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We study the ac Hall response induced by passage of dc transport current in two- and three-dimensional metals
with gyrotropic point groups—the gyrotropic Hall effect—and consider the phenomenon of current-induced
optical activity in noncentrosymmetric metals as a physical application of our theory. While the effect is expected
to be present in single crystals of any noncentrosymmetric metal, we expect it to be strongest in enantiomorphic
Weyl semimetals. Using the semiclassical kinetic equation approach, we present several mechanisms underlying
the gyrotropic Hall effect. Amongst them, the intrinsic mechanism is determined by the Berry curvature dipole,
while extrinsic impurity-induced processes are related to skew scattering and side-jump phenomena. In general,
the intrinsic and extrinsic contributions can be of similar magnitude. We discuss the gyrotropic Hall effect for all
frequencies of practical interest, from the dc transport limit, to optical frequencies. We show that for frequencies
that are small compared to relevant band splittings, the trace of the gyrotropic Hall tensor in three-dimensional
materials is proportional to a topological, quantized Berry charge, and therefore is robust in gyrotropic Weyl
systems. This implies that polycrystals of strongly gyrotropic Weyl semimetals will demonstrate strong current-
induced optical activity, whereas the response vanishes for polycrystalline ordinary metals. Therefore the current-
induced optical activity can be considered a valuable tool in identifying the topological nature of a material.
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I. INTRODUCTION

Studies of quantum phenomena emerging from the wave-
function geometry of electronic states of matter lie at the fore-
front of current interest in modern condensed matter physics.
The field was established with seminal works on the theory
of the integer quantum Hall effect [1] and its relation [2]
to the geometric phases [3]. Further investigations of linear
responses related to electronic band geometry have persisted
till recent years, where a new set of phenomena associated
with band topology of topological insulators as well as gap-
less topological phases, most notably Weyl semimetals, have
become mainstream research subjects (see Refs. [4,5] for
review).

In recent years, nonlinear optical and transport phenomena
have received increasing attention as ones directly related to
band geometry [6,7]. In particular, the nonlinear Hall and pho-
togalvanic effects [8–13], and the second harmonic generation
[14,15] attracted considerable theoretical and experimental
attention in relation to the physics of electronic systems with
nontrivial band topology.

Inspired by these advances, in this paper, we consider the
gyrotropic Hall effect (GHE), i.e., ac Hall response in the pres-
ence of a background dc current in crystals with gyrotropic
point groups. This phenomenon is of principal interest in
noncentrosymmetric time-reversal invariant materials, where
the linear Hall coefficient vanishes by Onsager’s relations,
hence the GHE is a way to study the band geometry via
magneto-optical effects.

At optical frequencies, the GHE is the same as the
phenomenon of current-induced optical activity, which has
been studied both theoretically [16,17], and experimentally
[18–20]. We reserve a more general name of the GHE to
emphasize that it also pertains to the limit of low frequencies,
and purely transport measurements.

Overall, the entirety of nonlinear Hall effects, to which
the gyrotropic Hall effect belongs, has recently enjoyed a
revived interest. It is thus worthwhile to review the theoretical
developments, after a brief reminder that in a realistic, impure
system, the linear anomalous Hall effect [21] stems from often
comparable intrinsic (Berry curvature) and extrinsic (skew
scattering and side-jump) contributions. Disregarding the ex-
trinsic effects, it was recently demonstrated [8,9] that the low-
frequency nonlinear dc and ac current response in monochro-
matic field is related to the Berry curvature dipole moment. In
three spatial dimensions, and for a given Fermi surface sheet,
the trace of the latter is given by a topological charge.

A similar quantization related to the existence of Berry
monopoles was also proposed [11] for the optical high-
frequency regime of the dc response (the circular photo-
galvanic effect). In fact, all quantized nonlinear effects are
diagrammatically associated with the same anomalous tri-
angular diagram [22]. Contrary to those previous works on
nonlinear effects, we here do take extrinsic contributions into
account and show their parametric importance. Still, we are
able to demonstrate that each Fermi surface contributes a
topologically quantized response to the trace of the gyrotropic
Hall effect, even when extrinsic effects are taken into account.
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In passing, we remark that, upon reinterpretation of the ac
field as a background drive and of the dc field constituting the
probe, the gyrotropic Hall effect is furthermore related to the
transport properties of topological Floquet materials [23–26]
for which, to the best of our knowledge, extrinsic effects have
not been discussed.

The rest of the paper is organized as follows. In Sec. II,
we summarize the phenomenology of current-induced Hall
response and current-induced optical activity in gyrotropic
metals. Section III contains the main results of this work.
In Sec. IV, we derive those results from the semiclassical
Boltzmann equation. Section V is devoted to the application
to exemplary systems: Weyl semimetals and transition metal
dichalcogenides under strain. We conclude in Sec. VI with
a final summary of the paper and also provide numerous
appendices with supplemental technical calculations.

II. CURRENT-INDUCED HALL RESPONSE
AND OPTICAL ACTIVITY IN METALS

In this section, we briefly recapitulate the phenomenology
of the Hall response in metals, and summarize the magneto-
optical effects that are related to it. Such phenomena, related
to light polarization rotation in crystals stem from the presence
of a Hall-like contribution in conductivity tensor of a material
[27]:

σ H
ab(ω) = e2

h
εabcGc(ω), (1)

where the pseudovector G, in 3D, has dimensions of inverse
length, and is odd under time reversal.

The typical origin of the polarization rotation phenomena
lie in the presence of time-reversal breaking in a magnetically
ordered crystal. However, it has been noticed a while ago
[16–18] that in noncentrosymmetric crystals passage of a
transport current can induce rotation of light polarization. This
possibility is dictated by symmetry considerations: viewing G
as a linear response to the transport current, one immediately
concludes that it is odd with respect to the operation of time
reversal, and the lack of an inversion center in the crystal
allows G to be a pseudovector, even though the current density
is a polar one.

In this paper, we construct the theory of vector G in
Eq. (1) induced by passage of a transport current in metals
with nontrivial band geometry, notably in Dirac and Weyl
materials, in various frequency ranges. Such response can
be quantified by writing the antisymmetric (Hall) part of the
conductivity tensor as

σ H
ab(ω) = �abc(ω)E0

c , (2)

where E0 is the transport dc electric field that drives the
transport current through the sample. Evidently, third-rank
tensor �abc is antisymmetric with respect to the first pair
of indices, hence is dual to a second-rank pseudotensor
λab,�abc = εabdλdc. We will refer to λab as the gyrotropic Hall
tensor. Using this tensor, we can relate vector G of Eq. (1) to
the transport electric field:

Ga(ω) = h

e2
λab(ω)E0

b . (3)

It is clear that the knowledge of either tensor �abc, or the
gyrotropic Hall tensor λab is sufficient to fully describe the
current-induced Hall response of a chiral metal, and the GHE.

Before presenting the semiclassical kinetic theory, we
would like to outline the phenomenology of optical polar-
ization rotation in metals for future reference. For simplicity
and clarity of presentation, we assume that the Hall-like
response defined by Eq. (1) is the only nondiagonal part of the
conductivity tensor. Various aspects of the optics of crystals
can be added to consideration along the textbook lines [27].
The refractive indices for the two circular polarizations of
light (R, L) are given by [28,29]

nL,R = nω

(
1 ∓ 1

2
q̂ · g

)
, g = 1

ε0εωω

e2

h
G. (4)

Here, q̂ is the direction of the wave vector, and εω = n2
ω are

the background dielectric function and the refractive index of
the material.

In this paper, we are interested in magneto-optical phenom-
ena induced by current passage through a metal with nontriv-
ial band geometry, focusing on Kerr and Faraday polarization
rotation angles. Since both of these are determined by the (dif-
ference in) refractive indices for the two circular polarizations
of light, Eq. (4) provides all necessary information to consider
magneto-optical phenomena.

For propagation along the G ≡ (0, 0, G) vector, which
yields the largest rotation according to Eq. (4), the Kerr
rotation angle is given by

θK = Im
nR − nL

nRnL − 1
� Im

σxy

ε0ω
√

εω(εω − 1)
. (5)

Here, σxy = e2G/h is the Hall conductivity in the plane per-
pendicular to vector G, and the second approximate equality
holds for small σxy.

In turn, the Faraday rotation per unit thickness of
material is

ρF = ω

2c
Re(nL − nR) � − 1

2ε0c
Re

σxy√
εω

. (6)

Note the polarization rotation angles are defined as positive
for rotation from the x to y axis, for light propagating along −z
axis. It is also noteworthy that in the absence of absorption,
Im(εω ) = 0, the Kerr and Faraday rotations are determined
by the imaginary and real parts of the Hall conductivity,
respectively.

In this paper, besides three-dimensional materials, we will
consider the GHE in 2D systems. Therefore, we present the
corresponding expressions for the Kerr (θ2D

K ) and Faraday
(θ2D

F ) rotation angles for a 2D layer assumed to be in vacuum:

θ2D
K � −Re

σ 2D
xy

σ 2D
xx

, θ2D
F � Re

σ 2D
xy

2ε0c
. (7)

It is assumed above that the 2D conductivities satisfy σ 2D
xy �

σ 2D
xx , and σ 2D

xx /ε0c � 1. Equations (7) show that the Faraday
rotation angle is a direct measure of the Hall response in a 2D
layer. However, the value of the Kerr rotation angle is larger
by the factor of ε0c/σ 2D

xx � 1, hence Kerr rotation is a much
more sensitive probe (in particular, of the GHE).
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We would like to finish this Section with a brief comment
on the relation between the GHE and the phenomenon of
current-induced magnetization, also known as the Rashba-
Edelstein effect, or the kinetic magnetoelectric effect [30–33].
It is tempting to interpret the GHE as a type of anomalous
Hall effect that stems from the current-induced magnetization,
rather than one present in the ground state of a magnetic
sample. Indeed, one can eliminate the electric field from
the linear relation (2), and a similar relation for the current-
induced magnetization, thereby relating the hall conductivity
tensor directly to the magnetization. However, such a relation
between the GHE and current-induced magnetization is not
particularly deep, since it does not reveal the physical origin of
the GHE. Indeed, as it will become apparent below, the GHE
and kinetic magnetoelectric effect stem from different geo-
metric objects. While the magnetization is naturally related to
the existence of spin and orbital magnetic moments of elec-
trons, the GHE comes from the anomalous velocity of charge
carriers. Therefore the GHE and the kinetic magnetoelectric
effect should be considered as two separate phenomena, both
of which are caused by band geometry, and hence appear
simultaneously in the presence of a transport current.

III. SUMMARY OF RESULTS

As explained in Sec. II, the GHE is described with a
single second-rank gyrotropic Hall (pseudo-) tensor, λab, or,
equivalently, with the nonlinear ac-dc Hall tensor �abc. In
this section, we summarize the result obtained in subsequent
sections for these two quantities.

A. Low-frequency result for gyrotropic Hall tensor

We explicitly show that in the presence of disorder, the
gyrotropic Hall tensor has both intrinsic and extrinsic con-
tributions. The intrinsic part is determined by the Berry cur-
vature dipole moment, while the extrinsic ones are governed
by the skew scattering and side-jump processes, familiar from
the theory of anomalous Hall effect [21,34]. The physical
meaning of those terms becomes most apparent in the defini-
tion ja = �abcEω

b E0
c , where Eω (E0) are ac (dc) electric field

components. We express �abc as a Fermi surface integral

�abc = e3
∫

p
τεabd


tot
d vc∂εp feq(εp)

+ e3
∫

p
τωεacd


tot
d vb∂εp feq(εp)

− e3
∫

p
ττωvtot

a ∂cvb∂εp feq(εp). (8)

Here, antisymmetrization in a ↔ b is implied, feq is the
equilibrium Fermi-Dirac distribution function, τ is the elastic
scattering time, and we defined

τω = τ

1 − iωτ
. (9)

The total Berry curvature �tot and total velocity vvvtot will
be introduced shortly in Sec. III B. The first line represents
the full ac anomalous velocity vvvanom = e(Eω × �tot ) evalu-
ated with the nonequilibrium distribution function due to the

FIG. 1. Cartoon of contributions to the gyrotropic Hall tensor,
per Eqs. (8) and (14). (a) and (b) represent the evaluation of the
anomalous velocity E × � (with either E0 or Eω) in the presence of
a Fermi surface shifted by τeE0 (τωeEω). In contrast, in (c), the zero
field velocity is evaluated employing the nonlinear shift of momenta
by τeE0 + τωeEω. Lastly, in (d), we illustrate extrinsic processes due
to skew scattering and side-jump anomalous events that may have
contributions of the same order as the intrinsic effect.

momentum shift εp → εp−τeE0 , see Fig. 1(a). The second line
is the same, but the role of ac and dc fields is reversed,
Fig. 1(b). Finally, the last line is the evaluation of the total
velocity taking into account the nonlinearity of the dispersion
relation, see Fig. 1(c).

B. Total velocity and Berry curvature

The total velocity entering Eq. (8)

vvvtot = ∇pεp + τω

τ
(τωAsk + 2vvvsj ) (10)

contains corrections to the group velocity originating from
skew-scattering (Sec. IV B) and side-jump (Sec. IV C)
mechanisms.

The expressions for the skew acceleration Ask
p and side-

jump accumulation vvv
sj
p involve the symmetric and antisym-

metric parts of the impurity scattering probability w
(S,A)
pp′ from

p′ to p, see Eqs. (21) and (22), as well as the coordinate
shift of the electron in the same transition, δrpp′ , Eq. (42).
The physical meaning of Ask

p and vvv
sj
p becomes clear from

their respective microscopic definitions given in Eqs. (38) and
(45), respectively: vvv

sj
p is a disorder-induced velocity of a wave

packet due to the accumulation of the side-jump events; in
turn, Ask

p is a disorder-induced acceleration of a wave packet
due to the velocity change accumulation upon skew scattering.

The total Berry curvature is defined as

�tot = ∇p ×
[

i〈up|∇pup〉 + τ

2
vvvtot

]
. (11)

The intrinsic part of the curvature describes the geometry of
Bloch wave functions |up〉 over the Brillouin zone torus. It
follows from the expression of the linear Hall response

σab = −e2εabc

∫
p

tot

c feq(εp), (12)
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that the geometric meaning of �tot is to characterizes the
fiber bundle of wave functions of the entire impure system for
twisted boundary conditions [2]. We remark that we added the
contributions from side-jump accumulation and anomalous
distribution [21], hence the factor of 2 in front of vvvsj in
Eq. (10).

C. Topological charges and frequency dependence

From Eq. (8), it follows that the gyrotropic Hall tensor is
defined by the dipole moment of the total Berry curvature in
the Brillouin zone, Dtot

ab , which we generalize as compared to
the theory of the intrinsic photogalvanic effect [8,9]:

Dtot
ab =

∫
p

tot

b ∂a feq. (13)

Under the assumption of momentum independent scattering
times, λab can be expressed in terms of Dtot

ab ,

λab = e3τ

[(
1 + τω

2τ

)
Dtot

ba − τω

2τ
δabTrDtot

]

− e3 τωτ

2

∫
p
[(vvvtot × ∇p)avb]∂εp feq(εp). (14)

It is noteworthy that the tensor Dtot is traceless [35,36]. This
statement stems from an observation that the integral

1

2π

∫
p
(� · vvv) ∂εp feq = − 1

2π

∫
fs

dSfs · �fs, (15)

where dSfs is the directed Fermi surface element, measures the
total Berry monopole charge inside a Fermi pocket. This quan-
tity obviously vanishes in the absence of Berry monopoles,
i.e., in the absence of Weyl points. When such points are
present in 3D metals, it is helpful to reinstate an explicit
summation over the Fermi surface sheets in the expression for
TrD and Trλ:

TrD =
∑

s

Qs = 0, (16a)

Trλ =
∑

s

2π ie3ωτ 2
s

(1 − iωτs)
Qs, (16b)

in which Qs is the Berry monopole charge contained inside a
given Fermi surface, all of which are labeled with index “s”
(note that the Berry charge is the same for both electronic
and hole Fermi surfaces around a given Weyl point, since
both Berry curvature and the direction of the “outer” normal
are opposite for them). The vanishing total topological charge
Eq. (16a) in a bulk material is a consequence of gauge invari-
ance [35]. We conclude that in the generic case of unequal
scattering times τs, the trace of tensor λdc that defines the
gyrotropic Hall effect is of topological origin and it can be
readily seen that extrinsic contributions drop in Eq. (16b).

Compared to the usual case of the anomalous Hall effect
[21], the most peculiar feature of the gyrotropic Hall effect is
its frequency dependence, which allows to separately discuss
and experimentally distinguish intrinsic from extrinsic mech-
anisms of GHE. Indeed, in the high-frequency limit, ωτ � 1,
or equivalently |τω|/τ � 1, skew scattering contributions are

suppressed by 1/(ωτ )2. In this limit,

λab � e3τDint
ba + ie3

ω

[
Dint

ba − δabtrDint

2
+ Dsj

ba

]
, (17)

where the superscript “int” (“sj”) indicates that only the intrin-
sic (side-jump) contribution to the Berry curvature, Eq. (11),
is kept. Note that Eq. (17) pertains to a given Fermi surface,
unlike Eq. (16b).

In the opposite limit of low frequencies, ωτ � 1, the
distinction between the intrinsic and extrinsic mechanisms
is as hard as in the usual AHE case. Note that the extrinsic
correction to the Berry curvature, Eq. (11), can be of com-
parable size to the intrinsic one, and can even reverse the
sign of their totality, see Sec. V B for an example. Even more
drastically, as in the case of the AHE, in the limit of rare
strong impurities, the skew scattering contribution dominates
the effect. We expect both statements to also hold in the case
of the dc nonlinear Hall effect [8,9,12].

D. Large frequencies

All preceding considerations have been restricted to the
low-frequency regime, in which the ac frequency is small as
compared to relevant band splittings. In the opposite case of
optical frequencies, provided that the crystal is sufficiently
clean and the bands are well resolved, mechanisms related to
disorder scattering are not efficient, see Eq. (17). For a short
discussion of the intrinsic high-frequency contributions, we
refer to Sec. IV D and summarize here the result for a generic
two-band model. An interpolating function which smoothly
connects the low-frequency result with the case of resonant
optical frequencies is obtained by introducing

�tot
ω = i

ε2
nn̄

ε2
nn̄ + τ−2

ω

∇p × 〈up|∇pup〉 + τ

2
∇p × vvvtot (18)

and redefining Dtot
ab by replacing �tot → �tot

ω in Eq. (13).
Here, εn ≡ εn(p) is the dispersion in band n to which the
Fermi surface under consideration belongs, and εnn̄ = εn − εn̄

measures the energy splitting to the second band n̄ at the
same momentum. Note that at large frequencies τ−1

ω � −iω
implying a resonance at |εnn̄| = ω.

IV. KINETIC THEORY OF GYROTROPIC
HALL EFFECT IN METALS

In this section, we consider the phenomenon of the current-
induced optical activity (GHE) in detail. To this end, we
calculate the effective Hall-like response, Eq. (1), induced
by a dc (transport) current, in a generic noncentrosymmetric
crystalline metal. It has momentum-space Bloch Hamiltonian
ĥp, with an eigensystem that contains Bloch eigenstates |unp〉,
and energies εnp:

ĥp|unp〉 = εnp|unp〉. (19)

In what follows, we will suppress the band index n, with
the understanding that it can be reinstated simply by adding
summation over it to momentum-space integrals over p.

Given the materials of interest—Dirac and Weyl
semimetals—we will restrict the ranges of optical excitation
frequencies to the two most interesting one; the low-frequency
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regime, in which the optical frequency is small compared
to relevant band splittings, ω � εg; the resonant regime,
in which the optical frequency is large compared to any
intraband frequency (e.g., the inverse transport time), and is
close to an interband resonance.

In principle, both regimes of low and high frequencies
can be considered based on the multiband quantum kinetic
equation. However, here we choose to use the formalism
of Boltzmann kinetic equation with semiclassical corrections
taken into account for the low-frequency regime due to its
physical transparency. The high-frequency regime must be
considered within the multiband quantum kinetic equation.

In the limit of small excitation frequencies, ω, 1/τ � εg,
the finite-frequency response in the presence of a dc current
can be obtained from the conventional Boltzmann kinetic
equation, with semiclassical corrections taken into account
[37]. Such treatment neglects O(ω/εg) contributions. Further,
Weyl semimetals with not too high doping levels are neces-
sarily semiconductors with many valleys, hence have several
Fermi pockets. In what follows, we neglect the intervalley
scattering, since the corresponding rate is typically small
compared to the intravalley one, and in the present problem
does not bring any new physics.

The technical task we are facing below is to solve coupled
integrodifferential kinetic equations to a nonlinear order in
applied field. This is an extremely challenging task even with
above specified simplifications, so a few additional comments
are in order in relation to kinetic scheme outlined here.
(i) We will work only up to order O(E0 · Eω ) in applied
dc, E0, and ac, Eω, electric fields. (ii) We will work in the
simplified model case with the single relaxation time approx-
imation (RTA). In other words, we disregard the fact that
angular harmonics of the distribution function may decay on
different timescales, although we expect these timescales to be
parametrically equivalent. (iii) We further assume that relax-
ation time is momentum independent, namely constant RTA
model. While such approximation is inadequate to capture
thermoelectric and thermomagnetic responses, it will be suf-
ficient to describe GHE which does not require particle-hole
asymmetry. We stress that the physics of GHE does change if
relaxation time is energy dependent, but the change is merely
quantitative and does not bring any new conceptual features
to the form of GHE tensor. (iv) We treat collision terms
perturbatively by iterations thus assuming weak and smooth
impurity potential. (v) We ignore interference effects between
different scattering channels contributing to gyrotropic Hall
response as these are higher order corrections.

A consistent theory of longitudinal nonlinear conductivity
requires the careful inclusion of energy dissipation (e.g., by
phonons) to balance Joule heating WJ ∼ j(t ) · E(t ). At the
same time, those terms of WJ which have the same form as the
gyrotropic Hall response are zero on average. This allows us
to develop a theory of gyrotropic nonlinear response without
the need of taking energy dissipation into account.

A. Intrinsic mechanism

In the present case, the electric field has biharmonic time
dependence, E(t ) = E0 + Eωe−iωt . We neglect its spatial de-
pendence. The kinetic equations for the dc, f 0, and ac, f ω,

nonequilibrium components of the distribution function in a
given valley (valley index suppressed), are

eE0∂p feq = I
{

f 0
p

}
,

−iω f ω
p + eEω∂p

(
feq + f 0

p

) + eE0∂p f ω
p = I

{
f ω

p

}
, (20)

where the integral operator I{ fp} encapsulates collision terms.
We assume that the main source of scattering is disorder for
which the usual collision integral reads

I{ fp} = −
∫

p′
(wp′ p fp − wpp′ fp′ )δ(εp − εp′ ), (21)

with a scattering rate that generically contains parts that
are both symmetric and antisymmetric with respect to the
interchange of the initial and final states

wpp′ = wS
pp′ + wA

pp′ , wS,A
pp′ = ±wS,A

p′ p . (22)

Kinetic equations (20) must be supplemented with an expres-
sion for the current

j = e
∫

p
(∇pεp + e�p × E ) fp (23)

that contains both band and anomalous velocity terms. Note
that both the energy-conserving δ function in the impurity
collision integral, Eq. (21), as well as the expression for
the current, Eq. (23), must be modified to take into account
side-jump processes. This will be described in more detail in
Sec. IV C.

For the purpose of calculating the intrinsic contribution to
the antisymmetric part of the conductivity tensor, only the
anomalous velocity current due to the Berry curvature of the
band structure, �p (valley index suppressed) needs to be taken
into account. Such anomalous velocity currents are linear in
electric fields, hence it suffices to solve kinetic equations
(20) to linear order in transport and optical fields. We denote
such solutions for the distribution function as f E0

and f Eω

,
which describe response to the transport and optical fields,
respectively. We can write the corrections to the equilibrium
distribution function in the standard form:

f E0

p = −τeE0∂p feq, f Eω

p = −τωeEω∂p feq, (24)

where the elastic scattering time is defined by symmetric part
of the scattering probability in a usual fashion

τ−1 =
∫

p′
wS

pp′ (1 − cos θpp′ )δ(εp − εp′ ). (25)

The anomalous current oscillating at the frequency of the
optical field is then given by

jE0Eω = e2
∫

p
(�p × Eω ) f E0

p + e2
∫

p
(�p × E0) f Eω

p . (26)

The total anomalous current is given by summing the current
in Eq. (26) over all valleys. Substituting the solutions of
Eqs. (20) into Eq. (26) for the current, and separating the
antisymmetric part of the corresponding optical conductiv-
ity tensor, we obtain the intrinsic contribution to the GHE,
σω

ab = �int
abcE0

c (summation over repeated indices is implied),
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with

�int
abc = e3

∫
p
τ

[
εabdvc + τω

2τ
(εacdvb − εbcdva)

]

d∂εp feq,

(27)

where we introduced the band velocity vvvp ≡ ∂pεp. The first
term (second term in round brackets) in Eq. (27) contributes
to the first (second) line of Eq. (8). For �abc given by Eq. (27),
the gyrotropic Hall (pseudo)tensor dual to it is given by

λint
dc = e3

∫
p
τ

[(
1 + τω

2τ

)

dvc − τω

2τ
(� · vvv)δdc

]
∂εp feq.

(28)

Note that in the constant relaxation time approximation (for
a given Fermi surface), the gyrotropic Hall tensor is defined
by the dipole moment of the Berry curvature in the Brillouin
zone, Dab familiar from the theory of photogalvanic effect
[8,9]:

Dab =
∫

p

b∂a feq. (29)

In terms of Dab, and assuming momentum independent
scattering rates λab is given by

λint
ab = e3τ

[(
1 + τω

2τ

)
Dba − τω

2τ
TrDδab

]
. (30)

In particular, the trace of λab is given by

Trλint = −ie3ωττωTrD. (31)

B. Skew scattering mechanism

In addition to the intrinsic contribution, the first extrinsic
part of the anomalous transport is provided by the skew
scattering mechanism. In the broader sense of AHE [38],
this contribution accounts for the asymmetry of the scattering
probability wp←p′ �= wp′←p which may result from strong
impurities treated beyond the Born approximation [39], spin-
orbit-active impurities [40], as well as from virtual [38] and
diffractive [41,42] scattering off two-impurity complexes. The
skew scattering is defined by the antisymmetric part of the
scattering rate. The probability conservation dictates the fol-
lowing property of wA

pp′ [43]:∫
p′

wA
pp′δ(εp − εp′ ) = 0. (32)

In the presence of the skew scattering, the kinetic equations
(20) are written as

eE0∂p feq = − 1

τ

(
f 0

p − 〈
f 0

p

〉) +
∫

p′
W A

pp′ f E0

p′ ,

− iω f ω
p + eEω∂p

(
feq + f 0

p

) + eE0∂p f ω
p

= − 1

τ

(
f ω

p − 〈
f ω

p

〉) +
∫

p′
W A

pp′ f Eω

p′ , (33)

where W A
pp′ ≡ wA

pp′δ(εp − εp′ ). Evidently, the skew scattering
affects both linear and nonlinear responses of a metal to
electric field. Since the solution to the linear problem is used
as an input for the nonlinear one, we first describe the former.

The corrections to the distribution function linear both in
the electric fields, and in the skew scattering rate are obtained

by inserting the solutions without skew scattering, Eqs. (24),
into the integrals on the right hand side of Eqs. (33), whereby
they become additional generation terms linear in the skew
scattering rate. Balancing these generation terms with the
isotropic scattering rate, or the time derivative, one obtains
an additional change in the distribution function:

δ f E0

p = −τ 2eE0
∫

p′
W A

pp′∂p′ feq,

δ f Eω

p = −τ 2
ωeEω

∫
p′

W A
pp′∂p′ feq. (34)

Turning to the nonlinear case, we first present the solution
in the case without the skew scattering. The nonlinear ac
correction to the distribution function is found from

− iω f E0Eω

p + eEω∂p f E0

p + eE0∂p f Eω

p

= − 1

τ

(
f E0Eω

p − 〈
f E0Eω

p

〉)
. (35)

Even though the generation terms for f E0Eω

p —the second
and third terms in the left hand side of Eq. (35)—may have
nonzero angular averages, we do not include an additional
inelastic collision integral to relax them, since the ac nature
of f E0Eω

p allows stabilization of the generation terms by the
time derivative [the first term in the left hand side of Eq. (35)].
Further, since it can be shown that 〈 f E0Eω

p 〉 does not make a
contribution to the Hall-like response, we can write

f E0Eω

p = e2E0
c Eω

b (τ + τω )τω∂b∂c feq. (36)

The skew scattering contributes to the nonlinear response
in two ways: (i) the linear response corrections to the distribu-
tion function, Eqs. (34), are substituted into the electric-field
drive terms in the second of Eqs. (33), whereby turning them
into additional nonlinear generation terms; (ii) the nonlinear
correction to the distribution function, Eq. (36), is substituted
into the antisymmetric part of the collision integral in the
second of Eqs. (33), yielding another generation term linear
in the skew scattering rate.

With the same provisions as for Eqs. (34), and integrating
by parts as needed, the nonlinear correction to the distribution
function, which is linear in the skew scattering rate can be
written as

δ f E0Eω

p = e2E0
c Eω

b

∫
p′

[
τ 2τω∂bW

A
pp′∂

′
c feq − ττ 2

ω∂ ′
bW

A
pp′∂

′
c feq

+ τ 3
ω(∂c − ∂ ′

c)W A
pp′∂

′
b feq

]
. (37)

Again as we employ constant RTA then upon integration by
parts derivatives do not act on τ . The first term in square
brackets on the right hand side of this expression gives a
symmetric contribution to the conductivity tensor. This can
be seen by noting that vvvp = ∂pεp, and doing an integration by
parts in the p integral [44].

To write the contribution to the conductivity tensor stem-
ming from Eq. (37), it is natural to associate the “skew
acceleration” with the skew scattering process [32],

Ask
p =

∫
p′

W A
pp′ (∂pεp − ∂p′εp′ ), (38)
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which describes the rate of change of the carrier velocity due
to skew scattering collisions. Note that the integral containing
∂pεp vanishes due to property (32) of W A

pp′ . We kept it in
Eq. (38) for clarity and to emphasize the physical meaning
of Ask

p .
Calculating the current that corresponds to the distribution

function (37), and taking the antisymmetric part of the corre-
sponding conductivity tensor, one obtains

�sk
abc = 1

2
e3ττ 2

ω

∫
p

[(
1 + τω

τ

)(
∂aAsk

b − ∂bAsk
a

)
vc

− τω

τ

(
Ask

a ∂cvb − Ask
b ∂cva

)]
∂εp feq. (39)

The same expression can be rewritten in a different form that
makes natural connection to the structure of the intrinsic con-
tribution. Indeed, within constant RTA, the above expression
is identical to

�sk
abc = e3τ

∫
p

{[
εabdvc + τω

2τ
(εacdvb − εbcdva)

]

sk

d

+ τ 3
ω

2τ

(
∂cvaAsk

b − ∂cvbAsk
a

)}
∂εp feq (40)

where the terms in square brackets reproduce the form of
the intrinsic term, albeit with different frequency dependence
and with 
sk

d = τ 2
ωεabd∂aAsk

b /2 replacing the intrinsic Berry
curvature. As such they enter the first and second line of the
summary result (8). The last, round bracket is a term due to
skew acceleration and enters the last line of Eq. (8). Clearly,
analogous intrinsic terms obtained by Ask

a → va/τ or similar
would vanish. In turn, the second rank pseudotensor dual to
�sk

abc is given by

λsk
dc = 1

2
e3ττ 2

ωεabd

∫
p

[(
1 + τω

τ

)
vc∂aAsk

b

× −τω

τ
Ask

a ∂cvb

]
∂εp feq. (41)

Using vvvp = ∂pεp, as well as vvvp∂εp feq = ∂p feq, and integrating
by parts, it is easy to show that this tensor is traceless.

C. Side-jump mechanism

The intrinsic mechanism considered above stems from the
interband coherences induced by external electric fields as
they accelerate the charge carriers. It is well known that colli-
sions with impurities, which can also be viewed qualitatively
as a sort of acceleration by the impurity electric field, also
lead to the creation of interband coherence, which manifest
itself through the appearance of a coordinate shift in impurity
scattering. In this section, we discuss the contribution of such
coordinate shifts, commonly referred to as “side jumps,” into
the current-induced Hall-like response in metals.

For weak centrosymmetric impurity potential, the coordi-
nate shift associated with a side-jump event—a net displace-
ment of the center of the scattering wave packet—is given by
[45,46]

δrpp′ = i〈up|∂pup〉 − i〈up′ |∂p′up′ 〉 − (∂p + ∂p′ )arg〈up|up′ 〉.
(42)

The existence of the side jump leads to two modifications of
the standard semiclassical transport theory. First, there is an
extra contribution to the electric current, given by

jsj = e
∫

pp′
wS

pp′δrpp′δ(εp − εp′ ) fp′ . (43)

Second, the energy-conserving delta function in the impurity
collision integral must be modified to take into account the
work done by the external electric field during the side-jump
event:

I{ fp} = −
∫

p′
(wp′ p fp − wpp′ fp′ )δ(εp − εp′ − eEδrpp′ ). (44)

In what follows, we restrict our considerations to the linear
order in the semiclassical corrections to classical kinetics, i.e.,
to O(δr) order. This means that in products of the coordinate
shift of Eq. (42) and wp,p′ we can retain only the symmetric
part of the latter - this amounts to neglecting the interplay
between the skew scattering and side-jump mechanisms. Fur-
ther, seeking the O(E0Eω ) contribution to the current, one
needs to substitute the distribution function calculated to the
O(E0Eω ) order into Eq. (43) for the side-jump accumulation
current, as well as use the O(E0) and O(Eω ) distribution
functions in the collision integral (44), after expanding it the
linear order in δrpp′ .

To facilitate further progress, we introduce the side-jump
accumulation velocity [47]:

vvvsj
p =

∫
p′

wS
pp′δrp′ pδ(εp − εp′ ). (45)

Then substituting the distribution function from Eq. (36) into
Eq. (43), and after an integration by parts, we obtain the
accumulation part of the side-jump current:

jsj-acc
a = −e3(τ + τω )τωEω

b E0
c

∫
p
vc∂bv

sj
a ∂εp feq. (46)

In order to obtain the part of the side-jump current associ-
ated with the modification of the energy-conserving δ function
in the collision integral, Eq. (44), we expand the δ function
to linear order in the electric field. Just like in the case of
skew scattering, one has to solve the linear response problem
first, as the corresponding solutions enter the generation terms
in the nonlinear case. At the linear response level, one takes
the distribution functions in the collision integral to be the
equilibrium ones, and the collision integral expanded to linear
order in the electric field becomes a generation term from the
so-called anomalous distribution correction. The derivation
proceeds in the standard way [34], resulting in the following
linear corrections to the distribution functions:

δ f E0
p = τeE0vvvsj∂εp feq, δ f Ew

p = τωeEωvvvsj∂εp feq (47)

To obtain the nonlinear corrections to the distribution
function, one substitutes the perturbed distribution functions,
Eqs. (24), into the collisions integral, and expands it to linear
order in the electric field: no higher terms are necessary if we
limit ourselves to corrections linear in the side-jump length.
Retaining only the terms that oscillate at the optical fre-
quency, we obtain the following expression for the nonlinear
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anomalous distribution correction:

δ f E0Eω

p = −τωeE0∂pδ f Eω

p − τωeEω∂pδ f E0
p

+ τω

∫
p′

wS
pp′

(
f E0

p − f E0

p′
)
eEωδrpp′∂εpδ(εp − εp′ )

+ τω

∫
p′

wS
pp′

(
f Eω

p − f Eω

p′
)
eE0δrpp′∂εpδ(εp − εp′ ).

(48)

The corresponding part of the side-jump current due to
anomalous distribution is

jsj-ad = e
∫

p
vvvpδ f E0Eω

p . (49)

To make further process, we note that vvvp∂εpδ(εp − εp′ ) =
∂pδ(εp − εp′ ), and perform integration by parts to remove the
derivative from the δ function. Finally, by noticing that the
distribution functions in the collision terms vary faster than
the scattering rate, we obtain the final form for the anomalous
distribution current:

jsj-ad
a = e3ττωE0

c Eω
b

∫
p

(
vc∂av

sj
b + τω

τ
v

sj
b ∂cva

+ vsj
c ∂bva + τω

τ
vb∂av

sj
c

)
∂εp feq. (50)

The total side-jump related current is obtained by combining
the side-jump accumulation, Eq. (46), and anomalous distri-
bution, Eq. (50), contributions. For the purpose of calculating
the antisymmetric part of the conductivity tensor, one can drop
the last two terms on the right-hand side of Eq. (50). Antisym-
metrizing the rest of contributions as appropriate, we obtain
the final result for the side-jump contribution to the GHE:

�
sj
abc = − e3ττω

∫
p

[(
1 + τω

2τ

)(
vc∂bv

sj
a − vc∂av

sj
b

)

+ τω

2τ

(
vsj

a ∂cvb − v
sj
b ∂cva

)]
∂εp feq. (51)

The corresponding dual tensor,

λ
sj
dc = e3ττωεabd

∫
p

[(
1 + τω

2τ

)
vc∂av

sj
b − τω

2τ
vsj

a ∂cvb

]
∂εp feq,

(52)

is traceless. Note also that there is obvious similarity between
the structure of Eqs. (41) and (52).

D. Optical regime of high frequencies

In the high-frequency regime, the dominant contribution to
the current-induced Hall-like optical response can be obtained
from the usual expression for the optical conductivity,

σab(ω) = ie2
∫

p

∑
m �=n

va
mnv

b
nm − vb

mnv
a
nm

ε2
nm − (ω + i/τ )2

fn, (53)

where vvvnm = 〈un|∂pĥp|um〉 are the matrix elements of the
velocity operator and we assume the Fermi energy to re-
side in band n. The GHE is obtained by the straightfor-
ward replacement of the equilibrium distribution functions

fn in band n with those perturbed by the dc electric field:
fn → −τeE0∂p feq [48]. The corresponding gyrotropic Hall
response tensor is then determined by

�abc(ω) = −ie3τ

∫
p

∑
m �=n

va
mnv

b
nm − vb

mnv
a
nm

ε2
nm − (ω + i/τ )2

∂c feq(εn). (54)

For a generic two-band system, this expression can be
further simplified by noting that

va
mnv

b
nm − vb

mnv
a
nm = iε2

nmεabc

int
c . (55)

In this case, Eq. (54) takes the same form as the first term in
Eq. (27) under the replacement

�int → ε2
nm

ε2
nm + τ−2

ω

�int. (56)

This observation motivates the interpolating function associ-
ated with Eq. (18). Note that the inaccuracy associated with
replacing �tot by �tot

ω in all terms of Eq. (14) is smaller
than the accuracy of our calculations which are controlled by
(ω, 1/τ ) � εnn̄ (1/ωτ � 1) at small (large) frequencies.

V. APPLICATIONS

In this section, we discuss the GHE for two exemplary
time-reversal invariant models: a simple model of a 3D
Weyl semimetal with broken inversion symmetry as well
as a minimal Hamiltonian describing 2D transition metal
dichalcogenide films under strain. More technical details on
the calculation of the response are relegated to Appendix.

A. Chiral Weyl semimetal

We consider a simple minimal model of a time-reversal
symmetric 3D Weyl semimetal,

H = diag(v(p − K+) · σ + E+, v(p + K+) · σ + E+,

− v(p − K−) · σ + E−,−v(p + K−) · σ + E−). (57)

The band structure of this model contains two pairs of Weyl
cones. Cones located at ±K+ are related by the time-reversal
symmetry, thus having the same chirality. The same is true
for the pair located at ±K−. Energy offsets for each pair are
given by E+ �= E−, which breaks inversion symmetry. The
band structure is presented in Fig. 3 (upper inset). There is
a substantial simplification in this model since each cone
separately is perfectly isotropic, correspondingly side-jump
and skew scattering effects are vanishing.

The result for the gyrotropic Hall tensor is (h̄ = 1)

λab = δab
e3

6π2
[�(μ+, τ+) − �(μ−, τ−)]. (58)

where μ± = EF − E+,− have the meaning of the Fermi en-
ergy counted from the Weyl point for each pair of the cones,
τ+ �= τ− are the transport mean free times, and

�(μ, τ ) = (τ − τω )
4μ2

4μ2 + τ−2
ω

. (59)

Using the Drude conductivity for this model,

σD = e2

3π2v
(μ2

+τ+ + μ2
−τ−), (60)
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Im[ xy] [1/  cm]

 [meV]

Re[ xy] [1/  cm]

topological plateau
1/   

FIG. 2. The GHE in a minimal model of a time-reversal sym-
metric Weyl semimetal according to Eq. (1). The plateau regime
with substantial response is a measure of Berry monopoles, cf. the
discussion around Eq. (16b). We used μ+ = 10 meV, μ− = 3 meV,
h̄/τ+ = 1 meV, τ− = μ2

+τ+/μ2
−, and all other parameters as given in

the main text, assuming jz = 10 A/cm2

we can express the GHE conductivity through the applied dc
current, jz = σDE0

z :

σxy = e jzv
�(μ+, τ+) − �(μ−, τ−)

2(μ2+τ+ + μ2−τ−)
. (61)

The typical values of parameters in the above equation are
[5,49] jz = 10 A/cm2 and v = 4 × 107 cm/s, which we use
in Fig. 2 to plot Eq. (1). In Fig. 3, we illustrate the polar Kerr
and Faraday rotation signals that stem from (61) and Eqs. (5)
and (6).

We would like to emphasize here that the present consid-
erations are restricted to noncentrosymmetric crystals in gen-
eral, and Weyl systems in particular. They cannot explain the
large magnitude of polarization rotation observed in Ref. [50]
in a centrosymmetric Dirac material Cd3As2.

B. 2D transition metal dichalcogenide

In this section, we consider the response of a strained
2D TMD as analyzed experimentally in Ref. [20] for
MoS2 monolayes. The Hamiltonian in valley ξ = ±1 takes

E

px

py

 [meV]

K(×108)
F[1/m]

FIG. 3. Current induced optical activity in a minimal model of
a time-reversal symmetric Weyl semimetal. Kerr angle and Faraday
rotation per unit length for the same parameters as in Fig. 2. (Top
inset) Dispersion of the model, the color code represents the sign of
the Berry curvature in various bands. (Bottom inset) Low-frequency
regime.

the form

H = vx pxσx + ξvy pyσy + mσz + ξvyβpy. (62)

In contrast to the perfectly isotropic Weyl model of the pre-
vious section, this model allows extrinsic processes. However,
despite the seeming simplicity of this Hamiltonian, the mi-
croscopic calculation of extrinsic contributions to gyrotropic
tensor is in fact very laborious. To simplify matters, we restrict
our attention to the regime of weak strain, i.e. vx = vy = v

and thus focus on the leading order in β. Regarding the skew
scattering we concentrate on the effect of impurity scattering
beyond the Born approximation and disregard Gaussian and
diffractive contributions (this is valid in the limit of strong
sparse impurities). In addition, to be consistent with the
assumption of constant relaxation time approximation, we
explore the limit when chemical potential EF lies close to
the bottom of the conduction band, so that elastic scattering
time τ for this model is practically momentum independent.
The final result in the low-frequency limit ω � m shows the
importance of extrinsic processes

�abc = εabδcy
3e3

8π

(
βvτ

m

)(
vpF

m

)2

[ς int + ς sj + ς sk], (63)

where the dimensionless functions ς (ω) are given by

ς int = 1 + τω

2τ
, ς sj = − τω

6τ

(
1 + 15τω

2τ

)
,

ς sk = −mτ 2
ω

3τsk

(
1 + τω

2τ

)
.

(64)

These expressions are valid for vpF =
√

E2
F − m2 � m,

whereas general formulas are derived in Appendix 3 for arbi-
trary relation between vpF and m. There the skew-scattering
time τsk is also defined in terms of parameters of the model
[see Eq. (A14a)]. It is apparent that at low frequencies,
when ωτ � 1, intrinsic and extrinsic contributions are of the
same order, however, they have different asymptotic behav-
ior at large frequencies ωτ � 1, where ς int ∝ 1, ς sj ∝ 1/ω,
whereas ς sk ∝ 1/ω2.

In order to examine the role of skew scattering, we note that
for a clean material with weak impurities one has τ/τsk � 1
and mτ � 1. At the same time, the relative importance of
the skew scattering contribution depends on the parameter
mτ 2/τsk that can be smaller or greater than one. When this
parameter is large there exists a parametrically wide range
of frequencies, up to ω <

√
m/τsk, where skew mechanism

dominates.
Furthermore, the skew scattering always dominates at

small frequencies for the case of a clean 2DEG with screened
Coulomb impurities, if the dielectric constant of the sur-
rounding material is not too large. In this case, as can be
shown to follow from Eq. (A14a), τ/τsk ∼ 1. Given that
in a clean material mτ � 1, we have mτ 2/τsk � 1 for the
strength of the skew-scattering contribution, which makes it
the dominant contribution at small frequencies. We plot the
relative strengths of the intrinsic and extrinsic contributions to
the GHE response function Eq. (63) in Fig. 4 to illustrate their
frequency dependence and facilitate possible comparison with
experiments.
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Im[ ( )]

Re[ ( )]

FIG. 4. Frequency dependence of the real (top) and imaginary
(bottom) parts of the gyrotropic Hall tensor for intrinsic (black
solid line), skew-scattering (blue dotted line), and side-jump (orange
dashed line) contributions for the 2D TMDs. To produce these plots,
we chose mτ 2/τsk = 1.

In Appendix 3, we also derive an interpolation formula for
arbitrary ω which also captures the optical response ω ∼ m
of a TMD thin film described by Eq. (62). As compared to
Eq. (63) it acquires additional factors which signal optical
transitions. Readers interested in the functional dependence
should consult Appendix, while here, using the formulas for
Kerr and Faraday rotation presented in Sec. II, we present a
plot of the result, Fig. 5.

VI. SUMMARY, DISCUSSION, AND OUTLOOK

In summary, in this paper, we have developed a compre-
hensive theory of the gyrotropic Hall effect, which at large
frequencies determines the current induced optical activity.
Our main result for the gyrotropic Hall tensor, Eq. (8) and
Fig. 1, is determined both by intrinsic and extrinsic effects
whose microscopic origin is explicitly elucidated in Sec. IV.
In contrast to older works which concentrated on the intrinsic
effect at large frequency [18], we were able to discuss the
phenomenon of current induced optical activity in the entire
spectrum from smallest all the way to optical frequencies. We
thereby identify the range of frequencies much smaller than
the band splitting (typically on the THz scale) to be most
interesting: In this regime the trace of the gyrotropic Hall
tensor λab displays a topological plateau. At the same time,

E

py
px

 [meV]

- K  (×106)
F   (×106)

2D

2D

FIG. 5. Current induced magneto optic effect of transition metal
dichalcogenides. In this plot, we used a typical current [20] jy =
10 A/m, m = 1 eV, 1/τ = 1 meV, v = 107 cm/s, σxx = 50e2/h,
ε0c = 34e2/h, β = 0.1, and mτ 2/τsk = 1.

extrinsic, impurity induced (side-jump and skew scattering)
contributions are found to be comparable to the intrinsic
effect. It worth mentioning that the Berry curvature dipole,
which determines the intrinsic contribution to the GHE, and
indirectly affects the side-jump contribution, has been recently
shown to get significantly enhanced near a topological transi-
tion in BiTeI [51].

In order to illustrate the generic relevance of our theory, we
have presented its application to the current induced optical
activity of two exemplary materials: a 3D noncentrosym-
metric Weyl semimetal and a strained 2D transition metal
dichalcogenide monolayer, see Figs. 3 and 5. We also used
the latter example to illustrate the possibility of disentangling
various extrinsic effects by means of their frequency depen-
dence, Fig. 4.

As a major practical outcome, we suggest to use the
low-frequency gyrotropic Hall effect as an efficient way to
experimentally determine the topological nature of a 3D chiral
metal. This proposal relies on the aforementioned observation
that the trace of the gyrotropic Hall tensor of a given valley,
Eq. (16b), is proportional to the valley’s topological charge
(the number of monopoles of Berry curvature enclosed in the
Fermi surface). Therefore it vanishes for nontopological ma-
terials while for topological systems, e.g., Weyl semimetals,
the same quantity is substantial and, even more importantly,
robust. The simplest experimental procedure to extract the
trace (i.e., the spatial average) of λab is the analysis of the
gyrotropic Hall effect in polycrystalline samples, see Fig. 2. A
more formidable experimental task would be to determine all
gyrotropic tensor components in experiments on high-quality
single crystals.

Another line of practical applications of magneto-optical
phenomena related to the gyrotropic Hall effect can stem
from the fact that its sign and amplitude are determined
by the background current. Therefore the GHE represents a
nanoelectronic implementation of highly controllable optical
activity, which previously was discussed only in metamateri-
als [52,53] and correlated heterostructures [54].

Note added. After the preprint of this manuscript appeared
on the arXiv, three more preprints [55–57] demonstrating the
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relevance of extrinsic contributions in nonlinear Hall effects
were posted.
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APPENDIX: APPLICATION TO 3D WEYL
SYSTEM AND STRAINED 2D TMDs

In this section of the Appendix, we present details on the
calculation of the response for the two exemplary models
presented in the main text. We remind the reader of the
notation ξ = ±1 for the helicity of a given node and ζ = ±1
which labels the conduction and valence band index of a
given two-band model. In this Appendix, we use the notation
ω+ = ω + i/τ .

1. General two-band model

We briefly review some generic formulas for two-band
models of the form H (p) = d0(p) + d(p) · σ. From the
wave functions |upζ 〉 = (d3 + ζd, d1 + id2)T /

√
2d (d + ζd3)

it follows that

|〈upζ |up′ζ 〉|2 = 1 + d̂ · d̂ ′

2
, (A1)


a = −ζ

4
εabcεi jk d̂i∂bd̂ j∂cd̂k, (A2)

where d̂a = da/d . We further investigate the amplitude for a
closed path of three hoppings in momentum space

zpp′ p′′ = 〈up|up′ 〉〈up′ |up′′ 〉〈up′′ |up〉

= 1 + (d̂ · d̂ ′ + d̂ · d̂ ′′ + d̂ ′ · d̂ ′′) + iζ d̂ · (d̂ ′ × d̂ ′′)
4

.

(A3)

The imaginary part of zp,p′,p′′ determines the skew scattering
[21], while its phase (the Pancharatnam phase) determines the
side-jump displacement [46]

(δrpp′ )a = [
∂p′′

a

∣∣
p′′→p + ∂p′′

a

∣∣
p′′→p′

]
arg(zpp′ p′′ )

= ζ
(∂ad̂ + ∂ ′

ad̂ ′) · (d̂ × d̂ ′)
4 |〈up|up′ 〉|2 . (A4)

2. Time-reversal symmetric Weyl materials

For a single isotropic Weyl node, the expressions for Berry
curvature and velocity are (all momenta relative to the given
Weyl node)


d = −ξζ
pd

2p3
, vc = ζv

pc

p
. (A5)

Using the expression ∂εp feq(εp) = −δ(EF − ζvp), we di-
rectly obtain the dc Drude conductivity and GHE response
tensors per cone

σD = e2

6π2v
E2

F τ (A6a)

�abc = ξ
e3

12π2
εabc

4E2
F (τ − τω )

4E2
F + τ−2

ω

. (A6b)

This is the origin of Eqs. (58) and (61) of the main text.

3. Strained 2D transition metal dichalcogenides

In this Appendix, we present details on the calculation of
the GHE tensor for 2D transition metal dichalcogenides. We
concentrate on the conduction band and expand to leading
order in small strain effects. This allows us to set vx = vy = v

and expansion to linear order in β. We will use

εp = d + ξβvpy, d(p) = (vpx, ξvpy, m), (A7)

which directly implies the intrinsic Berry curvature


int ≡ ξ
 = −ξ
mv2

2d3
, (A8)

and the side-jump displacement

δrpp′ = − ẑ × (p′ − p)

2|〈up|up′ 〉|2
[

int d

d ′ + (
int )′
d ′

d

]
, (A9)

where a prime on 
ξ or d implies evaluation with p′.
We assume an impurity potential V (r) which is smooth on

the scale of the lattice spacing but short ranged with respect to
the Fermi wavelength. For impurities with sufficiently weak
potential, the symmetric part of the transition probability is
given by

wS
pp′ = 2π |〈up|up′ 〉|2nimpV

2
0 , (A10)

where V0 is the zero-momentum Fourier component of the dis-
order potential. Together with Eq. (A1) this defines quantum
and transport rates

1

τq
=

∫
p′

W S
pp′ = πnimpν(d )V 2

0

(
1 + m2

d2

)
, (A11)

1

τ
=

∫
p′

W S
pp′ (1 − v̂ · v̂′) = d2 + 3m2

2τq(d2 + m2)
, (A12)

where density of states is ν(E ) = �(E − m)|E |/(2πv2),
which we computed to the leading order in β and dropped
terms which are linear in βpy.

The contribution from the third order scattering to the
asymmetric part of the scattering probability is [21]

W A
pp′ = −(2π )2nimpV

3
0 δ(εp − εp′ )

×
∫

p′′
δ(εp − εp′′ )Im[〈up|up′ 〉〈up′ |up′′ 〉〈up′′ |up〉]

= 4π2nimpν(d )V 3
0 δ(εp − εp′ )

×
(

− m

4d
ẑ · (d̂ × d̂ ′) + d + d ′

d

β

8
ŷ · (d̂ × d̂ ′)

)
.

(A13)
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The linear in β correction stems from the expansion of εp′ in
the delta function, the analogous correction due to εp drops
out after partial integration. The skew acceleration has thus
the form

Ask = 1

τsk
{(ẑ × p̂)[ξh1 + β p̂yh2] − x̂βh3}, (A14a)

where τ−1
sk = 2πV0sgn(m)ν(m)/τ determines the skewness in

the distribution of the disorder potential, p̂ = p/p, hi = hi(p)
with

h1 = v
(d2 − m2)3/2

2d (d2 + 3m2)
, (A14b)

h2 = v
(d4 − m4)

2d2(d2 + 3m2)
, (A14c)

h3 = v
(d2 − m2)

2(d2 + 3m2)
. (A14d)

Here, the first correction term (proportional to ẑ × p̂) stems
from the expansion of the delta function in W A

pp′ , and the
second (∝ x̂) from the linear corrections in the round brackets
of (A13). Corrections due to linear in β contributions to the
velocity vanish.

Similarly, the side-jump velocity takes the form

vvvsj
p = (ẑ × p̂)[ξg1 + β p̂yg2] − x̂βg3, (A15a)

where

g1 = −
p

τ

4d2

d2 + 3m2
, (A15b)

g2 = 


vτ

2(d2 − m2)d

d2 + 3m2
, (A15c)

g3 = − 


vτ

d (m2 + 3d2)

d2 + 3m2
. (A15d)

The first (second) linear correction stems from the correction
to εp (εp′) upon expansion of the delta function.

The Berry curvature corrections due to skew scattering and
side jump are


sk = τ 2
ω

2τsk

[
ξh1 + β p̂yh2

p
+ ξ∂ph1 + β p̂y∂ph2+3

]


sj = τω

[
ξg1 + β p̂yg2

p
+ ξ∂pg1 + β p̂y∂pg2+3

]

(A16)

where we used the shorthand notations h2+3 = h2 + h3,
g2+3 = g2 + g3. We can further expand the Berry curvature
in β to find


tot = ξ
tot
0 + β p̂y


tot
1 .

To obtain the response of the gyrotropic Hall effect, we
consider Eq. (8) keeping in mind the antisymmetrization in
a ↔ b. The first and second lines are expanded to leading
order in β, note that the terms stemming from the distribution
function and from the linear corrections to the velocity partly
cancel out in the constant relaxation time approximation. This

leads to (vp = √
d2 − m2)

�abc|1,2 = −e3ν(d )vβ
(
τ + τω

2

)
εabδcy

× 1

2

(

tot

1
vp

d
− (vp)2

d

∂

∂d

tot

0 (d )

)
. (A17)

The third line of Eq. (8) leads to

�abc|3 = e3v2βτ 2
ω

ν(d )

d
εabδcy

(
(vp)2(g2 + g3)

2d2
− g3 − g2

2

+ 1

2

∂

∂d

{
vp

[
1−

(
vp

d

)2]
g1

})
+

{
g j → τω

2τsk
h j

}
.

(A18)

The structure of these expressions is quite clear. For example,
in the last expression the partial derivative term appears after
expanding the Fermi distribution function up to the linear
order in β with the subsequent integration by parts, while the
first and the last terms are the contributions from the side-
jump velocity and side-jump acceleration correspondingly. In
total, the response per valley is

�
int+sj+sk
abc |1,2 = εabδcye3vτβ(m2 − d2)

ν(d )

d

(
1 + τω

2τ

)

× 1

2

[

tot

1√
d2 − m2

− ∂
tot
0

∂d

]
, (A19)

which can be split respectively into intrinsic

�int
abc|1,2 = ϒabc

[
3

m2 − d2

2

(
1 + τω

2τ

)]
, (A20)

side-jump term

�
sj
abc|1,2 = ϒabc

[(
1 + τω

2τ

)
τω

2τ
(m2 − d2)

(
d2 − 3m2

d2 + 3m2

− 24
√

d2 − m2(d6 + 9d4m2 − d2m4 − 9m6)

d (d2 + 3m2)3

)]
,

(A21)

and skew scattering contribution

�sk
abc|1,2 = ϒabc

[(
1 + τω

2τ

) τ 2
ω

2τsk

d2 − m2

m

×
(

d6 + 18d4m2 + 7d2m4 + 6m6

2(d2 + 3m2)2
+

√
d2 − m2

× d8 + 24d6m2 − 78d4m4 − 48d2m6 − 27m8

2d (d2 + 3m2)3

)]
.

(A22)

The respective components corresponding to Eq. (A18) are

�
sj
abc|3 = ϒabc

[
τ 2
ω

2τ 2

3d6 + 23d4m2 + d2m4 − 27m6

(d2 + 3m2)2

]
,

�sk
abc|3 = ϒabc

[
τ 3
ω

4ττskm

(d2 − m2)(d4 − m4)(d2 + 6m2)

(d2 + 3m2)2

]
,

(A23)
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where we introduced ϒabc = e3εabδcy(βvτ )(ν(d )
/d2).
These terms can be grouped according to different
mechanisms. In particular, concentrating on the conduction
band, m > 0, and expanding to the leading order in d − m �
(vp)2/2m, using ν
/d2 � −1/(4πm3), one recovers Eq. (63)
from the main text.

4. Optical regime and plot of Kerr and Faraday rotation

In the optical regime, the Berry curvature acquires a
multiplication of 4d2/(4d2 + τ−2

ω ). To the level of accuracy
of our calculation, it is sufficient to multiply the intrinsic
contribution by a factor

4d2(12d2 + τω2)

3(4d2 + τω2)2
, (A24)

and leave side-jump and skew scattering contributions un-
changed (they are suppressed at optical frequencies). Near the
bottom of the conduction band this leads to

σxy(ω) = 3e jdc
y

2

βv

m2
[ς̃ int + ς sj + ς sk]. (A25)

Here,

ς̃ int = 4m2
(
12m2 + τ 2

ω

)
3
(
4m2 + τ 2

ω

)2 ς int (A26)

and we used the longitudinal conductivity

σxx(ω) = e2

2π

(vp)2τω

2d
. (A27)
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