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To predict transport properties of disordered systems, especially ac transport properties, one has to calculate
the disorder average of the correlation of the multiple Green’s function at different energies. To avoid brute force
calculation, diagrammatic perturbation expansion must be used along with the coherent potential approximation
(CPA). In this paper, we develop a theoretical formalism based on the nonequilibrium Green’s function that maps
the average of the correlation of the multiple Green’s function into an average over a single generalized Green’s
function. After the mapping, this formalism is structurally very similar to the CPA and completely eliminates
the need to perform diagrammatic expansion. As a demonstration of our theory, the dynamic conductance,
frequency-dependent shot noise under dc bias, and frequency-dependent noise spectrum under ac bias in
the presence of Anderson disorder are calculated by directly taking the disorder average of the generating
function of full counting statistics (FCS) within the CPA. Our numerical results on dynamic conductance,
frequency-dependent shot noise under dc bias, and frequency-dependent noise spectrum under ac bias show
remarkable agreement with that obtained by the brute force calculation. The phase diagram in the frequency
versus disorder strength plane has been efficiently calculated using the generalized FCS-CPA method.
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I. INTRODUCTION

Recently, the frequency-dependent transport properties of
mesoscopic and nanoscale systems have attracted intense re-
search attention on both the experimental and theoretical sides
[1–23] since they can provide unique insight into the dynamic
information of the system. So far, a variety of frequency-
dependent quantities, including frequency-dependent shot
noise [3,8,11,18], ac conductance [16], frequency-dependent
quantum capacitance [15], and time-dependent transient cur-
rent [5] and charge relaxation resistance [13], has been stud-
ied. For example, the dynamic conductance Gαβ has been used
to probe the charge and potential distribution in the system
[2]. In the quantum capacitor, it was found that the frequency-
dependent electrochemical capacitance C(ω) is equivalent
to a classical RLC circuit characterized by three quantum
parameters, i.e., quantum resistance [14], capacitance [1],
and inductance. In the high-frequency regime, the quantum
inductance dominates and characterizes the timescale of elec-
tron dynamics in the system [15]. When the electron-electron
interaction is included, the Kondo resonance in the quantum
dot can be extracted from the ac transport conductance and
frequency-dependent shot noise [18].

It is known that impurities play an important role in
modifying the electronic transport properties of the nanoscale
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system. On the one hand, people intentionally introduce for-
eign atoms into the semiconductor that can control its electric
or optical properties, which is essential in the development of
the current semiconductor industry [24]. On the other hand,
the random impurities, defects, and roughness inevitably
emerge during the fabrication of materials and devices, which
may cause performance degradation. Thus, the disorder effect
has always been important throughout the material growth
and device fabrication process. In the theoretical condensed-
matter physics community, the disorder effect in the meso-
scopic system is a fundamentally important issue [25–29]. As
one of the hallmarks of mesoscopic physics, the universal
charge or spin-Hall conductance fluctuation appears in the
diffusive regime when Anderson disorder is present in the
system [30–36].

While the disorder effect of dc transport properties such
as conductance has been well studied, the role of disorder
in frequency-dependent transport properties has received less
attention. It is our intention to fill this gap. In order to treat the
disorder effect, people have developed theoretical approaches
such as the random matrix theory (RMT) for dc [37] and ac
transport [38] and the scattering matrix theory (SMT) [39].
Using these approaches, general physics such as the univer-
sal conductance fluctuation can be discussed using RMT or
SMT in the diffusive regime. In order to have quantitative
information about disordered systems, a numerical calcula-
tion has to be performed. Numerical brute force calculations
taking several thousand or even 100 000 configurations are
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frequently used to study average transport properties using
either non-equilibrium Green’s function (NEGF) or SMT
[27,29]. The brute force method is accurate but extremely
time-consuming and is sometimes unsuitable for a finite sys-
tem with a low doping concentration. In view of this limi-
tation, people have developed various approximate methods
to formulate the average transport quantities analytically to
avoid sampling over different random configurations. Since
most transport properties are related to the Green’s function,
the coherent potential approximation (CPA) method is the
state-of-the-art method aiming to calculate the average of a
single Green’s function. Within the CPA, dc conductance and
the nth-order cumulant of dc conductance have been stud-
ied using diagrammatic perturbation expansion [11,40–53].
Based on these approaches, ac dynamic conductance has been
studied in a one-dimensional toy model via the diagrammatic
approach to calculate Green’s function correlators [52]. Since
diagrammatic expansions for ac conductance are extremely
complicated and difficult to implement in the numerical cal-
culations, a simpler and systematic way of calculating fre-
quency transport properties in disordered system needs to be
developed. Recently, combining full counting statistics (FCS)
[54–57] with the CPA, a simple, effective FCS-CPA theory
was developed by us to study the nth-order cumulant of
disordered dc conductance [58]. We note that in this theory,
all the Green’s functions involved have the same energy.
To deal with frequency-dependent transport, one must study
the disordered average of the multiple Green’s function at
different energies. Clearly, there is a need to generalize the
existing FCS-CPA designed for dc transport to the ac case. In
this work, we extend this formula to the frequency-dependent
case and develop a theoretical formula to account for the
frequency-dependent transport properties of disordered sys-
tems. Three examples are given to illustrate the idea of our
formalism. Specifically, we have calculated the averaged ac
conductance, the frequency-dependent shot noise under dc
bias, and the frequency-dependent noise spectrum under ac
bias on a two-dimensional square lattice in the presence of
Anderson disorders. Remarkable agreement between the brute
force calculation and FCS-CPA is demonstrated numerically.

This paper is organized as follows. In Sec. II, we introduce
the theoretical formalism for calculating the generating func-
tion of the FCS needed to calculate the average frequency-
dependent transport properties. As an example, we will apply
our method to the tight-binding square-lattice system and
will show the numerical results in Sec. III. Finally, Sec. IV
contains our discussion and conclusion.

II. THEORETICAL FORMALISM

In order to generalize the FCS-CPA approach from the dc
case to calculate frequency-dependent quantities in the pres-
ence of disorder, we have to first design a cumulant generating
function (CGF) so that the desired quantities can be obtained
by taking the derivative of the CGF with respect to the count-
ing field parameter λ in the clean system. Then combining the
CGF with the CPA, one can calculate the disorder-averaged
quantities from the disorder-averaged CGF. In this section,
we illustrate our method of calculating frequency-dependent
transport properties within the CPA method using three ex-

amples: (1) dynamic conductance of disordered systems, (2)
frequency-dependent shot noise under dc bias in the presence
of disorders, and (3) the frequency-dependent noise spectrum
under ac bias in the presence of disorders.

A. Dynamic conductance of disordered systems

For a system consisting of a scattering region and two leads
under ac bias, the Hamiltonian can be written as (e = 1 and
h̄ = 1)

H = H0 + V + Hleads + HT . (1)

The first two terms describe the Hamiltonians of the central
region (H0) and the isolated leads (Hleads), with

H0 =
∑

m

εmd†
mdm (2)

and

Hleads =
∑
kα

εkαc†
kα

ckα, (3)

where d†
n and c†

kα
(α = L, R is the lead index) are the creation

operators of electrons in the scattering region and leads,
respectively. In the presence of the disorder potential, we
use V to denote the on-site disorder potential. The hopping
between the scattering region and leads HT is represented by
the last term with the coupling strength tkαn,

HT =
∑
kα,n

(tkα,nc†
kα

dn + t∗
kα,nd†

n ckα ). (4)

Under ac bias, the single-particle energy in the leads
is given by εkα (t ) = ε0

kα + vα cos(�t ), where ε0
kα describes

the time-independent equilibrium energy. The equilibrium
retarded Green’s function of this system is defined as

Gr (E ) = 1

E − H0 − V − �r
, (5)

where �r is the self-energy due to the presence of leads.
When the bias voltage is small, the frequency-dependent

conductance is given by [16]

Gαβ (�) =
∫

dE

2π

f − f̄

�
Tr[Ḡr
βGa(
α − 
δαβ + i�δαβ )],

(6)

where Ḡr (E ) = Gr (E+), E+ = E + �, f is the Fermi distri-
bution function, f̄ = f (E+), α, β = L, R, and 
 = −2Im�r

is the linewidth function due to the leads.
We wish to calculate the disorder-averaged frequency-

dependent or dynamic conductance within the CPA. This
amounts to taking the disorder average of two Green’s
functions with different energies, i.e., calculating 〈Ḡr
βGa〉,
where 〈·〉 stands for the disorder average. The method of
nonequilibrium vortex correction, which works well for two
Green’s functions with the same energy, cannot be used here
[45–47]. As will be demonstrated below, it is very convenient
to use an approach very similar to the FCS-CPA method [58].
In this approach, a new Green’s function G with the dimension
twice the original Green’s function is introduced. Based on
this new Green’s function, there is no need to perform the
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average of the two Green’s functions; the CPA of a single G is
enough.

In order to do this, we first design a CGF with a counting
field such that its first derivative with respect to the counting
field gives the expected disorder-averaged dynamic conduc-
tance. The following definition of the CGF gives the desired
result:

ln Zαβ (λ) =
∫

dE

2π

f − f̄

�
Tr ln[I + G(E )Aαβ (E )], (7)

where λ is the counting field and A and the generalized
Green’s function G are defined as

Aαβ (E ) = A0,αβ (E )ζ , (8)

A0,αβ (E ) =
(

0 −
β


α − 
δαβ + i�Iδαβ 0

)
, (9)

G(E ) =
(

Ḡr (E ) 0
0 Ga(E )

)
, (10)

where ζ = √
eiλ − 1. It is straightforward to show that the first

derivative of ln Zαβ (λ) with respect to iλ gives Eq. (6) (see
Appendix A).

In the following, we will focus on calculating the dynamic
conductance GLL. Using the relation

Tr ln(I + GALL ) = Tr

(∫ 1

0

dx

G−1 + ALLx
ALL

)
, (11)

the CGF, i.e., ln ZLL(λ), can be expressed as

ln ZLL(λ) =
∫

dE

2π

f − f̄

�
Tr

(∫ 1

0
dx G(x)ALL

)
, (12)

where the new Green’s function G(x) = (G−1 + ALLx)−1 is
defined in order to perform the disorder average within the
CPA. The averaged CGF 〈ln Z〉 is finally obtained:

〈ln ZLL〉 =
∫

dE

2π

f − f̄

�
Tr

(∫ 1

0
dx 〈G(x)〉ALL

)
, (13)

where the averaged Green’s function 〈G(x)〉 can be calculated
from the CPA method discussed in Ref. [58], from which we
have

〈G(x)〉 = (
G−1

0 + ALLx − 
E
)−1

, (14)

where G0 and 
E are given by

G0 =
(

Ḡr
0 0

0 Ga
0

)
, (15)


E =
(


E11 
E12


E21 
E22

)
. (16)

Here 
Ei j (i, j = 1, 2) is a subblock matrix of 
E and is
diagonal, and Gr

0 = 1/(E − H0 − �r ) is the retarded Green’s
function of the clean system. The renormalized on-site poten-
tial (2 × 2 matrix) for the CGF 
E ii is determined by


E ii =
∫

dviiρ(vii )vii[I − 〈G(x)〉ii(viiI − 
E ii )]−1,

(17)

where 〈G(x)〉ii is a 2 × 2 submatrix of 〈G(x)〉, vii is the random
on-site potential, and ρ(vii ) is the distribution of vii.

Note that the integral of x in Eq. (13) can be avoided in
the numerical calculation because the quantities of interest
involve at least a first-order derivative. Due to the fact that
G = G(ζx), we have

∂〈ln ZLL〉
∂iλ

= eiλ

√
eiλ − 1

∫
dE

4π

f − f̄

�
Tr[〈G(ζ )〉A0,LL], (18)

where G(ζ ) = G(ζx)|x=1. Then the first-order derivative can
be calculated numerically using Eq. (18) by setting iλ to a
small number.

To summarize the calculational procedure, we first solve

E from Eq. (17), which depends on λ through matrix ALL

defined in Eq. (8). Then we calculate the disorder-averaged
Green’s function 〈G(x)〉 from Eq. (14). Finally, the dynamic
conductance 〈GLL〉 is obtained from Eq. (18). Note that in de-
riving the ac conductance, the wideband limit has been used.
For instance, the quantity ∂E
 has been neglected. However,
once the formula is derived, the linewidth function 
 appear-
ing in the formula does depend on E . At this level, Eq. (6)
is equivalent to the scattering matrix theory. To simplify the
discussion, we consider only the case of zero temperature.
At finite temperatures, the Fermi distribution function enters
in the formula. We will get qualitatively the same physics.
Concerning the ac bias, the adiabatic approximation has been
used, so that the frequency should not be too much higher than
THz.

B. Frequency-dependent shot noise under dc bias
for disordered systems

For a system with dc bias, we use the same Hamiltonian as
in Eq. (1) by setting the frequency of the ac bias � = 0. The
current correlation function under dc bias is defined as [11]

2Sαβ (t − t ′) = 〈
Îα (t )
Îβ (t ′) + 
Îβ (t ′)
Îα (t )〉, (19)

where 
Îα (t ) = Îα (t ) − 〈Îα (t )〉 and Îα (t ) is the current oper-
ator. Note that under dc bias, the average current 〈Îα (t )〉 is
independent of time, while the current correlation Sαβ does
depend on time [11]. Taking the Fourier transform, we obtain
the frequency-dependent noise spectrum,

2πδ(ω + ω′)Sαβ (ω) = 〈
Îα (ω)
Îβ (ω′) + 
Îβ (ω′)
Îα (ω)〉.
We are interested in the frequency-dependent noise spec-

trum in the linear response regime and need to derive its
analytic expression. To make the presentation simpler, we will
use scattering matrix theory to calculate the noise spectrum
and then use the Fisher-Lee relation [59] to express the final
results in terms of the nonequilibrium Green’s function. The
frequency-dependent current operator within scattering matrix
theory is given by [11]

Îα (ω) =
∫

dE

2π

∑
βγ

â†
β (E )âγ (Ē )Aβγ (α, E , Ē ), (20)

where a†
β is the creation operator for the electron incident from

lead β, Ē = E + ω, and the matrix A is defined as [60]

Aβγ (α, E , Ē ) = δαβδαγ − s†
αβ (E )sαγ (Ē ), (21)
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where s†
αβ (E ) is the scattering matrix from lead β to lead α. It

was found that [11]

Sαβ (ω) =
∫

dE

2π

∑
γ δ

Aγ δ (α, E , Ē )Aδγ (β, Ē , E )Fγ δ (E , Ē ),

(22)

where

Fγ δ (E , Ē ) = fγ (E )[1 − fδ (Ē )] + fδ (Ē )[1 − fγ (E )]. (23)

In the linear response regime at zero temperature, the
frequency-dependent shot noise under dc bias is found to be
(see Appendix B)

2πSLL(ω) = Tr[(T̂+ − T̂−)T̂ ]v, (24)

where we have used E instead of EF . Here T̂+ = T̂ (E +
ω), T̂− = T̂ (E − ω), v is the voltage difference between two
leads, and T̂ = Ga
RGr
L. For simplicity, we shall discuss
S′

LL(ω) = 2πSLL/v in the following.
From Eq. (24), we see that to obtain the disorder-averaged

frequency-dependent shot noise we have to calculate the dis-
order average of four Green’s functions at different energies.
In the following, we discuss how to calculate Tr[T̂ (E+)T̂ (E )].
The idea is to construct the following generalized Green’s
function G using the four Green’s functions Ga, Ḡa, Ḡr, Gr :

G =

⎛
⎜⎝

Ḡr 0 0 0
0 Gr 0 0
0 0 Ḡa 0
0 0 0 Ga

⎞
⎟⎠, (25)

with

A =

⎛
⎜⎝

0 0 0 
̄L

0 0 
L 0
−
̄R 0 0 0

0 −
R 0 0

⎞
⎟⎠. (26)

We will show below that taking derivatives of the following
generating function can give rise to the quantity Tr(T̂+T̂ ):

Z = Det[I + GAζ ]

= Det

⎛
⎜⎝

I 0 0 Ḡr
̄Lζ

0 I Gr
Lζ 0
−Ḡa
̄Rζ 0 I 0

0 −Ga
Rζ 0 I

⎞
⎟⎠. (27)

From the relation

Det

(
a b
c d

)
= Det(a)Det(d − ca−1b), (28)

we find

ln Z = ln Det

[
I +

(
Ḡa
̄R 0

0 Ga
R

)(
0 Ḡr
̄L

Gr
L 0

)
ζ 2

]

= Tr ln
[
I + Bζ 2

]
, (29)

where

B =
(

0 Ḡa
̄RḠr
̄L

Ga
RGr
L 0

)
=

(
0 T̂+
T̂ 0

)
.

Expanding Eq. (29) in terms of z = ζ 2 = exp(iλ) − 1, we
have

ln Z = Tr[Bz − (1/2)B2z2 − · · · ]

= Tr[−T̂ T̂+z2 + · · · ]. (30)

Focusing on the second order in z, we can calculate the
second-order derivative of ln Z ,

∂2 ln Z

∂ (iλ)2
|λ=0 = 2Tr[T̂+T̂ ], (31)

which gives the desired quantity Tr[T̂+T̂ ]. Similarly,
Tr[T̂ (E−)T̂ (E )] can be calculated by changing ω to a negative
value. Finally, one can calculate the frequency-dependent shot
noise in clean systems as defined in Eq. (24). In order to
calculate the disorder-averaged shot noise within the CPA, we
shall discuss how to calculate the disorder-averaged generat-
ing function 〈ln Z〉 defined in Eq. (27) in the following. We
note that Eq. (27) can be expressed as [see Eq. (11)]

〈ln Z〉 = Tr

(∫ 1

0
dx 〈G(x)〉A

)
, (32)

where G and A are defined in Eqs. (25) and (26). The Green’s
function G(x) = (G−1 + Ax)−1 is defined in order to perform
the disorder average within the CPA,

〈G(x)〉 = (
G−1

0 + Ax − 
E
)−1

. (33)

Note that G0 and 
E are 4 by 4 block matrices,

G0 =

⎛
⎜⎝

Ḡr
0 0 0 0

0 Gr
0 0 0

0 0 Ḡa
0 0

0 0 0 Ga
0

⎞
⎟⎠, (34)


E =

⎛
⎜⎝


E11 
E12 
E13 
E14


E21 
E22 
E23 
E24


E31 
E32 
E33 
E34


E41 
E42 
E43 
E44

⎞
⎟⎠. (35)

Here 
Ei j (i, j = 1, . . . , 4) is the subblock matrix of 
E
which is diagonal, and Gr

0 = 1/(E − H0 − �r ) is the retarded
Green’s function of the pure system. 
E ii can be calculated
by using Eq. (17) with 〈G(x)〉ii defined in Eq. (33).

C. Frequency-dependent noise spectrum under ac bias
for disordered systems

For a system under ac bias, the current correlation function
under ac bias is defined as [11]

S(�) = 4kbT Tr[T̂ 2] +
∑
±

∞∑
n=0

J2
l

(
V̄

�

)
Tr[T̂ (I − T̂ )]

×
[

(V ± n�)coth

(
V̄ ± n�

2kbT

)]
, (36)

where kb is the Boltzmann constant, T is temperature, Jl is the
Bessel function, and T̂ (E f ) = Ga
RGr
L is the transmission
matrix evaluated at the Fermi energy E f of the system. Here
we suppose that V̄ = vL and vR is equal to zero. It is worth
mentioning that the first term in Eq. (36) is thermal noise,
while the second term is the shot noise due to solely the bias.
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In order to calculate the disorder-averaged frequency-
dependent noise spectrum 〈S(�)〉 under ac bias, one needs to
know only two disorder-averaged dc quantities, 〈T̂ 〉 and 〈T̂ 2〉,
and other quantities are irrelevant in disorder configurations.
According to Ref. [58], we know that they can be calculated
by disorder-averaged first- and second-order cumulants,

〈T̂ 〉 = 〈C1〉, 〈T̂ 2〉 = 〈C1〉 − 〈C2〉, (37)

where

〈Cn〉 = ∂n〈ln Z〉
∂ (iλ)n

|λ=0, 〈ln Z〉 = Tr

(∫ 1

0
dx 〈G(x)〉A

)
.

(38)
Here G(x) and A are defined as

〈G(x)〉 = (
G−1

0 + Ax − 
E
)−1

,

A =
(

0 −
R


L 0

)
ζ , (39)

where we have introduced

G0 =
(

Gr
0 0

0 Ga
0

)
, 
E =

(

E11 
E12


E21 
E22

)
. (40)

Note that Gr
0 = [Ga]† = 1/(E − H0 − �r ) is still the retarded

Green’s function of the pure system. Once 
E ii are obtained
self-consistently by using Eq. (17) with 〈G(x)〉ii defined in
Eq. (39), the disorder-averaged generating function 〈ln Z〉 and
hence the cumulants 〈Cn〉 can be calculated.

To end this section, we note that the above theoretical
formalisms can be easily implemented and applied to study
the Anderson disorder or the binary type of disorders. The
numerical results calculated using this formalism will be
presented in the next section.

III. NUMERICAL RESULTS

As an application, we have implemented our formalism in
the tight-binding model on the two-dimensional square-lattice
system. In the tight-binding model, the hopping energy be-
tween the nearest lattice sites is set to be t = 1, and the on-site
energy is 4. In the numerical simulation, the central scattering
region system has 30 × 30 sites. Anderson disorder will be
considered in the numerical simulation. For the Anderson type
of disorder, the disorder distribution function ρ(vii ) is defined
as

ρ(vii ) =
{

1/W, −W/2 � vii � W/2,

0, otherwise,
(41)

where W denotes the disorder strength. During the brute
force calculation, the dynamic conductance and frequency-
dependent noise spectrum under ac bias are averaged over
1000 configurations, while the frequency-dependent shot
noise under dc bias is averaged over 100 000 configurations
due to its large fluctuation over the configuration average.

A. Dynamic conductance

In this section, we will show the numerical results of
dynamic conductance 〈GLL〉 for the Anderson disorder within
a wide range of disorder strengths W (from 0.01 to 3). In
Fig. 1, the disorder-averaged dynamic conductance 〈GLL〉

0 0.5 1 1.5 2 2.5 3
-5

-4

-3

-2

R
e(

G
L

L
)

(a)

0 0.5 1 1.5 2 2.5 3

W

-0.5

0

0.5

1

Im
(

G
L

L
)

(b)

FCS-CPA;  = 0.1
Brute Force;  = 0.1
FCS-CPA;  = 0.2
Brute Force;  = 0.2

FIG. 1. (a) The real and (b) imaginary parts of disorder-averaged
dynamic conductance 〈GLL〉 versus the disorder strength W . Here
the Fermi energy and frequency are chosen to be Ef = 0.3, � =
0.1, 0.2. One thousand configurations were calculated and averaged
in the brute force calculation.

versus the disorder strength W is presented. Here the Fermi
energy and frequency are chosen to be E f = 0.3 and � =
0.1, 0.2 as an illustration. Since dynamic conductance is a
complex quantity, the real and imaginary parts are plotted
separately. At first glance, we see that the brute force results
and FCS-CPA results agree remarkably well for both real
and imaginary parts. However, we do see that some deviation
between results for brute force and the FCS-CPA gradually
increases as the disorder strength W increases. This is under-
standable since in the CPA we have neglected some of the
multiple-scattering terms which play an important role at large
disorder strengths. Furthermore, we note that the magnitude
of the real (imaginary) part gradually decreases (increases)
with increasing of disorder strength. In contrast to the � = 0.2
case, the imaginary part of 〈GLL〉 in the � = 0.1 case starts
from a positive value.

To demonstrate the feature of the disorder effect on the
dynamic conductance GLL in a wide range of frequencies and
Fermi energies, we have calculated the phase diagram for
〈GLL〉 in Fig. 2. In view of the remarkable agreement between
brute force and the FCS-CPA, we use the FCS-CPA method
to calculate 〈GLL〉 in the (�,W ) and (E f ,W ) planes to avoid
the huge computational burden of the brute force calculation.
As shown in Fig. 2(a), the real part of 〈GLL〉 increases when
the frequency increases in the small-disorder-strength region.
Compared with the frequency dependence phase diagram, the
real part of 〈GLL〉 increases with the Fermi energy in Fig. 2(c).
For the imaginary part, similar behavior can be found in the
large-disorder-strength region. It is interesting that the real
part of the dynamic conductance is monotonously decreas-
ing in the entire region of E f and � as disorder strength
W increases. However, the imaginary part first decreases as
disorder strength increases and then increases a little bit again.

Furthermore, we also calculate the disorder-averaged dy-
namic conductance GLL in the (�, E f ) plane by using the
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FIG. 2. (a) The real and (b) imaginary parts of the calculated
phase diagram for disorder-averaged dynamic conductance 〈GLL〉 in
the (�,W ) plane. Here the Fermi energy is fixed as Ef = 0.3. (c) The
real and (d) imaginary parts of the calculated phase diagram for
disorder-averaged dynamic conductance 〈GLL〉 in the (Ef ,W ) plane.
Here the frequency is fixed as � = 0.05.

FCS-CPA method. The numerical results are presented in
Fig. 3. As an example, we chose two disorder strengths,
W = 0.5, 1.5. At first glance, we see that the real part of GLL

shows nearly the same pattern in the whole range of � and
E f . The magnitude of the real part for W = 1.5 is smaller than
that of W = 0.5 if we consider the same point (�, E f ) in the
phase diagram. However, for the imaginary part, as shown in
Figs. 3(c) and 3(d), it oscillates with the Fermi energy if we fix
the frequency. For the W = 0.5 case, the imaginary part first
increases with the Fermi energy, then decreases, and finally
increases.
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FIG. 3. The (a) and (c) real and (b) and (d) imaginary parts of
the calculated phase diagram for disorder-averaged dynamic conduc-
tance 〈GLL〉 in the (�, Ef ) plane. Here the disorder strength is fixed
as W = 0.5 for (a) and (b) and W = 1.5 for (c) and (d).
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FIG. 4. (a) The real and (b) imaginary parts of disorder-averaged
frequency-dependent shot noise 〈S′

LL (ω)〉 versus the disorder strength
W . Here the Fermi energy and frequency are chosen to be Ef =
0.3, ω = 0.1, 0.2. One hundred thousand configurations were cal-
culated and averaged in the brute force calculations for the red line
with upward triangle and purple line with the left-pointing triangle.
One million configurations were calculated to check the convergence
(black line with circles).

B. Frequency-dependent shot noise under dc bias

In this section, the numerical results for the frequency-
dependent shot noise 〈S′

LL(ω)〉 are presented. In Fig. 4, we
plot the numerical results of the brute force calculation and
of the FCS-CPA method. Here the Fermi level is also cho-
sen to be E f = 0.3. Before analyzing the disorder-averaged
case, we briefly discuss the frequency-dependent shot noise
in the clean limit. When disorder strength W = 0, S

′
LL(ω) =

Tr[(T̂+ − T̂−)T̂ ] is an integer that is determined by the channel
number N (E ) = T (E ) difference between energy E + ω and
E − ω.

From Fig. 4, we see that the real parts of 〈S′
LL(ω)〉 for brute

force and FCS-CPA calculations agree remarkably well in the
whole disorder strength range. However, for the imaginary
parts of the brute force calculation it is very difficult to
converge at large W (W > 0.9) even if it is averaged using
100 000 configurations. To check the convergence, 1 × 106

configurations were calculated, which is very costly, for three
disorder strength points, as shown in Fig. 4. Compared with
imaginary parts averaged using 10 000 configurations, the cor-
responding results with 1 × 106 configurations are smoother
and close to the FCS-CPA results in the middle range of
disorder strength. As disorder strength increases, it is found
that the imaginary part of the shot noise (FCS-CPA results)
starts from zero and reaches its maximum values between
W = 1 and W = 2. Finally, they gradually reduce to zero as
the disorder strength further increases. Actually, the imaginary
part of the shot noise comes from the disorder-scattering-
induced mode mixing in the system. More interestingly, the
real part of 〈S′

LL(ω = 0.2)〉 first increases a little bit versus
disorder strength W compared with the 〈S′

LL(ω = 0.1)〉 case
and then begins to decrease as disorder strength increases.

Different from the case of ac bias where there is an intrinsic
driving frequency, the frequency-dependent shot noise S′

LL(ω)
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FIG. 5. (a) The real and (b) imaginary parts of the calculated
phase diagram for disorder-averaged frequency-dependent shot noise
〈S′

LL〉 in the (ω,W ) plane. Here the Fermi energy is fixed as Ef = 0.3.
(c) The real and (d) imaginary parts of the calculated phase diagram
for disorder-averaged frequency-dependent shot noise 〈S′

LL〉 in the
(Ef ,W ) plane. Here the frequency is fixed as ω = 0.05.

under dc bias is just the Fourier transform of S′
LL(t ), and

the frequency here is a parameter. Note that S′
LL(t ) is a real

quantity; it is easy to confirm that S′
LL(ω) is an odd function

of frequency giving rise to a real inverse Fourier transform
S′

LL(t ). The real part of S′
LL(ω) is

∫
S′

LL(t ) cos(ωt )dt , and the
imaginary part of S′

LL(ω) is
∫

S′
LL(t ) sin(ωt )dt . Both compo-

nents are needed in order to describe S′
LL(t ), and there is no

restriction on the imaginary component.
According to Eq. (24), the frequency-dependent shot noise

is composed of the correlation of the transmission matrix T̂
between electrons at the Fermi energy and above or below
the Fermi energy T̂±. Note that the transmission matrix T̂
is Hermitian with real diagonal matrix elements. Hence, if
the transmission matrix is diagonal, the frequency-dependent
shot noise is real from Eq. (24). The physical meaning of a
diagonal transmission matrix is that there is no mode mixing
in the transport process: that is, transmission channels n, m
are all independent. When there is no mode mixing in the
transport, the system behaves one-dimensional. Our system
is set up as a quasi-one-dimensional system in the clean limit.
That is the reason why the imaginary part of the frequency-
dependent shot noise is zero in the clean limit. In the presence
of disorders, the scattering events lead to mode mixing, and
the transmission matrix becomes complex. The mode mixings
or scatterings above and below the Fermi energy are differ-
ent, leading to a nonzero imaginary part of the frequency-
dependent shot noise. In Appendix C, we analytically show
that the imaginary part of the transmission matrix element is
nonzero and hence the shot noise when there is a 
 potential
impurity in the two-dimensional system.

The phase diagrams of the disorder-averaged frequency-
dependent shot noise 〈S′

LL〉 in the (E f ,W ) and (ω,W ) planes
are presented in Fig. 5. When disorder strength W is small,
the real parts of 〈S′

LL(E f ,W )〉 increase from 1 to 4 when
frequency ω changes from 0.01 to 0.2, as shown in Fig. 5(a).
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FIG. 6. The (a) and (c) real and (b) and (d) imaginary parts of the
calculated phase diagram for disorder-averaged frequency-dependent
shot noise 〈S′

LL〉 in the (�, Ef ) plane. Here disorder strength is fixed
as W = 0.5 for (a) and (b) and W = 1.5 for (c) and (d).

As disorder strength increases, they approach zero (blue re-
gion). Interestingly, the imaginary parts of 〈S′

LL(E f ,W )〉 can
be either positive or negative in Fig. 5(b). With the Fermi
energy fixed, we further studied 〈S′

LL(ω,W )〉. From Fig. 5(c),
we can see that the real parts of 〈S′

LL〉 oscillate between 1 and
2 when disorder strength W is small (around 0.2). Similarly,
its imaginary parts also have oscillations when W is around 1.

Finally, we also calculated 〈S′
LL〉 in the (�, E f ) plane by

using the FCS-CPA method. For simplicity, the cases for two
disorder strengths, W = 0.5, 1.5, are chosen and presented in
Fig. 6. The real parts of 〈S′

LL〉 have nearly the same pattern
for the two disorder strengths in Figs. 6(a) and 6(c), while the
imaginary part of the shot noise is quite different in Figs. 6(b)
and 6(d). The imaginary parts are nearly equal to 0.1 in a wide
range of the Fermi energy and frequency when W = 1.5.

C. Frequency-dependent noise spectrum under ac bias

In this section, we present the numerical results of the
disorder-averaged frequency-dependent noise spectrum under
ac bias using the FCS-CPA method compared with the brute
force calculation. In the numerical simulation, we have fixed
the Fermi energy E f = 0.3 and bias amplitude V̄ = 0.2. The
temperature kbT is in units of hopping energy t = 1. To
understand how the noise spectrum depends on temperature,
we take kbT = 0.0001, 0.01 as an example. Figure 7(a) shows
the numerical results of S(�) using the FCS-CPA method and
brute force calculations. We can clearly see that the numerical
results from both methods agree well in the whole disorder
strength range. When kbT = 0.0001, the noise spectrum
starts near the zero point compared with the finite value when
kbT = 0.01. Since there are two terms in Eq. (36), only the
first term depends on temperature. The second term is equal
to zero due to the Fermi statistics of electrons (Tr[T̂ (I − T̂ )])
in it when W = 0. In Fig. 7(a) when temperature is very low
(kbT = 0.0001), the thermal noise is negligible. Hence, the
difference in the two curves in Fig. 7(a) mainly comes from
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FIG. 7. (a) The disorder-averaged frequency-dependent noise
spectrum 〈S(�)〉 versus the disorder strength W where frequency
� is fixed as 0.01. (b). The disorder-averaged frequency-dependent
noise spectrum 〈S(�)〉 versus the frequency � where disorder
strength W is fixed as 0.05. Here the Fermi energy and bias amplitude
are chosen as Ef = 0.3 and V̄ = 0.2. One thousand configurations
were calculated and averaged in the brute force calculation.

the thermal noise. As the disorder strength increases, the noise
spectrum 〈S(�, kbT = 0.0001)〉 first increases to a plateau
and then decreases. However, S(�, kbT = 0.01) decreases
monotonously as disorder strength increases. In Fig. 7(b),
the noise spectrum 〈S(�)〉 versus the frequency is given by
fixing the disorder strength W = 0.5. The noise spectrum
〈S(�, kbT = 0.0001)〉 remains unchanged in the frequency
regime. However, as temperature increases to kbT = 0.01, the
noise spectrum remains unchanged first and then increases
starting from � = 0.16.

IV. SUMMARY

Based on the nonequilibrium Green’s function, we have
developed a theoretical formalism to calculate the disorder-
averaged dynamic conductance, frequency-dependent shot
noise under dc bias, and frequency-dependent noise spectrum
under ac bias using the FCS framework within the coherent
potential approximation. Compared with the numerical calcu-
lation method, our FCS-CPA approach provides an effective
way to calculate disorder-averaged frequency transport quan-
tities. Without loss of generality, we have implemented our
theoretical formalism in the tight-binding model on a square
lattice to calculate the three disorder-averaged quantities by
considering Anderson-type disorder. From the numerical re-
sults, we found that our formalism can give very accurate
results compared with the brute force calculation.
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APPENDIX A: DYNAMIC CONDUCTANCE

In this Appendix, we will briefly show that the first deriva-
tive of ln Zαβ (λ) with respect to iλ gives Eq. (6). By taking the
derivative of Eq. (7) and plugging the definitions of G(E ) and
Aαβ (E ) into Eqs. (8) and (9), we have

∂ ln Zαβ

∂ (iλ)
|λ=0

= ∂

∂ (iλ)

{∫
dE

2π

f − f̄

�
Tr ln[I + G(E )Aαβ (E )]

}
|λ=0

=
∫

dE

2π

f − f̄

�

∂

∂ (iλ)
{ln Det[I + Ḡr (E )
βGa(E )

× (
α − 
δαβ + i�Iδαβ )ζ 2]}|λ=0

=
∫

dE

2π

f − f̄

�
Tr

{
∂

∂ (iλ)
ln[I + Ḡr (E )
βGa(E )

× (
α − 
δαβ + i�Iδαβ )(eiλ − 1)]|λ=0

}

=
∫

dE

2π

f − f̄

�
Tr[Ḡr (E )
βGa(E )(
α−
δαβ+i�Iδαβ )]

= Gαβ (�), (A1)

where we have used the relation Tr ln[· · · ] = ln Det[· · · ].

APPENDIX B: FREQUENCY-DEPENDENT DC
SHOT NOISE

We start from the formula for frequency-dependent noise
power under the dc bias equation (22). Now we calculate SLL

for a two-probe system in the linear response regime at zero
temperature using Eq. (22). Expanding Fγ δ (E , Ē ) in Eq. (23)
up to first order in the voltage and setting vL = 0 and vR =
v > 0, we have the following three relations for positive �:

fα (E )[1 − fα (Ē )] ∼ ω,

which does not contribute to SLL in the linear regime,
∫

dE fL(E )[1 − fR(Ē )]u(E ) =
∫ EF

EF −ω−v

u(E )dE ,

and∫
dE fR(E )[1 − fL(Ē )]u(E ) = θ (ω − v)

∫ EF −v

EF −ω

u(E )dE ,
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where we have used the fact that fR(E )[1 − fL(E )] = 0 at
zero temperature. Using Taylor expansion u(E ) = u(E0) +
u′(E0)(E − E0) + · · · , we find∫ EF

EF −ω−v

u(E )dE = u(EF − ω)(ω + v)

+ u′(EF − ω)(ω2 − v2) + · · ·
and∫ EF −v

EF −ω

u(E )dE = u(EF )(ω − v) + u′(EF )(ω2 − v2) + · · · .

Hence, in the linear regime, there are only two terms
in the summation

∑
γ δ in Eq. (22), γ = L, δ = R

and γ = R, δ = L, with ALR(L, E , Ē )ARL(L, Ē , E ) =
Tr[s†

LL(E )sLL(E )s†
LR(Ē )sLR(Ē )] = Tr{[1 − T̂ (E )]T̂ (Ē )} and

ALR(L, E , Ē )ARL(L, Ē , E ) = Tr{[1 − T̂ (Ē )]T̂ (E )}, where Tr
is over different conducting channels.

We finally have

2πSLL(ω) = Tr{[1 − T̂ (EF − ω)]T̂ (EF )}
− θ (ω − v)Tr{[1 − T̂ (EF + ω)]T̂ (EF )},

which recovers the known results 2πSLL = Tr[(1 − T̂ )T̂ ] at
ω = 0. At finite frequency, we have θ (ω − v) = 1 in the linear
response regime. Therefore, we arrive at

2πSLL(ω) = Tr{[T̂ (EF + ω) − T̂ (EF − ω)]T̂ (EF )}.

APPENDIX C: MODE-MIXING-INDUCED IMAGINARY
PART OF THE FREQUENCY-DEPENDENT

DC SHOT NOISE

In this Appendix, we will analytically show that the imag-
inary part of the transmission matrix element is nonzero once
there is an impurity in the two-dimensional system. As an
example, we shall consider a 
 potential impurity in the
two-dimensional square-lattice system which is located in
the center of the system, i.e., V (x, y) = V0δ(x − L/2)δ(y −
L/2). Here we assume that the system length is L × L with
boundaries xL = 0, xR = L. The scattering wave function ψαm

can be calculated by the Lippmann-Schwinger equation with
first-order approximation [61],

ψαm = ψ0
αm + Gr

0V ψαm

	 ψ0
αm + Gr

0V ψ0
αm, (C1)

where ψ0
αm and Gr

0 are the scattering wave function and
Green’s function in the clean limit, respectively. They are
defined as [61,62]

ψ0
αm(x, y) = −iχm(y)eikm (x−xα ),

Gr
0(x, x′, y, y′) =

∑
m

−i

h̄vm
χm(y)χm(y′)eikm|x−x′|, (C2)

where χm(y) is the transverse mode function, vm = h̄km/m
is the velocity of the mth mode, and km = √

2m(E − εm)/h̄,
with εm being the threshold of the mth mode. According to
the definition of the scattering matrix sRLnm [62], we have

sRLnm = i〈WRm|ψLn〉/κm

= i〈WRm|ψ0
Ln〉/κm + i〈WRm|Gr

0V ψ0
Ln〉/κm

= δnmeiknL − iV0

h̄vm
ei(km+kn ) L

2 χm

(
L

2

)
χn

(
L

2

)
, (C3)

where |Wαm(x, y)〉 is the source of the αth lead [61],

|Wαm(x, y)〉 = κmχm(y)δ(x − xα ), (C4)

where we have introduced κm = √
h̄vm. From Eq. (C3), we

know the second term comes from the scattering event and
modes n and m are mixed. Without impurity scattering, the
second term is equal to zero, and there is no mode mixing.

Once the scattering matrix is known, we can calculate the
transmission matrix element T̂nm = ∑

l s∗
RLlnsRLlm. In the clean

limit, we can easily know that T̂nm is diagonal and purely
real without mode mixing. In the presence of impurity, the
transmission matrix element T̂nm becomes (up to first order in
V0)

T̂nm = δnm + iV0

h̄

[
1

vn
ei(kn−km ) L

2

− 1

vm
ei(km−kn ) L

2

]
χm

(
L

2

)
χn

(
L

2

)
. (C5)

Note that the off-diagonal terms of the transmission matrix
are complex quantities. In order to calculate the frequency-
dependent shot noise, T̂nm should be calculated in two different
energies E ± �, and the imaginary part cannot be canceled.
Finally, we know that the imaginary part of the frequency-
dependent shot noise is due to the mode mixing when the
disorder is present.
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