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When the excitation of carriers in real space is focused down to the nanometer scale, the carrier system can
no longer be viewed as homogeneous, and ultrafast transport of the excited carrier wave packets occurs. In
state-of-the-art semiconductor structures such as low-dimensional heterostructures or monolayers of transition-
metal dichalcogenides, the Coulomb interaction between excited carriers becomes stronger due to confinement
or reduced screening. This demands a fundamental understanding of strongly interacting electrons and holes and
the influence of Coulomb correlations. To study the corresponding particle dynamics in a controlled way, we
consider a system of up to two electron-hole pairs exactly within a wave-function approach. We show that the
excited wave packets contain a nontrivial mixture of free-particle and excitonic states. We further scrutinize the
influence of the Coulomb interaction on the wave-packet dynamics, revealing its different role for below- and
above-band-gap excitation.
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I. INTRODUCTION

Research of exciton-based devices is a growing field due
to the promising aspect of direct interconnection of elec-
tronic signal processing and optical communication [1–5].
At the heart of most of these devices is the ultrafast motion
of photoexcited electrons and holes within the semiconduc-
tor accessible by various experimental techniques [2,6,7].
The Coulomb interaction between electrons and holes in
such devices is becoming more decisive, because in state-
of-the-art semiconductor structures such as low-dimensional
heterostructures or monolayers of transition-metal dichalco-
genides, the Coulomb interaction is enhanced due to the
confinement, and excitonic effects are becoming more pro-
nounced. Exciton physics has additionally been boosted by
the discovery of strongly bound excitons in monolayers of
transition-metal dichalcogenides [8–11], and recently the spa-
tiotemporal dynamics of these strongly bound excitons has
been explored [12–14]. Therefore, it is of crucial importance
to understand the impact of the Coulomb interaction on the
ultrafast localized excitation and dynamics of interacting car-
rier wave packets. Such localized excitation can then be used
to investigate fundamental processes such as charge transfer
and capture processes, which naturally occur on nanometric
scales. In this paper, we give a detailed view of this aspect in
an exact description of the correlated carrier dynamics.

In view of nanometric length scales and ultrashort time
scales, we are entering scales where semiclassical descriptions
are not able to properly describe physical processes [15].
While the ultrafast carrier dynamics including coherent and
incoherent excitons has been extensively studied for homo-
geneous excitations [16–19], inhomogeneous treatments are
more complicated. The aspect of spatiotemporal dynamics
of photoexcited carriers on ultrashort time and length scales
has been studied either in the limit of low densities where
Hartree-Fock approximations are applicable [20–25], or in

the limit of an exact number of carriers taken as an initial
condition [26,27]. While the treatment of the low-density
case revealed the dynamics of the carrier excitation and the
fundamental carrier and polarization transport after excita-
tion, the latter underlines the effects of carrier correlations
leading to strong deviations from the free-carrier behavior
when treating correlated particles. Here, we use a theory
based on a wave-function approach. By restricting ourselves
to excitations of up to two electron-hole pairs, we are able
to treat the carrier system and their Coulomb correlations
exactly. We further account for the interaction of carriers with
a strongly localized light field. In our model, we observe
the transition between free-carrier transport and correlated
carrier transport. To study a computationally feasible problem,
which at the same time exhibits strong Coulomb effects, we
use an optically excited one-dimensional (1D) semiconductor
quantum wire as sketched in Fig. 1.

The paper is organized as follows: In Sec. II we de-
fine the Hamiltonian describing the carrier system including
Coulomb- and light-field interaction. With this we set up our
wave-function ansatz as well as the equations of motion. In
Sec. III A we consider a low-intensity excitation both below
and above the band gap. In Sec. III B we then increase
the excitation power and accordingly the mean number of
carriers, resulting in a different dynamics. To evaluate the
influence of the excitons, in Sec. IV we analyze the results
in the excitonic picture interpolating between low and high
excitation. We finish with conclusions in Sec. V.

II. THEORY

A. Hamiltonian

As a system we assume a CdTe quantum wire with a
100 nm2 cross section as sketched in Fig. 1. We restrict our-
selves to the lowest carrier subbands, i.e., one conduction and
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VC

FIG. 1. Sketch of localized photoexcitation of a quantum wire
resulting in traveling electron-hole pairs coupled via the Coulomb
interaction VC .

one valence band, which we assume to be spin-degenerate.
The Hamiltonian of the noninteracting system is described by

Ĥ0 =
∑
k,σ

εe
k ĉ†

kσ
ĉkσ +

∑
k,σ

εh
k d̂†

kσ
d̂kσ ,

with ĉkσ (ĉ†
kσ

) being the electron and d̂kσ (d̂†
kσ

) the hole annihi-
lation (creation) operators of a state with spin σ (= ±1/2) and
longitudinal wave vector k; the energies are εe

k = Egap + h̄2

2me
k2

and εh
k = h̄2

2mh
k2 with the effective masses me = 0.091m0 and

mh = 0.41m0 (m0 being the free-electron mass) [28].
The system is excited by a linearly polarized localized

laser pulse. The carrier-light-field interaction in the dipole
approximation reads

Ĥcf = −
∑

k,k′
σ

[Ek′,k ĉ†
k′σ d̂†

−kσ̄
+ c.c.],

where Ek′,k (t ) = Ẽ(k − k′, t ) · Mk′,k is the spatial Fourier
transform of the electric-field amplitude E(z, t ) multiplied by
the interband dipole matrix element Mk′,k , which is assumed
to be independent of k. Due to linear polarization, the dipole
matrix element can be taken as independent of spin, and spin
is conserved with σ̄ = −σ .

The Coulomb interaction in our system is [15]

ĤC = 1

2

∑
k,k′ ,q
σ,σ ′

Vq[ĉ†
kσ

ĉ†
k′σ ′ ĉk′+qσ ′ ĉk−qσ

+ d̂†
kσ

d̂†
k′σ ′ d̂k′+qσ ′ d̂k−qσ − 2ĉ†

kσ
d̂†

k′σ ′ d̂k′+qσ ′ ĉk−qσ ].

The first (second) term describes the electron-electron (hole-
hole) interaction, while the third term is the attractive electron-
hole interaction, which eventually will give rise to excitonic
effects. For the Coulomb matrix element Vq, we use the
bulk matrix element with static dielectric constant εs = 10.5
multiplied by the quantum-wire form factor [21].

B. Equations of motion

The excitation of the quantum wire should be such that
only up to two electron-hole pairs can be excited. This allows

us to scrutinize the effects of the Coulomb interaction using a
well-defined wave-function ansatz

|�〉 = a(0)|0〉 +
∑

k,k′
σ,σ ′

a(1)
k,k′
σ,σ ′

ĉ†
kσ

d̂†
k′σ ′ |0〉

+
∑

k1,k2 ,k3 ,k4
σ1 ,σ2 ,σ3 ,σ4

a(2)
k1 ,k2 ,k3 ,k4
σ1,σ2 ,σ3 ,σ4

ĉ†
k1σ1

ĉ†
k2σ2

d̂†
k3σ3

d̂†
k4σ4

|0〉. (1)

This wave function describes a state composed of one and
two electron-hole pairs and the electron-hole vacuum |0〉 via
the wave-function coefficients a(0), a(1), a(2). The validity of
our approach can be tuned by the laser power and pulse
duration since these parameters control the amount of excited
carriers. Note that consistent with an initially undoped semi-
conductor, we assume electron-hole symmetry. This ansatz
corresponds to a configuration-interaction (CI) approach often
used in quantum chemistry for ground-state calculations of
N-electron systems, although with our excitation-controlled
electron-hole density we circumvent the usual problems of a
truncated CI treatment [29,30]. Remarks on the comparison
of the dynamical CI treatment and density-matrix approaches
are given in Appendix A.

Next, we set up the equations of motion for the wave-
function coefficients a(0), a(1), a(2) using the Schrödinger
equation

ih̄
d

dt
|�〉 = Ĥ |�〉 .

Inserting the wave-function ansatz, commuting the fermionic
annihilation operators to the right, and multiplying from the
left with a zero-, one-, or two-pair state (〈0|, 〈0| d̂1ĉ2, or
〈0| d̂1d̂2ĉ3ĉ4) leads then to the equations of motion, where
the indices refer to the combination of wave vector and spin.
To illustrate the occurring expectation values, we evaluate the
most complicated expectation value as an example:

〈0|d̂1d̂2ĉ3ĉ4ĉ†
α ĉ†

β d̂†
γ d̂†

δ |0〉
= δα,4δβ,3(δγ ,2δδ,1 − δγ ,1δδ,2)

− δα,3δβ,4(δγ ,2δδ,1 − δγ ,1δδ,2). (2)

The δ-expressions give the same coefficients of the wave
function because of the fermionic-induced symmetries,

a(2)
1234 = −a(2)

2134 = a(2)
2143 = −a(2)

1243.

Due to the spin conservation, only coefficients with an equal
number of up and down spins can occur. We therefore define

a(2)
σ,σ,σ̄ ,σ̄ =: a(2),P, (3)

a(2)
σ,σ̄ ,σ̄ ,σ =: a(2),A, (4)

which are the coefficients for parallel [a(2),P describing elec-
trons (holes) with the same spin] and antiparallel [a(2),A de-
scribing electrons (holes) with different spin] carrier states.
Further identifying

a(1)
σ1,σ2

=: a(1)δσ2,σ̄1 , (5)

we may drop all spin indices in the following.
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The equation of motion for the zero-pair coefficient reads

ih̄
d

dt
a(0) = −2

∑
k, k′

E∗
−k′,ka(1)

k,k′ ,

showing that only the coupling to a one-pair coefficient due to an electric field results in a change of a(0).
The equation for the one-pair coefficients is

ih̄
d

dt
a(1)

k,k′ = (
εe

k + εh
k′
)
a(1)

k,k′ −
∑

q

Vqa(1)
k−q,k′+q − E−k′,ka(0) + 4

∑
k1, k2

[
E∗

−k2,k1

(
a(2),P

k,k1,k′,k2
+ a(2),A

k,k1,k′,k2

)]
.

The first two terms on the right-hand side describe the excitonic dynamics, noting that for k′ = −k they resemble the Wannier
equation for direct excitons. The third and the last two terms are source terms resulting from the coupling to zero pairs and to
two pairs, respectively. The prefactor 4 of the last sum stems from the fermionic commutation relations.

The equation of motion for the two-pair coefficients a(2),i (i = A, P) is

ih̄
d

dt
a(2),i

k1,k2,k3,k4
= [

εe
k1

+ εe
k2

+ εh
k3

+ εh
k4

]
a(2),i

k1,k2,k3,k4
+ 1

4
E−k4,k2 a(1)

k1,k3
− δi,P

1

4
E−k3,k2 a(1)

k1,k4
− δi,P

1

4
E−k4,k1 a(1)

k2,k3

+ 1

4
E−k3,k1 a(1)

k2,k4
+

∑
q

Vq
[
a(2),i

k1−q,k2+q,k3,k4
+ a(2),i

k1,k2,k3−q,k4+q − a(2),i
k1−q,k2,k3+q,k4

− a(2),i
k1,k2−q,k3+q,k4

− a(2),i
k1−q,k2,k3,k4+q − a(2),i

k1,k2−q,k3,k4+q

]
.

In this equation, the dynamics of the two-pair exciton (or
biexciton) is given by the first term and the last six terms,
while the rest describe the excitation from the one-pair exci-
ton. We note that the equations of motion for a(0) and a(1) are
exact, while in principle in the equation of motion for a(2) we
would have a source term stemming from a(3). Because we
have restricted ourselves to two electron-hole pairs at most,
this source term vanishes in our considerations.

The equations of motion are then solved by numerical
integration with the initial condition of a(0) = 1 and a(1) =
a(2) = 0 discretized on a k-space grid with 60 points.

C. Dynamical quantities

The spatiotemporal dynamics of the excited carriers is
encoded in the space-dependent density ne/h(z) for electrons
and holes given by

ne(z) = 〈n̂e(z)〉 = 1

V

∑
k,k′,σ

〈ĉ†
kσ

ĉk′σ 〉ei(k′−k)z (6)

and the analogous definition for holes. Here z is the longitudi-
nal position, and the factor 2 stems from the spin degeneracy
due to linear polarization of the exciting electric field. The
expectation value for electrons is given by

〈ĉ†
kσ

ĉk′σ 〉 =
∑

k1

a(1)
k′,k1

a(1)∗
k,k1

+
∑

k1,k2,k3

4
[
2a(2),P

k1,k′,k2,k3
a(2),P∗

k1,k,k2,k3

+ 4a(2),A
k′,k1,k3,k2

a(2),A∗
k,k1,k3,k2

]
,

being independent of spin and analogous for the holes.
To further analyze the dynamical behavior of the energies

in the system, we define the kinetic energies for electrons and
holes,

Ee
kin =

∑
k,σ

(
εe

k − Egap
)〈ĉ†

kσ
ĉkσ 〉, Eh

kin =
∑
k,σ

εh
k 〈d̂†

kσ
d̂kσ 〉,

and the interaction energy

Eint = 1

2

∑
k, k′, q
σ, σ ′

Vq[〈ĉ†
kσ

ĉ†
k′σ ′ ĉk′+qσ ′ ĉk−qσ 〉

+ 〈d̂†
kσ

d̂†
k′σ ′ d̂k′+qσ ′ d̂k−qσ 〉 − 2〈ĉ†

kσ
d̂†

k′σ ′ d̂k′+qσ ′ ĉk−qσ 〉].
The interaction energy can be further divided into the Hartree-
Fock energy and the correlation energy. The Hartree-Fock
energy is calculated by factorizing the two-particle into one-
particle density matrices [15],

EHF =
∑
k,k′,q

Vq
[
2 f e

k′,k′+q f e
k,k−q − f e

k,k′+q f e
k′,k−q

+ 2 f h
k′,k′+q f h

k,k−q − f h
k,k′+q f h

k′,k−q

− 4 f e
k′,k′+q f h

k,k−q − 2p∗
k′+q,k pk′,k−q

]
,

where f i are the electron (hole) intraband coherences for i = e
(i = h), and p are the interband polarizations (see Appendix
A). With this we define the correlation energy as

Ecor = Eint − EHF. (7)

This quantity gives us a direct measure for the correlation of
the system. The correlations thereby describe the effects be-
yond simple electrostatic and exchange Coulomb interactions
of carriers.

We remark that all energies shown in the following are
normalized to the final mean number of electrons Ne =
2

∑
k

〈ĉ†
k ĉk〉.

III. RESULTS

We now consider the dynamics of the optically generated
carriers within the quantum wire. For the excitation we con-
sider a pulse that is Gaussian in both space and time. We
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FIG. 2. Linear absorption spectrum (dashed line) and spectrum
(solid lines) of the exciting laser pulses with different excess
energy Eex.

set the spatial variance of the pulse to 10 nm, corresponding
to a full width at half-maximum FWHM ≈ 23.5 nm. The
pulse duration is set to 100 fs. Additional parameters are the
excitation energy h̄ωL and the intensity, which we will vary in
the following.

Our system can be characterized by its absorption spectrum
α(ω) as shown in Fig. 2, where a phenomenological dephasing
time of 250 fs was added. The absorption spectrum can be
divided into two parts, namely the excitonic resonance at
−24 meV below the band gap Egap and the continuum states
for energies above the band gap E > Egap. In the following,
we will consider two distinct excitation energies: (i) an ex-
citation at the exciton resonance below the band gap, i.e.,
laser excess energy Eex = h̄ωL − Egap = −24 meV, and (ii)
an excitation into the continuum states with a laser excess
energy Eex = 10 meV. The corresponding laser pulse spectra
are marked in Fig. 2 with the excitonic excitation at Eex =
−24 meV as an orange line and the continuum excitation with
Eex = 10 meV as a blue line.

These two excitation conditions for low excitation strength
will result in the excitation of either exclusively excitons or
free carriers, respectively. For increasing field strength, we
increase the particle number and we expect that Coulomb
correlations will become important. Therefore, the excitation
strength will be our tuning knob.

A. Low-density limit

We start by looking at an excitation with a low laser power,
such that the total number of electrons after the pulse is Ne ≈
10−4, which we refer to as the low-density limit. In Fig. 3 we
plot the dynamics of electron (left) and hole (right) densities
for an excitation (a) below and (b) above the band gap.

When exciting the system at the exciton resonance
[Fig. 3(a)], we find an electron-hole pair at z = 0 with almost
no spatial dynamics. Here electrons and holes are bound
by the Coulomb interaction in the 1s exciton without any
center-of-mass momentum. In contrast, when exciting within
the continuum [Fig. 3(b)], independent electron and hole wave
packets are excited that travel along the wire. Their velocity is
dictated by the excess energy according to ve = h̄k0

me
(vh = h̄k0

mh
)

for electrons (holes), where k0 = √
2μEex/h̄, μ−1 = m−1

e +
m−1

h being the reduced mass. Therefore, the holes travel much
slower and due to the low density the carrier wave packets

ne (norm.) nh (norm.)ne (norm.) nh (norm.)ne (norm.) nh (norm.)ne (norm.) nh (norm.)

-0.2 0 0.2 0.4
t (ps)

−100

−50

0
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z(
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)

(a)

(b)

Eex = −24meV Eex = −24meV
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0.2

0.4

0.6
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0

0.2

0.4

0.6

0.8

1
(a)

(b)

Eex = −24meV Eex = −24meV

Eex = 10meV Eex = 10meV

FIG. 3. Dynamics of the electron (left) and hole (right) density
ne/h in the low-density limit for an excitation (a) resonant to the 1s
exciton and (b) within the continuum. All the distributions have been
normalized to their respective maxima.

do not affect each other. Our results in the low-density limit
agree well with calculations for excitation in semiconductor
quantum wells [20].

In Fig. 4 we study the energy contributions normalized to
the final electron number for the two excitation conditions to
get more insight into the Coulomb effects. For the excitation
of the exciton, given in Fig. 4(a), we find that Etot (red line)
is close to the binding energy of the 1s exciton, underlining
the fact that a bound electron-hole pair is excited. The kinetic
energies for electrons and holes (black lines) have small
values compared to the total energy. The strong influence of
the Coulomb interaction is also seen in the interaction energy

FIG. 4. Energy contributions normalized to the final electron
number for an excitation (a) resonant to the exciton and (b) within
the continuum.
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Eint (blue line), which is much stronger than the kinetic ones.
The interaction energy mostly describes coherent excitons,
which are well-described in a Hartree-Fock picture and, ac-
cordingly, the correlation energy Ecor vanishes. This leads to
the conclusion that a Hartree-Fock picture is applicable, in
which only coherent excitons are present, in agreement with
the low-density limit. In this limit, the dynamics is still linear
in the electric field E and all many-particle quantities factorize
like

〈ĉ†
1d̂†

2 d̂3ĉ4〉 = 〈ĉ†
1d̂†

2 〉〈d̂3ĉ4〉 + 〈ĉ†
1ĉ4〉〈d̂†

2 d̂3〉 + O(E4).

Here the first term on the right-hand side is of order E2 and
already the second term is of order E4 [31].

The energies in the case of continuum excitation, displayed
in Fig. 4(b), are rather different. Note the different scales
of Figs. 4(a) and 4(b). The total energy approaches the
excess energy of the exciting laser pulse, while the kinetic
energies are similar to the below-band-gap excitation. The
main difference lies in the interaction energy, which starts off
with negative values, showing that, even though we excited
the system within the continuum, the Coulomb interaction
alters the carrier dynamics directly above the band gap, in
particular during the laser pulse. After the laser pulse, the
interaction energy approaches a small positive value one order
of magnitude smaller than the interaction energy in Fig. 4(a).
If one increases the excess energy even further, a gradual
decrease of the interaction energy occurs (not shown). Again,
due to the low-density limit, the correlation energy vanishes.

B. High-density limit

We will now turn to higher excited densities (1 � Ne � 2)
in which the electron and hole wave packets should interact
strongly with each other. We will refer to this as the high-
density limit. While in the low-density case one could describe
the Eex = −24 and 10 meV cases by excitonic and free-carrier
excitation, respectively, in a high-density case we expect a
more complex picture, because the former interpretations rely
on low-density eigenstates of the semiconductor.

1. Excitonic excitation

Starting with the excitation at the exciton resonance, we
increase the pulse strength, such that on average Ne ≈ 1.7
electrons are excited. The corresponding density dynamics
and energy contributions are shown in Fig. 5. We again see
that the density is strongly localized at z = 0 with little move-
ment. Comparing the densities in the high-density [Fig. 5(a)]
and low-density case [Fig. 3(a)], one observes an increased
broadening of the carrier densities with time, which will be
further quantified below. The increased broadening of the
carrier densities can be understood in terms of Coulomb
scattering processes, which broaden the momentum distri-
bution. Even though Markovian Coulomb-induced intraband
scattering does not exist in a 1D system, on the ultrafast
timescales considered here quantum kinetic Coulomb scatter-
ing can strongly affect the carrier distributions [32].

Figure 5(b) shows the energy contributions. Comparing the
energetic contributions with the energy contributions in the
low-density case [Fig. 4(a)], one surprisingly sees that most
energies do not change considerably. Only the correlation

FIG. 5. Spatiotemporal carrier dynamics in the high-density case
after a 100 fs pulse with excess energy Eex = −24 meV. (a) Dynam-
ics of electron and hole distributions and (b) energy contributions.

energy is now dominating the interaction energy, which shows
that the carrier interaction is now dominated by correlations
beyond the Hartree-Fock picture. Nevertheless, it is still rea-
sonable to say that the carriers are still in a bound state with
Etot ≈ −22 meV. A direct comparison of the spatiotemporal
dynamics with a pure Hartree-Fock treatment is presented in
Appendix A.

Concerning the spatial broadening of the carrier densities,
the interesting question arises whether the transport is still
ballistic in view of the time and length scales or already
diffusive in view of scattering mechanisms. To answer this
question, we calculate the variance of the distribution


z2
i = 1

Ni(t )

∫
z2ni(z)dz,

where Ni(t ) (i = e, h) is the number of excited particles at
time t . The power dependence of 
z2

i ∝ tm is then an indi-
cator for the transport regime, where m = 1 corresponds to
diffusion and m = 2 to ballistic motion [33]. The variance of
the electronic density for the two pulse intensities is shown
in Fig. 6. For both excitation regimes one can clearly see
the dependence 
z2

i ∝ t2, which is confirmed by fits (black
dashed lines). Therefore, we conclude that the transport is
still ballistic (the hole variance shows the same scaling and
is therefore not shown here). Nevertheless, one can observe a
huge increase in ballistic broadening with increased density
due to Coulomb correlations; note that a quantum-mechanical
speed-up of the ballistic broadening has also been observed
as a result of other scattering mechanisms [34]. This behavior
can also be understood by the fact that for elevated densities,
the excited carriers are no longer described by a completely
excitonic excitation, but by an admixture of continuum exci-
tations that are spatially less bound (see also Sec. IV).
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FIG. 6. Variance of the electronic wave packet as a function of
time for the low-intensity (Ne ≈ 10−4, blue line) and high-intensity
(Ne ≈ 1.7, red line) case. The black dashed lines indicate quadratic
fits ∝t2 to the respective curves.

2. Continuum excitation

We now consider the case of continuum excitation in the
high-density limit for an excitation with a pulse strength, such
that Ne ≈ 1.7. The corresponding dynamics of the densities
is shown in Fig. 7(a). For both electrons and holes, we find
that wave packets are excited, which travel along the wire. In
contrast to the low-intensity limit [Fig. 3(b)], now a strong
spatial spreading of the densities and an acceleration of the
hole wave packet is found.

When looking at the corresponding energies, shown in
Fig. 7(b), the acceleration of holes is directly visible in the
kinetic energy Eh

kin, which now is on the same level as the
kinetic energy of electrons Ee

kin. The increase in kinetic energy
is compensated by a strong negative interaction energy Eint,
which for high densities is dominated by the correlation

FIG. 7. Spatiotemporal carrier dynamics after a 100 fs pulse with
excess energy Eex = 10 meV. (a) Dynamics of electron and hole
distributions and (b) energy contributions.
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FIG. 8. Normalized two-particle density [cf. Eq. (8)] for contin-
uum excitation in (a) the low-density limit and (b) the high-density
limit.

energy, such that the total energy is only slightly changed in
comparison to the low-density case.

Let us discuss in some more detail the strong acceleration
of holes, which is the most striking difference from the low-
density case. The holes are accelerated such that they travel
with approximately the same velocity as the electrons. This
can already be explained on a Hartree-Fock level where the
strong charge density induced by the local excitation leads to a
strong electrostatic interaction of the wave packets ultimately
forming an ambipolar wave packet effectively reducing the
charge density (see Appendix A for a Hartree-Fock simula-
tion). The formation of an ambipolar wave packet as in the
present case, where electrons and holes are moving with ap-
proximately the same velocity, can be directly mapped by the
two-particle density with equal electron and hole positions,

N2P(z) =
∑

σ

〈
�̂†e

σ (z)�̂†h
σ̄ (z)�̂h

σ̄ (z)�̂e
σ (z)

〉

= 1

V 2

∑
k,k′ ,σ
K,K ′

ei(K−K ′ )z〈ĉ†

k′+ K ′
2 σ

d̂†

−k′+ K ′
2 σ̄

d̂−k+ K
2 σ̄ ĉk+ K

2 σ

〉
,

(8)

where �̂†i
σ (z) are the field operators creating a carrier i at

position z. Here k, k′ describe the relative momenta and K, K ′
are the center-of-mass momenta of the carriers. We plot the
two-particle density of Eq. (8) for the low- and high-density
limit in Fig. 8, which should be compared to the densities
shown in Figs. 3(b) and 7(a), respectively. In the low-density
limit [Fig. 8(a)], a fast temporal decay of the two-particle
density is visible because of the spatial separation of electron
and hole wave packets.

In contrast, in the case of high density [Fig. 8(b)] one ob-
serves a traveling wave packet tracking the motion of carriers
directly reflecting the formation of the ambipolar wave packet.
Another quantification of the acceleration of holes can be
gained from the dynamics of the carrier occupations f e(εe

k ) =
〈ĉ†

k ĉk〉, f h(εh
k ) = 〈d̂†

k d̂k〉 shown in Fig. 9 for (left panels) the
low-density limit with Ne ≈ 10−4 and (right panels) the high-
density limit with Ne ≈ 1.7. In the low-density limit, we ob-
serve essentially an excitation at k-values corresponding to the
excess energy k0 = √

2μEex/h̄ (εe
k0

≈ Eex > εh
k0

) distributed
between electrons and holes. During the pulse, due to the
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FIG. 9. Energy distribution of the carrier occupations f e/h as a
function of time in the low- (left panels) and high-density limit (right
panels).

renormalization by Coulomb effects, the energy distribution
is smeared out.

In contrast, when looking at the dynamics in the high-
density case, the electronic distribution (upper panel) is
mostly smeared out by correlation effects, and the hole distri-
bution shows a strong acceleration from E ≈ 3 meV to E ≈
12 meV, resulting in the acceleration of the hole wave packets
observed in Fig. 7(a). Additionally, a strong broadening of
the distribution is observed that is even stronger than in the
case of electrons because the Coulomb scattering of holes is
facilitated by their flatter band structure. The strong energetic
broadening of the distributions leads to the enhanced spatial
spreading, because a broader range of wave-packet velocities
contributes to the wave packet.

IV. EXCITONIC PICTURE

To discriminate more clearly between the excitonic oc-
cupations and the continuum contributions for the different
excitations, we now analyze our results using an excitonic
picture. In this picture, all quantities are transformed into the
two-particle picture defined by the excitonic eigenfunctions
[17,35]. This will be particulary helpful for the high-density
limit, where the distinction between exciton and continuum
carriers becomes questionable. The exciton occupations can
be defined as

〈Ŷ †
x Ŷx〉 :=

∑
q,q′,σ

gx
q,K−q

(
gx

q′,K ′−q′
)∗〈ĉ†

qσ d̂†
K−qσ̄ d̂K−q′σ̄ ĉq′σ 〉,

with x = (n, K ) consisting of the center-of-mass momentum
K and the hydrogenlike quantum number n (1s, . . . , contin-
uum). Ŷx (Ŷ †

x ) is the exciton annihilation (creation) operator.
The expansion coefficients gx

q,K−q describe the transformation
from the free-particle states to the exciton states with the
relative momentum q (see Appendix B). Having done that, we

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

N1s/Ntot NC/Ntot

Ne

Eex = −24meV
Eex = 10meV

FIG. 10. Final excitonic (circles) and continuum (triangles)
occupation probabilities for different carrier densities for Eex =
−24 meV (red symbols) and Eex = 10 meV (blue symbols).

compute the fraction of 1s excitons and continuum excitons
using

Nx
tot =

∑
x

〈Ŷ †
x Ŷx〉 = N1s + NC,

with N1s = ∑
K 〈Ŷ †

1s,KŶ1s,K 〉. Thereby, one can distinguish be-
tween excited bound electron-hole pairs and electron-hole
pairs within the excitonic continuum, which essentially be-
have like independent particles. We consider here all states
above the 1s states as a continuum, because higher excitonic
states merge with the continuum excitations (cf. Fig. 2).

The stationary values of N1s and NC (normalized to the
total number of two-pair states) at the end of the simulation
(t ≈ 0.45 ps) are shown in Fig. 10 as a function of the
excitation power quantified by the number of electrons Ne.
One can directly see that the behaviors for the two excess
energies are opposed to each other. In the low-density case
there are only excitonic carriers for Eex = −24 meV (red
symbols) and only continuum carriers for Eex = 10 meV
(blue symbols). For increasing densities, the excitonic and
continuum carriers start to mix. For the excitonic excitation
this is expected, because the excitonic resonance becomes
screened for increased carrier densities. In the case of con-
tinuum excitation, the Coulomb interaction between the finite
densities leads to the fact that the wave packets, which are
initially of free-carrier character, interact with each other and
thereby acquire an excitonic nature. It is worth noting that the
mixing of continuum and excitonic carriers is more strongly
influenced by the density for the excitonic excitation than for
the continuum excitation, such that at Ne ≈ 1.7 the carriers are
only 60% excitonic.

We further look at the exciton occupations within the 1s
band,

N1s(EC ) = 〈
Ŷ †

1s,K (EC )Ŷ1s,K (EC )
〉
,

where EC denotes the center-of-mass energy. The final dis-
tribution in the two excitation scenarios is shown in Fig. 11
for different excitation strengths denoted by the number of
particles Ne. In Fig. 11(a) we consider the excitonic excitation.
In the low-density limit, the width of the distribution (blue
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FIG. 11. Normalized 1s exciton distribution as a function of
center-of-mass energy at the end of the simulation for (a) excitonic
and (b) continuum excitation. The black solid line corresponds to the
high-density limit and the blue solid line to the low-density limit.

line) is exclusively determined by the spatial localization of
the exciting pulse. For increased intensity (increasing Ne), the
distribution successively broadens such that a considerable
fraction of excitons with finite center-of-mass momentum is
present. This energetic broadening to higher center-of-mass
energies is in agreement with the enhanced ballistic spreading
for higher carrier densities together with the admixture of con-
tinuum carriers shown in Fig. 10. For the continuum excitation
presented in Fig. 11(b), we find a much broader distribution to
start with, which is centered around a finite center-of-mass
energy representing the fact that moving ambipolar wave
packets are traveling through the quantum wire. With in-
creasing excitation strength the finite momentum successively
builds up from the low-density limit, where the center-of-
mass momentum is essentially zero and the 1s occupation is
vanishing. Thereby, it is the acceleration of holes that leads to
the fact that the absolute values of electron and hole momenta
are not equal anymore, and excitonic occupations with finite
center-of-mass momentum K = ke + kh build up.

V. CONCLUSION

In summary, we have discussed the impact of Coulomb
effects on the ultrafast spatiotemporal carrier dynamics in
semiconductors. As an example, we have considered the
dynamics in a semiconductor quantum wire. For this, we
have performed calculations in a configuration-interaction-
like approach. By restricting ourselves to at most two
electron-hole pairs, we obtain an exact model ready to
scrutinize the Coulomb effects and correlations beyond the

Hartree-Fock level. This allowed us to examine the influence
of the Coulomb interaction on the exciton dynamics in par-
ticular for different carrier densities. While in the low-density
limit, where only a few carriers are excited, the exciton and
continuum states could be well separated, for higher excitation
density Coulomb correlations lead to a mixing of those.

These effects are also seen in the spatiotemporal dynamics
of the excited carriers, which behave qualitatively differently
in the low- and high-density limit. The excitation resonant
to the exciton leads to mostly stationary carriers, which for
higher density still move ballistically, but much faster away
from the excitation region, resulting in ultrafast spatial spread-
ing. For excitations in the continuum, two mostly independent
electron and hole wave packets were formed traveling along
the quantum wire. In contrast, for higher densities a strong
acceleration of the hole wave packet led to the formation of an
ambipolar wave packet. This wave packet can be dominantly
characterized by carriers within the excitonic continuum and
a fraction of excitons with finite center-of-mass momentum.

Our studies give important insights in the dynamics of
excitons in low-dimensional semiconductors and will help in
the development of exciton-based devices in semiconductor
technology.
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APPENDIX A: COMPARISON TO OTHER
THEORETICAL TREATMENTS

Here, we briefly compare our wave-function-based CI ap-
proach to density matrix approaches, which are commonly
used to treat photoexcited semiconductors [15,18] and—as a
specific example—to a Hartree-Fock calculation.

We remark that our CI approach is able to describe quan-
tities up to a biexciton occupation exactly, which is described
by an eight-operator expectation value. In perturbative ap-
proaches, those expectation values are usually expanded in
products of lower expectation values, and correlations of a
certain order are neglected. While such a decoupling scheme
can, e.g., be unambiguously truncated in finite orders of the
electric field for nonlinear spectroscopy [31], it is hard to
define a truncation scheme for high excitation densities, espe-
cially when only a few carriers are excited, i.e., for strong spa-
tial localizations, where correlation effects should dominate.
Mean-field treatments, such as the Hartree-Fock factorization,
which are usually the basis of density-matrix approaches, are
not justified in those cases. An additional advantage of the CI
method in comparison to the aforementioned density matrix
approaches is the fact that the evaluation of the Schrödinger
equation will result in linear differential equations, which are
numerically much more stable than the nonlinear equations
of motion of a density-matrix-based decoupling scheme. The
CI approach is therefore powerful in the context of strongly
localized excitation since here only a few particles are present
in the system and their correlation is of crucial importance.
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Nevertheless it is mandatory that the number of particles
is known and fixed throughout the simulation. This makes
the treatment of effects like Auger-recombination or impact-
ionization and the treatment of bosonic particles difficult.

It is interesting to directly compare our approach to a
Hartree-Fock (HF) calculation. The equations of motion in
this case read

d

dt
f e
k,k′ = i

h̄

∑
k′′

[
Ee

k,k′′ f e
k′′,k′ − f e

k,k′′Ee
k′′,k′

]

− i

h̄

∑
k′′

[U∗
k′′,k pk′′,k′ − p∗

k′′,kUk′′,k′ ],

d

dt
f h
k,k′ = i

h̄

∑
k′′

[
Eh

k,k′′ f h
k′′,k′ − f h

k,k′′Eh
k′′,k′

]

− i

h̄

∑
k′′

[U∗
−k,−k′′ p−k′,−k′′ − p∗

−k,−k′′U−k′,−k′′ ],

d

dt
pk,k′ = − i

h̄

∑
k′′

[
Eh

−k′′,−k pk′′,k′ + pk,k′′Ee
k′′,k′

]

+ i

h̄

∑
k′′

[(
δk′′,k − f h

−k′′,−k

)
Uk′′,k′ − Uk,k′′ f e

k′′,k′
]
,

with f e
k,k′ = f e

k,k′,σ = 〈ĉ†
kσ

ĉk′σ 〉, f h
k,k′ = f h

k,k′,σ = 〈d̂†
kσ

d̂k′σ 〉,
pk,k′ = pk,k′,σ = 〈d̂−kσ̄ , ĉk′σ 〉, the renormalized energies

Ee/h
k,k′ = ε

e/h
k δk,k′ −

∑
q

Vq f e/h
k+q,k′+q

+ 2Vk−k′
∑

q

(
f e/h
k+q,k′+q − f h/e

k+q,k′+q

)
,

and the renormalized fields

Uk,k′ = Ek,k′ (t ) +
∑

q

Vq pk+q,k′+q

(see Ref. [15]). For this, we show the continuum excitation
in the high-density limit for CI and Hartree-Fock in Fig. 12.
The upper panel shows the Hartree-Fock calculations, and
the lower one shows the CI calculations (these were already
shown in Fig. 7 in Sec. III B 2). For both calculations one
finds that electron and hole wave packets are formed, which
travel along the wire with the same speed. In other words, the
general trend of the formation of an ambipolar wave packet
is already described on the Hartree-Fock level, underlining
the interpretation that the driving force for this formation
is the classical electrostatic attraction between electron and
hole. Nevertheless the spatial broadening of the densities is
underestimated on the Hartree-Fock level, because quantum
kinetic scattering is not incorporated. For the same reason
there is a density at z = 0 in Hartree-Fock building up after the
pulse has ended, because the renormalized electric field does
not dephase in the Hartree-Fock treatment. We conclude that
the Hartree-Fock approximation gives a qualitatively correct
prediction of the ambipolar wave packet and therefore might
be a valid choice for dynamical calculations of wave packets.

Finally, we want to explore whether the ballistic nature of
the transport in the case of the excitonic excitation is already
captured in a Hartree-Fock calculation. Therefore, we show

ne (norm.) nh (norm.)ne (norm.) nh (norm.)ne (norm.) nh (norm.)ne (norm.) nh (norm.)
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FIG. 12. Electronic (left column) and hole (right column) den-
sities for continuum excitation in the high-density limit using (a) a
Hartree-Fock (HF) simulation and (b) the wave-function-based CI
simulation [cf. Fig 7(a)].

in Fig. 13 the dynamics of 
z2
e for an excitonic excitation,

and we compare the CI simulation (see also Fig. 6) with
the results from the Hartree-Fock calculation given in orange
(dashed). The Hartree-Fock case strongly underestimates the
spatial spreading of the wave packet and also falsely predicts a
superballistic behavior with 
z2

e ∝ t3.2. Therefore, in this case
the Hartree-Fock approximation fails to correctly describe the
dynamical behavior of the exciton.

In summary, the comparison with a Hartree-Fock treatment
underlines the fact that a correlation-expansion scheme is a
valid method for systems in which energetic continua play a
role, as in the case of continuum excitation. In the case of
excitonic excitation there is the center-of-mass continuum, but
nevertheless no continuum in relative coordinates.

FIG. 13. Wave-packet variance 
z2
e as a function of time (cf.

Fig. 6) now also including the Hartree-Fock simulation (orange
dashed line). A polynomial fit is shown as a black solid line.
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APPENDIX B: EXCITONIC EIGENSPACE

In this Appendix, we briefly summarize the transformation
to the exciton eigenspace. We consider the ansatz for the ex-
citonic eigenfunctions |ϕx〉 = ∑

k1,k2
gx

k1,k2
ĉ†

k1σ1
d̂†

k2σ2
|0〉. This

results in the Wannier equation
∑

q

[(
εe

k1
+ εh

k2

)
δq,0 − V (q)

]
gx

k1+q,k2−q = Exgx
k1,k2

after projecting the system Hamiltonian on |ϕx〉. The solution
with x = n, K reads

gn,K
k1,k2

= δk1+k2,K φ̃n

(
mh

M
k1 − me

M
k2

)

= δk2,K−k1 φ̃n

(
k1 − me

M
K

)
,

K = k1 + k2 being the center-of-mass momentum of the exci-
ton, M = me + mh, and φ̃n determined by the solution of the
effective hydrogen problem,

∑
q

[
h̄2k2

2μ
δq,0 − V (q)

]
φ̃n(k + q) = εnφ̃n(k),

with the reduced mass μ = memh
me+mh

.
Within this basis one can obtain, e.g., the excitonic polar-

ization as

Ŷ †
n,K =

∑
k1,k2

gn,K
k1,k2

ĉ†
k1σ

d̂†
k2σ̄

=
∑

k1

φ̃n

(
k1 − me

M
K

)
ĉ†

k1σ
d̂†

K−k1σ̄
,

where we defined the optically active excitonic state.
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