L)

jl
+ H ( jl+1,0)�c (D)

jl+1

+ H ( jl+1,1)�c (D)
jl+2 (B4)

E�c (D)
jr

= H ( jr,−1)�c (D)
jr−1 + H ( jr,0)�c (D)

jr

+
(

W ( jr,1)

h( jr,1)
↑

)
�c (R)

jr+1 (B5)
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E�c (R)
jr+1 = tW ( jr,1)�c (D,↓)

jr
+ h( jr+1,1)

↑ �c (D,↑)
jr

+ h( jr+1,0)
↑ �c (R)

jr+1 + h( jr+1,1)
↑ �c (R)

jr+2. (B6)

Since �c (μ)
j of Eq. (3) satisfies Eq. (1) and

E

(
�c (L)

j

�c (R)
j

)
=

1∑
� j=−1

(
h( j,� j)

↓ �c (L)
j+� j

h( j,� j)
↑ �c (R)

j+� j

)
(B7)

for arbitrary γ
(μ)

l , Eqs. (B3), (B4), (B5), and (B6) are equiva-
lent to

h( jl,1)
↓ �c (L)

jl+1 = h( jl,1)
↓ �c (D,↓)

jl+1 + W ( jl,1)�c (D,↑)
jl+1 (B8)

H ( jl+1,−1)�c (D)
jl

=
(

h( jl+1,1)
↓

tW ( jl,1)

)
�c (L)

jl
(B9)

H ( jr,1)�c (D)
jr+1 =

(
W ( jr,1)

h( jr,1)
↑

)
�c (R)

jr+1 (B10)

h( jr+1,1)
↑ �c (R)

jr
= tW ( jr,1)�c (D,↓)

jr
+ h( jr+1,1)

↑ �c (D,↑)
jr

. (B11)

Multiplying inverse matrices of h( jl,1)
↓ , H ( jl+1,−1), H ( jr,1), and

h( jr+1,1)
↑ , we can derive the boundary conditions (4) and (5)

from Eqs. (B8), (B9), (B10), and (B11).
In the following formulas, we rewrite Eq. (3) as(

�c (μ)
2m−1

�c (μ)
2m

)
=

(
U (μ)

−1,+�m
μ, U (μ)

−1,−�−m
μ

U (μ)
0,+�m

μ, U (μ)
0,−�−m

μ

)(
�γ (μ)

+
�γ (μ)

−

)
, (B12)

where �μ is the diagonal matrices of which the diagonal
element is [�μ]l,l = λ

(μ)
l . We introduce notations for region

D that are t �γ (D) = ( t �γ (D)
+ , t �γ (D)

− ),(
U (D,↓)

ν

U (D,↑)
ν

)
= (

U (D)
ν,+ , U (D)

ν,−
)

(B13)

�̃D =
(

�D, 0
0, �−1

D

)
, (B14)

where ν = −1, 0. Using these notations, we transform the
boundary conditions (4) and (5) into⎛⎜⎝�γ (D)

�γ (L)
−

�γ (R)
+

⎞⎟⎠ = S̃

(
�γ (L)

+
�γ (R)

−

)
, (B15)

where

S̃ = −
(

YL, ZL,−, 0
YR, 0, ZR,+

)−1(
ZL,+, 0

0, ZR,−

)
. (B16)

Matrixes YL and ZL,± are defined by

YL =

⎛⎜⎜⎝
−[

U (D,↓)
−1− jl

+ q↓
jl
U (D,↑)

−1− jl

]
�̃

1+ jl
D

−U (D,↓)
jl

−U (D,↑)
jl

⎞⎟⎟⎠ (B17)

ZL,± =

⎛⎜⎝U (L)
−1− jl,±�

±(1+ jl )
L

U (L)
jl,±
0

⎞⎟⎠, (B18)

where

q↓
j = 1

h( j,1)
↓

W ( j,1) (B19)

and jl is either −1 or 0. Matrixes YR and ZR,± are defined by

YR =

⎛⎜⎜⎝
−U (D,↑)

� jr
− q↑

� jr
U (D,↓)

� jr

−U (D,↑)
−� jr−1�̃

� jr+1
D

−U (D,↓)
−� jr−1�̃

� jr+1
D

⎞⎟⎟⎠�̃M
D (B20)

and

ZR,± =

⎛⎜⎝ U (R)
� jr,±

U (R)
−� jr−1,±�

±(� jr+1)
R

0

⎞⎟⎠�±M
R , (B21)

where � jr is either 0 or −1,

q↑
j = 1

h( j+1,1)
↑

tW ( j,1), (B22)

and M is the integer satisfying jr = 2M + � jr. The
SRL matrix (6) is derived from the S̃ matrix (B16)
as (rLL)i,i′ = S̃4nD+i,i′ , (tRL) j,i = S̃2nL+4nD+ j,i, (tLR)i, j =
S̃4nD+i,2nL+ j and (rRR) j, j′ = S̃2nL+4nD+ j,2nL+ j′ , where
1 � i � NL, 1 � j � NR. The numerical errors are
estimated by

σsym =
NS∑
i=1

NS∑
j=1

|(SRL)i, j − (SRL) j,i| (B23)

and

σuni =
NS∑
i=1

NS∑
j=1

∣∣∣∣∣
NS∑

k=1

(SRL)∗k,i(SRL)k, j − δi, j )

∣∣∣∣∣, (B24)

where NS = NL + NR. In the exact numerical calculations of
Sec. III A, NS = 4 and the numerical errors are quite small as
σuni < 2.2 × 10−11, σsym < 1.2 × 10−11.

APPENDIX C: PERTURBATIVE CALCULATION OF Sμ

We define 2 × 4 matrices U [n]
L and U [n]

R as(
U [n]

L

U [n]
R

)
≡ ( �D [n](−)

+,+ , �D [n](+)
−,+ , �D [n](−)

+,− , �D [n](+)
−,− ), (C1)

where

t �D [0](ζ )
σ,τ = 1

2

(
1, σ, τ f (ζ )

σ , τσ f (ζ )
σ

)
(C2)

and �D [1](ζ )
σ,τ is defined by Eq. (18) of which �b [0](ζ )

−σ,τ ′ is replaced

by �D [0](ζ )
−σ,τ ′ . With this definition, Eq. (21) is rewritten as

U [n]
D =

⎛⎝ 1√
2n↓

U [n]
L

1√
2n↑

U [n]
R

⎞⎠. (C3)

155407-12



PERTURBATION CALCULATIONS ON INTERLAYER … PHYSICAL REVIEW B 99, 155407 (2019)

In contrast to the exact calculation, boundary conditions (4)
and (5) are approximated by⎛⎜⎝�c (L)

jl+1

�c (L)
jl

0

⎞⎟⎠ =

⎛⎜⎝�c (D,↓)
jl+1

�c (D,↓)
jl

�c (D,↑)
jl

⎞⎟⎠ (C4)

and ⎛⎜⎝�c (R)
jr

�c (R)
jr+1

0

⎞⎟⎠ =

⎛⎜⎜⎝
�c (D,↑)

jr

�c (D,↑)
jr+1

�c (D,↓)
jr+1

⎞⎟⎟⎠ (C5)

in the perturbation calculation. We derive matrix X [n]
ξ of

Eq. (26) from Eqs. (20), (25), (C3), (C4), and (C5) as

X [n]
μ =

⎛⎜⎝U [n]
μ �, −√

2v0�
∗
0δn,0

U [n]
μ , −√

2v0δn,0

U [n]
−μ, 0

⎞⎟⎠, (C6)

where μ and −μ are complementary as (μ,−μ) = (L, R),
(R,L), and v0 = (σx + σz )/2 with Pauli matrices (34). Under
the conditions |wσ,σ | � t and |E | � t , we approximate � 

1 and �0 
 �̃0 where

�̃0 =
(

ei 2
3 π , 0
0, e−i 2

3 π

)
. (C7)

Using this approximation in Eq. (C6), we show

X [0]
L =

⎛⎜⎝v0�̃0, v0�̃0, −√
2v0�̃

∗
0

v0, v0, −√
2v0

v0F, −v0F, 0

⎞⎟⎠ (C8)

X [1]
L = 2

E

⎛⎝v1�̃0, −v1�̃0, 0
v1, −v1, 0
v2, v2 0

⎞⎠ (C9)

X [0]
R =

⎛⎝v0F ∗�̃0, −v0F ∗�̃0, −√
2v0�̃

∗
0

v0F ∗, −v0F ∗, −√
2v0

v0, v0, 0

⎞⎠ (C10)

X [1]
R = 2

E

⎛⎜⎝v∗
2�̃0, v∗

2�̃0, 0

v∗
2 , v∗

2 , 0

v∗
1 , −v∗

1 0

⎞⎟⎠, (C11)

where v1 = 1
4 (iσy + 12)G∗F and v2 = 1

2σzv0σxG∗σx.
Inverse of Eq. (C8) is represented by

(
X [0]

L

)−1 =

⎛⎜⎝ −v3, �̃∗
0v3, F ∗v0

−v3, �̃∗
0v3, −F ∗v0

−√
2v3,

√
2�̃0v3, 0

⎞⎟⎠ (C12)

(
X [0]

R

)−1 =

⎛⎜⎝ −v4, �̃∗
0v4, v0

v4, −�̃∗
0v4, v0

−√
2F ∗v4,

√
2F ∗�̃0v4, 0

⎞⎟⎠, (C13)

where v3 = √
3(i12 − σy)/6, and v4 = iσzFv0/

√
3. Using

Eqs. (29), (C8), (C9), (C10), (C11), (C12), and (C13), we
obtain S[0]

μ and S[1]
μ . Because t Sμ = Sμ and S∗

μSμ = 1 (see
Appendix A),

t S[n]
μ = S[n]

μ (C14)

S[0]∗
μ S[0]

μ = 1 (C15)

and

S[1]∗
μ S[0]

μ + S[0]∗
μ S[1]

μ = 0. (C16)

We can easily confirm that S[0]
μ and S[1]

μ of Sec. III B satisfy
Eqs. (C14), (C15), and (C16).
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