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Fourth-order spin correlation function in the extended central spin model
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Spin-noise spectroscopy has developed into a very powerful tool to access the electron spin dynamics. While
the spin-noise power spectrum in an ensemble of quantum dots in a magnetic field is essentially understood,
we argue that the investigation of the higher-order cumulants promises to provide additional information
not accessible by the conventional power-noise spectrum. We present a quantum-mechanical approach to the
correlation function of the spin-noise power operators at two different frequencies for small spin bath sizes
and compare the results with a simulation obtained from the classical spin dynamics for large number of
nuclear spins. This bispectrum is defined as a two-dimensional frequency cut in the parameter space of the
fourth-order spin correlation function. It reveals information on the influence of the nuclear-electric quadrupolar
interactions on the long-time electron spin dynamics dominated by a magnetic field. For large bath sizes and spin
lengths the quantum-mechanical spectra converge to those of the classical simulations. The broadening of the
bispectrum across the diagonal in the frequency space is a direct measure of the quadrupolar interaction strength.
A narrowing is found with increasing magnetic field indicating a suppression of the influence of quadrupolar
interactions in favor of the nuclear Zeeman effect.
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I. INTRODUCTION

Optical spin-noise spectroscopy (SNS) [1] has been estab-
lished as a minimally invasive probe to study the electron spin
dynamics and was originally proposed by Aleksandrov and
Zapasskii [2,3]. Off-resonant Faraday rotation measurements
were used for nearly perturbation-free measurement of the
spin noise in an ensemble of alkali atoms [4], as well as
in bulk semiconductors [5–7]. In the absence of an external
magnetic field, SNS was able to reveal the influence of the
electrical-nuclear quadrupolar interactions on an ensemble of
semiconductor quantum dots (QDs) [8] onto the long-time
decay [9,10] of the second-order spin correlation function
C2(t ) = 〈Sz(t )Sz〉 as well as on its spin-noise power spectrum
[11–17].

The information extracted from the second-order correla-
tion function, however, is limited to macroscopic linear effects
by the fluctuation dissipation theorem, if only the thermal
equilibrium is considered. For this reason many experimental
studies utilized nonequilibrium conditions, generated by radio
frequency [18–20] or through periodic laser pulses [21–26].

Higher-order spectra have been studied in context of
qubit-based spectroscopy to investigate dynamical decoupling
schemes [27,28]. Precise knowledge of the properties of the
environmental noise is necessary to utilize quantum dots as
qubits. This is why we investigated fourth-order spectra in a
quantum dot system.

Applying an external magnetic field to a QD whose
strength is exceeding the Overhauser field [29,30] generated
by the surrounding fluctuating nuclear spins, however, sup-
presses the effect of these quadrupolar interactions onto C2(t )
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[13]. Yet, quadrupolar interactions play an important role in
the understanding of the long-time decay of higher-order spin
response functions [31–33] especially at large magnetic fields
above 1 T. Since those fourth-order spin correlation functions
[31–33] have been investigated in the time domain, it has been
suggested [34,35] to extend the conventional SNS to higher-
order spin-noise correlations. The third-order spin correlation
of the type C3(t1, t2, t3) = 〈Sz(t1)Sz(t2)Sz(t3)〉 requires time-
reversal symmetry breaking for nonzero values, is imaginary
in the time domain in thermal equilibrium and is, therefore,
not an observable.

In this paper, we focus on the spectral information of
the fourth-order correlation functions [33–35] in the weak
measurement regime. It has been established that the real-time
fourth-order spin correlation functions contain important in-
formation on the field-dependent long-time scale of the decay
[31,32] connected to the competition between the nuclear
electric quadrupolar couplings and the Zeeman energy [33].
Only little is known about the spectral information of the
fourth-order correlation function [34,35]. We demonstrate that
the quantum-mechanical fourth-order correlation function in
a small spin systems evolves from a set of peaks at discrete
excitation energies into a continuous spectrum for large spin
systems that is equivalent to a spectrum obtained from a con-
figuration averaged simulation of a classical spin dynamics
[25,29,36,37].

In a recent publication Hägele et al. proposed an approach
to higher-order cumulants and their spectra in the context of
a continuous quantum noise measurement [38]. The authors
used a time evolution of the density operator by combin-
ing the von Neumann equation with a Markovian damping
through the environment and a feedback term generated by
the continuous measurement of the property of interest. They
applied their method to calculate the fourth-order correlation
spectrum for two coupled spins in a finite magnetic field.
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We present and compare two far simpler approaches based
on the linear response theory that is tailored to the nearly
perturbation-free optical SNS [6,11,34,35] and is easily ap-
plicable to a wide range of scenarios. We are interested
in the correlations between the spin-noise power spectrum
operator at two different frequencies. For independent noise
variables and purely Gaussian noise, the correlation function
would factorize and the cumulant [39] would vanish. If the
spin dynamics is coherent, this fourth-order spin correlation
function yields only nonvanishing contributions at the same
frequencies.

We focus on the spin dynamics in a semiconductor quan-
tum dot since it is considered as promising candidate for a
quantum bit [40–42]. We analyze the influence of the spin
length and number of nuclear spins onto the fourth-order
spin-noise spectra using the central spin model (CSM) [43]
and its extension to nuclear electric quadrupolar couplings
[15,17], which is well suited to describe quantum dot sys-
tems [29,44–46]. We show that the spectra calculated by our
quantum-mechanical method approach the results obtained by
a semiclassical simulation [25,36] in the limit of larger spins
and bath sizes. In the opposite limit, we are able to reproduce
the higher-order spin spectra in the case of two coupled spins
in a finite magnetic field presented in Ref. [38].

The main obstacle for the realization of a quantum bit
[40–42] by a QD ensemble is the loss of information, as
the electron spin decays over time due to its coupling to
a fluctuating environment. While spin decoherence due to
free electron motion is suppressed in a quantum dot, the
high localization causes the hyperfine interaction between the
electron spin and the surrounding nuclear spins to dominate. A
detailed investigation of interaction processes influencing the
spin dynamics in quantum dots on all time scale is desirable.

The standard SNS was successfully established as a very
useful tool to obtain the basis information on the spin dynam-
ics. However, spectral information on very weak interactions
such as the nuclear quadrupolar interactions or the influence
of the dipole-dipole interactions is lost rather quickly in a
finite magnetic field larger than the Overhauser field. We
propose to investigate the fourth-order spin-noise spectrum
since the shape of the cumulant spectra is significantly altered
in the presence of the nuclear quadrupolar interactions even
in larger external magnetic fields. Therefore, the fourth-order
spin-noise spectrum reveals additional information on the
long-time dynamics that is not accessible with the standard
SNS. We are able to link the change in the spectroscopic data
to the magnetic field dependency of the long-time decay time
in higher-order correlations functions [9,31,33].

A short introduction of the model and its semiclassical
approximation in Sec. II is followed by the definition of the
second- and fourth-order cumulant of the electron spin in
Sec. III. Quantum mechanical and classical implementation
of the higher-order correlations are presented in Sec. IV. The
results are discussed in Sec. V. The influence of the external
magnetic field on the spin cumulant is investigated and the
classical simulation is discussed as a limit to the quantum-
mechanical approach. The quadrupolar interaction is included
into the model. Classical and quantum-mechanical treatment
will provide an insight into its effect on the higher-order
spectrum. A brief summary is given in Sec. VI.

II. MODEL

While an electron spin in a singly negatively charged QD
is well isolated from decoherence due to fluctuating charge
environments, the strong localization of the electronic wave
function increases the coupling between the electron spin
and its surrounding nuclear spins. The spin dynamics in the
QD is governed by interactions acting on vastly different
time scales ranging from the hyperfine interaction (∼1 ns)
[15,17] to the dipole-dipole interaction (∼100 μs) [29]. The
quadrupolar interaction caused by electric strain fields and
the nuclear spin depends highly on sample growth. We will
confine ourselves to the dominating interactions for the spin
dynamics in a quantum dot: The hyperfine interaction, the
Zeeman interaction of the spins with the external magnetic
field �Bext, and the nuclear-electron quadrupolar interaction.

A. Central spin model

Both the hyperfine interaction as well as the Zeeman en-
ergy of the spins in an external magnetic field �Bext is described
by the Hamiltonian of the central spin model [43]:

H̃CSM = geμB �Bext�S + μN �Bext

N∑
k=1

gN,k�Ik +
N∑

k=1

Ãk�Ik�S. (1)

ge denotes the g factor of the electron, gN,k accounts for the
g factor of the kth nucleus, and μN is the nuclear magneton.
The third term represents the hyperfine interaction between
the electronic central spin �S and the bath comprised N nuclear
spins �Ik conveyed by the coupling constants Ãk . In negatively
charged QDs the hyperfine interaction is isotropic [14]. The
fluctuation frequency

ω2
fluc = 4

3
〈�I2〉

N∑
k=1

Ã2
k (2)

of the Overhauser field

�BN =
N∑

k=1

Ãk�Ik (3)

is used to define the intrinsic time scale T ∗ = 1/ωfluc, which
describes the short-time electron spin decoherence induced
by the fluctuation of the Overhauser field. Typical values
of 1–3 ns are found for T ∗ in experiments, depending on
their lateral size [9,15]. The expectation value of the nuclear
spin length 〈�I2〉 takes the value I (I + 1) in the quantum-
mechanical case while for the classical approximation, we
obtain the spin length 〈�I2〉 = I2.

(In,Ga)As/GaAs QDs contain different isotopes with dif-
ferent spin lengths. While Ga and As isotopes are character-
ized by a nuclear spin of IGa = IAs = 3/2, In has a spin IIn =
9/2. Therefore, the influence of different I on higher-order
correlation functions will be discussed at length in this paper.

The time scale T ∗ can be utilized to introduce a dimension-
less Hamiltonian

H = T ∗H̃CSM (4)

with the dimensionless hyperfine coupling constants
ak = T ∗Ãk and the dimensionless external magnetic field
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�bext = T ∗geμB �Bext. Assuming that all nuclear spins have the
same g factor it is convenient to define

ζ = gNμN

geμB
, (5)

the ratio between nuclear and electron Zeeman energy. Then,
the Hamiltonian takes the dimensionless form

HCSM = �S�bext + ζ�bext

N∑
k=1

�Ik +
N∑

k=1

ak�I�S. (6)

The hyperfine coupling constants Ãk are proportional to the
probability of the electron at the location of the kth nucleus,
Ãk ∝ |ψe(�Rk )|2. We assume the envelope of the electron wave
function in a d-dimensional quantum dot with the radius L0 is
of the form

ψe(�r) = CL−d/2
0 exp

(
−|�r|m

2Lm
0

)
, (7)

with m = 1 describing a hydrogenlike and m = 2 a Gaussian
envelope function. C is a dimensionless normalization con-
stant. With the coupling constant dependent on the probability
of an electron being present at the position of the kth nucleus,
Ãk ∼ |ψ |2, the realization of hyperfine coupling constants
thus becomes

Ãk = Amax exp

(
−|�r|m

Lm
0

)
. (8)

Due to the growth strain in an semiconductor quantum
dot the quadrupolar moment of the nucleus interacts with the
strained electronic charge distribution in the QD. In case of
axial symmetry regarding the local easy axis �nk , the quadrupo-
lar interaction is represented by the Hamiltonian [17,47,48]

HQ =
∑

k

Hk
q =

∑
k

qk (�Ik�nk )2. (9)

The quadrupolar interaction constants qk are a measure of the
quadrupolar interaction strength at the kth nucleus and are
quantified by the second derivative of the electron strain field
along the easy axis. The local easy axis �nz

k have been reported
to be at a mean deviation angle of θ = 23◦ with the growth
axis [48] for an In0.4Ga0.6As QD.

B. Semiclassical approximation

In the semiclassical approximation, we replace the
quantum-mechanical spin operator with classical vectors and
average over all possible initial spin configurations [29,36,37].
In numerical simulations, the integral over all Bloch spheres
are replaced by the discrete configuration sample that intro-
duces some finite statistical error that is well controlled by the
number of configurations.

The basis of the classical simulation is a set of coupled
equations of motion for the central electronic spin �S and the
individual nuclear spins �Ik [29,37]. Those can be derived as
the classical limit from the quantum-mechanical Hamiltonian

Eq. (6) via a path integral formalism [36,45]. By solving

d�S
dt

=
(

�bext +
∑

k

ak�Ik

)
× �S = �btot,S × �S, (10)

d�Ik

dt
= (ζ�bext + ak�S) × �Ik = �btot,Ik × �Ik (11)

for different realizations of the initial spin state from the
nuclear Gaussian sample space, we can infer the dynamics
of the spin expectation values by averaging over the dynamics
in each configuration. The mean values of the spin dynamics
are interpreted as the time average over consecutive measure-
ments on a single quantum dot.

The dynamics of the electron spin is governed by the
external magnetic field as well the hyperfine interaction with
the nuclear spins. Those two effects can be merged to one
time-dependent effective field �btot,S around which the electron
spin precesses. The same holds for the differential equations
of the nuclear spins, which are influenced by the nuclear
Zeeman term ζ�bext and the Knight field ak�S.

The classical formalism can also be extended to include
the quadrupolar effects on the nuclear spins [47]. Using the
Heisenberg equation with HQ stated in Eq. (9) and assuming
commuting classical variables, the effective field �btot,Ik ,

�btot,Ik = ζ�bext + ak�S + 2qk (�nk�Ik )�nk, (12)

can be extended to also comprise the influence of the
quadrupolar interaction 2qk (�nk�Ik )�nk .

The quadrupolar interaction induces an additional preces-
sion around the axis �nk for each nuclear spin but with a
variable precession frequency. The angular frequency is given
by the scalar projection of �Ik onto �nk weighted by qk . Without
hyperfine coupling this leads to a precession around a constant
�nk in which the nuclear Zeeman term acts as a perturbation for
small external magnetic fields.

III. CORRELATION FUNCTIONS AND NOISE

Kubo [39] pointed out that cumulants play an role in the
probability theory, which is important in quantum-mechanical
systems as well as in the thermodynamics. The observation
that the moment generating functional

〈eξX 〉 = exp

( ∞∑
n=1

ξ n

n!
κn

)
= exp(〈eξX − 1〉c) (13)

with the parameter ξ is linked to the exponentiated series of
the nth order cumulant κn of the random variable X had a
profound impact for the diagrammatic perturbation theory as
well as the analysis of the noise [49]. The subscript c refers to
the cumulant average.

This concept can be extended to several random variables,
which will be replaced by operators in quantum-mechanical
calculations. The second-order cumulant of the two variables
X1 and X2 is defined as

〈X1X2〉c = 〈X1X2〉 − 〈X1〉〈X2〉, (14)

which is identical to 〈X1X2〉 if the mean average 〈X1〉 vanishes.
The same principle can be applied to higher orders [39] and is
the basis for the spin-noise analysis presented in this paper.
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Here, we are using the Heisenberg operators Sz(t ) as
variables to define spin-spin correlation functions. In order
to access the frequency information for the spin correlation
functions of arbitrary order, we introduce the Fourier transfor-
mation

a(ω) = 1√
Tm

∫ Tm/2

−Tm/2
dt e−iωt Sz(t ), (15)

with the measurement time Tm and the measurement starting
at t0 = −Tm/2.

If the measuring time Tm is large compared to the charac-
teristic time scale of spin decay, we can apply the limit Tm →
∞ to simplify the mathematical expressions. Note, however,
that one has to be careful when applying this limit to avoid
unexpected divergence in expressions. We point out below
when we have to resort to the original finite measurement time
Tm < ∞ to remove any ambiguities.

A. Second-order correlation function

The spin-noise experiments in semiconductor QD are gen-
erally performed at T = 4–6 K, so that the thermal energy is
large compared to the energy scale generated by the Over-
hauser field. Furthermore, we can neglect the equilibrium spin
polarization 〈Sz〉 for a sufficiently low external magnetic field
so that the second-order spin-spin autocorrelation function is
identical to its cumulant. This second-order autocorrelation
function

C̃2(t1, t2) = 〈Sz(t1)Sz(t2)〉 (16)

describes the correlation between the z-component of the spin
at the start of the measurement t1 and at a time t2.

Since experiments on spin noise in quantum dots are
usually performed in the linear response regime, we assume
that the system is in equilibrium and the Hamiltonian com-
mutes with the density operator. This implies that the system
is translationally invariant in time, the correlation function
only depends on the relative time τ = t1 − t2, and therefore
can be expressed as C2(τ ) = 〈Sz(τ )Sz(0)〉. This holds for all
higher-order autocorrelation functions: for systems that are
translational invariant in time, one time variable is usually
eliminated [49] such that the kth-order correlation function
only depends on k − 1 time variables.

The Wiener-Chintchin theorem [1,50] relates the steady-
state spin autocorrelation function to the noise power spec-
trum. It requires that the measuring time Tm is much longer
that the characteristic time scale of the spin decay T ∗ (Tm �
T ∗). Substituting the Fourier transformation (15) and using
the translational invariance in time, we obtain the second-
order spin correlation function in the frequency domain:

C̃2(ω1, ω2) = lim
Tm→∞

〈a(ω1)a(ω2)〉

= lim
Tm→∞

1

Tm

∫ Tm
2

− Tm
2

dt1 e−iω1t1

∫ Tm
2

− Tm
2

dt2 e−iω2t2

×〈Sz(t1)Sz(t2)〉 = δω1,−ω2C2(ω) (17)

with

C2(ω) =
∫ ∞

−∞
dτ 〈Sz(τ )Sz(0)〉e−iωτ . (18)

C2(ω) denotes the spin-noise spectrum and satisfies the sum
rule ∫ ∞

−∞
dωC2(ω) = π

2
. (19)

Note that the inclusion of the prefactor 1/
√

Tm into the defini-
tion of the Fourier transformation ensures the convergence of
C̃2(ω1, ω2). It also leads to the Kronecker δ in the last line of
Eq. (17) [51].

B. Fourth-order correlation function

While the second-order spin correlation has been exten-
sively studied both in the frequency and the time domain
[4,9,13], the properties of fourth-order correlation functions
remain relatively unexplored [35].

An nth-order cumulant is given by the nth-order autocor-
relation function from which all combinations of lower-order
correlation functions are subtracted; see Ref. [39] for more
details. The basic idea is to separate the true higher-order
correlations from a trivial factorisation. If a system would
be fully characterized by Gaussian noise, all higher-order
cumulants would vanish [49].

One can show that the third-order spin correlation function
is imaginary in the time domain and not accessible. In this
paper, we therefore focus on the fourth-order spin correlation
function. Its cumulant provides additional information on the
dynamics of the system not yet included in C2. The fourth-
order cumulant of a(ω) is defined as

S̃4(ω1, ω2, ω3, ω4)

= C̃4(ω1, ω2, ω3, ω4) − C̃2(ω1, ω2)C̃2(ω3, ω4)

− C̃2(ω1, ω3)C̃2(ω2, ω4) − C̃2(ω1, ω4)C̃2(ω2, ω3),

(20)

where we neglected the spin polarization in a finite magnetic
field, which is justified in the high-temperature limit. The
translational invariance in time in combination with the limit
Tm � T ∗ yields the constraint

C̃4(ω1, ω2, ω3, ω4) = δω1+ω2+ω3+ω4,0C4[ω1, ω2, ω3,

− (ω1 + ω2 + ω3)].

(21)

We are interested in a special case of the fourth-order cu-
mulant S4(ω1, ω2) = S̃4(ω1,−ω1, ω2,−ω2). Since a(−ω) =
a∗(ω), it correlates two spin-noise power spectrum compo-
nents |a(ω)|2 at different frequencies with each other. Using
Eq. (20), this bispectrum fulfils the relation

S4(ω1, ω2) = S̃4(ω1,−ω1, ω2,−ω2)

= C4(ω1, ω2) − C2(ω1)C2(ω2)

× (1 + δω1,ω2 + δω1,−ω2 ). (22)

with C4(ω1, ω2) = C̃4(ω1,−ω1, ω2,−ω2). In the limit Tm →
∞, the last two terms in Eq. (20) are zero for S4(ω1, ω2) unless
ω1 = ±ω2.

If the two frequency components are uncorrelated, the
fourth-order cumulant would vanish. If the cumulant features
anticorrelation, i.e., S4(ω1, ω2) < 0, the observation of a spin
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component with the frequency ω1 decreases the likelihood
of simultaneously observing a spin precession with the fre-
quency ω2.

In the long measurement limit, the Fourier transform of
C4(ω1, ω2) becomes

C4(t1, t2) = 1

Tm

∫ Tm/2

−Tm/2
dτ 〈Sz(t1 + τ )Sz(τ )Sz(t2)Sz〉. (23)

This integrand describes the correlation of two C2(t1/2) mea-
surements, one started at t = 0, the other started at τ . It
is then averaged over the time delay between both mea-
surements. This could be implemented in an experimental
setup. It is similar, but not identical, to the fourth-order
correlator 〈Sz(t1)Sz(t1 + t2)Sz(t1)Sz〉 [32,33]. We can therefore
expect some comparable behavior, such as the sensitivity to
quadrupolar interaction even at high magnetic fields.

It is straightforward to prove the sum rule∫ ∞

−∞
dω1

∫ ∞

−∞
dω2C4(ω1, ω2) = π2

4
(24)

from the definition of C4(ω1, ω2). Since the contributions
to S4(ω1, ω2) containing δω1,±ω2 have the measure zero, the
integral of S4(ω1, ω2) over the ω1-ω2 plane vanishes. This
follows from the combination of Eqs. (19) and (24). Con-
sequently, a nonvanishing bispectrum must contain as much
spectral weight in the anticorrelations as in the correlations in-
dependently of the details of the Hamiltonian. Since the term
C2(ω1)C2(ω2) in Eq. (22) is well understood, the distribution
of correlated and anticorrelated frequencies under the influ-
ence of a transversal magnetic field as well as quadrupolar
interaction will be the focus of this paper.

IV. METHODS

In this section we discuss both the quantum-mechanical as
well as the classical method employed for computing second
and fourth-order correlation functions.

A. Quantum mechanical approach

Using an exact diagonalization of the Hamiltonian as a
quantum-mechanical approach to the higher-order spin cor-
relations suffers from the exponential growth of the Hilbert
space D = dim(H ) = 2(2I + 1)N with N , the number of nu-
clear spins. One can either utilize an approximate treatment of
the dynamics or solve the problem exactly by fully diagonaliz-
ing the total Hamiltonian H = HCSM + HQ. With this method
the number of nuclear spins N is limited to a small bath size.

Diagonalizing the Hamiltonian HCSM + HQ produces a
finite set of discrete eigenvalues and eigenvectors H |n〉 =
En|n〉. We use this eigenbase for calculating the spin-spin
correlation function C2(ω) in frequency space from Eq. (18)

C2(ω) = 2π

D

∑
nm

δ(ω − (En − Em))|Snm|2, (25)

defining the spin operator matrix element Snm = 〈n|Sz|m〉. The
spin-noise spectrum C2(ω) is positive semidefinite: the matrix
elements |Snm|2 contribute if the excitation energy En − Em

coincides with the external probe frequency ω.

The fourth-order spin correlation C4(ω1, ω2) can be ex-
pressed as

C4(ω1, ω2) = 4π2

D

∑
nml

∑
k∈Un

δ(ω1 − (En − Em))

× δ(ω2 − (Ek − El ))SnmSmkSkl Sln. (26)

Un is the subspace of all eigenstates with the same eigenenergy
En. If the Hamiltonian contains solely nondegenerate eigen-
states, the sum over k reduces to a single term k = n:

C4(ω1, ω2) = 4π2

D

∑
nml

δ(ω1 − (En − Em))

× δ(ω2 − (En − El ))|Snm|2|Snl |2. (27)

While C2 offers only information on the spin dynamics de-
pending on one frequency, C4 reveals the interplay between
two frequencies, ω1 = En − Em and ω2 = En − El weighed
with the spin matrix element |Snm|2 and |Snl |2, respectively.
Note that the δ functions in the Lehmann representations (25)
and (26) imply the limit Tm → ∞. For a finite measuring time
Tm < ∞, the δ functions are broadened by a width ∝ 1/Tm.

Combining Eqs. (25) and (26), the bispectrum S4(ω1, ω2)
can be expressed as

S4(ω1, ω2) = 4π2

D

⎧⎨
⎩

∑
nml

∑
k∈Un

[δ(ω1 − (En − Em))

× δ(ω2 − (Ek − El ))SnmSmkSkl Sln]

− (1 + δω1,ω2 + δω1,−ω2 )

×
[∑

nm

δ(ω1 − (En − Em))|Snm|2

×
∑

kl

δ(ω2 − (Ek − El ))|Skl |2
]}

. (28)

B. Classical treatment

In the quantum-mechanical treatment, we used the defini-
tion of the operator a(ω) and performed the ensemble average
by evaluating the trace over the Hilbert space. For the classical
simulation we proceed in the same manner. There, the trace is
replaced by a configuration average over all initial conditions
[25,36]. The integral over the Bloch sphere of each spin is
approximated by a finite number of randomly generated spin
configurations. We track the time evolution Sz(t ) determined
by Eq. (10) in each configuration.

For the case of ω1 = −ω2 and ω4 = −ω3, the correlation
function C̃4(ω1, ω2, ω3, ω4) can be written as

C4(ω1, ω2) = 1

NC

∑
i∈config

FCi
2(ω1)FCi

2(ω2). (29)

In each classical configuration i, the Fourier transformation
of the electron spin correlation Ci

2(t ) = Si
z(0)Si

z(t ) provides
building blocks for the correlation between the frequencies ω1

and ω2.
The correlation function C2(ω1) [29,46] that is subtracted

from the fourth-order correlator in the cumulant S4, cf.
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Eq. (28), is calculated using

C2(ω1) = 1

NC

∑
i∈config

FCi
2(ω1). (30)

While C2(ω1) contains 1/3 of its total spectral weight at
low frequencies ω � ωfluc at bext = 0 [14,15,29], it becomes
Gaussian for bext � T ∗ωfluc. The bispectrum S4(ω1, ω2) is
then computed via Eq. (22), analogous to the quantum-
mechanical method.

V. RESULTS

A. Choice of parameters

For the simulation, physical realities need to be translated
into parameters for the model to best reflect the actual system.
While the number of nuclei in a quantum dot is of the order of
104–106, simulating them all is computationally nonviable. In
modeling the hyperfine interaction between electron and nu-
clei, we, therefore, neglect all nuclei whose distance from the
electron exceeds a cutoff radius R0. Following from Eq. (8),
the resulting distribution of hyperfine coupling constants in a
QD of the radius L0 is realized by

Ak = Amax exp
( − rm

0 βm/d
)

(31)

with r0 = R0/L0 and β randomly selected from a uniform
distribution, β ∼ U (0, 1). Then the set {Ak} is properly nor-
malized such that they always yield the same ωfluc defined in
Eq. (2). The distribution of Eq. (31) was already applied in the
Refs. [13–16].

To generate an adequate representation of the ak distribu-
tion, it is necessary to adjust the cutoff radius depending on
the bath size to prevent the dynamics being dominated by
only a few strongly coupled nuclear spins. For small baths
(N < 15) we choose the relative cut-off radius r0 = 0.8, while
a larger cutoff r0 = 1.5 is utilized for large baths. Here, a
(d = 3)-dimensional quantum dot with a Gaussian electron
wave envelope, m = 2, is studied. To gauge the influence of
quadrupolar couplings on the decay without having to account
for the decay due to the hyperfine coupling distribution, ho-
mogeneous couplings (Ak = const, R0 = 0) are used as well.

We average over the Zeeman energies of the isotopes mak-
ing up an InGaAs QD to estimate the ratio between nuclear
and electron Zeeman energy, ζ . This results in ζ = 1/800; the
nuclear Zeeman splitting is about three orders of magnitude
smaller than the electron Zeeman splitting and perturbative
for dimensionless magnetic fields �bext smaller than O(102).

To quantify the relative quadrupolar interaction, we intro-
duce the dimensionless ratio [13]

Qr =
∑

k qk∑
k Ak

, (32)

which relates the total quadrupolar interaction strength to the
hyperfine coupling strength.

First, a set {q̃k} is obtained from a uniform distribution
q̃k ∈ [0.5, 1]. With a given Qr , the quadrupolar interaction
constants qk are determined via

qk = Qrq̃k

∑
k Ak∑
k q̃k

(33)

to satisfy the relation in Eq. (32). The local easy axes �nk [48]
have been reproduced by generating isotropically distributed
vectors and discarding any vector at an angle with the growth
axis larger than θmax = 34◦, so that the mean angle becomes
θ = 23◦. The z axis is aligned to the growth axis of the
QD, while the external magnetic field is applied transversally,
�bext = bx�ex unless otherwise stated.

The δ distributions in Eq. (28) are represented by
Lorentzians

�(ω,E ) = 1

π

γ

(ω − E )2 + γ 2
(34)

with a broadening factor T ∗γ = 0.01. This broadening cor-
responds to a measuring time Tm = 100 T ∗. Although, the
choice of this rather arbitrary broadening factor influences
the magnitude of S4(ω1, ω2), the total spectral weight remains
invariant of the broadening.

In an hypothetical quantum-mechanical simulation with
105 nuclear spins, the excitation spectrum entering Eqs. (25)
and (26) will be dense due to the almost continuous distribu-
tion of the hyperfine couplings Ak in such a large spin ensem-
ble. In a very small representation of the nuclear spin bath, the
excitation energies become visibly discrete, and the number of
different frequencies are further reduced by the degeneracies
in the absence of an external magnetic field. In order to
compensate for this effect, we generate Na different sets of
{Ak}, perform independent exact diagonalizations leading to
a variation of the excitation spectrum [14] and average over
the individual spectral functions. In the limit Na → ∞ the
excitation spectrum should approach a continuum, at a finite
Na, the Lorentzians (34) start to overlap resulting in smoothed
spectra. We set Na = 32 providing a reasonable compromise
between the computational effort and the smoothness of the
spectra.

To obtain the equivalent between the quantum-mechanical
expectation value and the classical simulation, the averaging
over NC classical initial spin configurations is necessary. NC =
105 is considered a sufficiently large number of configurations
to adequately represent the entirety of the sample space of
the spins. Each configuration comprises N = 100 randomly
generated nuclear spins and a central spin that is fully aligned
in z direction at t = 0.

In the simulation all classical spin vectors are of length
unity [25]. This necessitates the adjustment of the hyperfine
coupling constants a′

k = Sak and of the Overhauser field �b′
N =

I/S�bN. It also translates to the quadrupolar interaction q′
k =

Iqk . The classical spin always represents an effective spin
vector length of S = I = 1/2 for simplicity.

B. Spin-noise power spectrum C2(ω)

To set the stage for higher-order spin correlation functions,
we revisit the second-order spin noise C2(ω) first. A basic
understanding of spin noise was achieved when using the
Fourier transform of the frozen Overhauser field approxima-
tion (FOA) [29]. The spin-noise spectrum was extracted an-
alytically for bx = 0 and numerically calculated for arbitrary
magnetic fields. It was amply discussed in Refs. [10,13–15].
In Fig. 1 we provide a comparison of our two methods with
this analytic approximation. The quantum-mechanical and the
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FIG. 1. Comparison between the spin noise C2(ω) for different
approaches: blue and red lines represent the quantum-mechanical
simulation with three I = 9/2 nuclear spins, the green and grey lines
are a classical simulation and the dark yellow and magenta lines are
calculated from a Fourier transformed FOA.

classical simulations show good agreement with the solution
of the FOA for bx = 5. The deviations of the quantum-
mechanical result are related to the small number of simulated
bath spins. At bx = 0, the full spin rotational invariance intro-
duces degeneracies in the eigenenergies leading to a reduction
of the excitation spectrum. Therefore, the Na = 32 different
sets of hyperfine coupling constants are insufficient, and the
distinct nuclear frequency peaks are visible in the spectrum.
This is substantially different at finite bx = 5 where these
degeneracies are lifted by the Zeeman splitting, leading to an
almost smooth spectrum. The classical simulation traces the
Gaussian envelope of the quantum-mechanical spectrum and
also differs from the FOA at bx = 0. This is due to the nuclear
spin dynamics included in Eq. (11) that causes an additional
long-time decay in the time domain not included in the FOA.
Therefore, spectral weight shifts from the δ peak at ω = 0
to the Gaussian as the nondecaying fraction of 〈Sz(t )Sz(0)〉
decreases.

When adding the quadrupolar coupling to the central spin
model, it is important to understand its influence on the long-
time decay of C2(t ) as a function of the bath spin length
as well as number of nuclear spins in the simulation. The
relative strength Qr defined in Eq. (32) has been originally
introduced in Ref. [15] to minimize this dependency. Since
there is clear experimental evidence [15,32] that HQ induces
a second long-time decay of C2(t ), which occurs on time
scales of 200–600 ns depending on the growth conditions of
the quantum dot ensemble, we aim for adjusting the value
of Qr for each simulation such that C2(t ) remains invariant
under the change of the bath size or the spin length in
order to maintain a close connection between our simulations
and the experiments. By establishing this gauge we are able
to compare the differences in the fourth-order spectra with
different bath spin lengths I as well as to link the quantum
and the classical simulation.

Figure 2 depicts the second-order correlation function
C2(t ) for different I but similar Hilbert space dimensions D,

FIG. 2. C2(t ) in the absence of an magnetic field computed by
a Lanczos algorithm, with different spin lengths I , bath sizes N ,
and interaction strengths Qr , chosen for similar long-time decay.
The inset plot shows the dependence of QrI (I + 1) on the squared
spin length I (I + 1). The hyperfine couplings are homogeneous. The
analytical result of C2(t ) obtained by the FOA is plotted in gray for
comparison.

with a different but properly adjusted Qr . In order to have a
well-defined reference spectra that converges rapidly to an
analytically known result in the limit of N → ∞ [29], we
chose homogeneous coupling constants Ak = const. In this
case, all nuclear spins precess with an identical Knight field
around the central spin at each given moment in time. By
transforming the system into the rest frame of the total spin
the problem becomes identical to the FOA added as a gray
reference curve. The short-time dephasing occurs on the time
scale T ∗. The quantum-mechanical simulation tracks the FOA
for infinity large bath sizes and rapidly converges to the FOA
for short time scales. The data of the classical simulation for
N = 100 cannot be distinguished from the FOA and differ
only by the statistical fluctuation, which are not resolvable in
Fig. 2. The spin symmetry in the CSM leads to a nondecaying
fraction of C2(0)/3 in the long-time limit [10,29] for Qr =
0. A finite Qr breaks this spin symmetry and introduce an
additional secondary decay of the nondecaying fraction of
C2(t ) on a time scale T2 � T ∗ determined by the quadrupolar
interaction strength [13,15,52].

We adjusted Qr for the different parameters using for the
plots in Fig. 2 in such a way that the long-time decay of
all C2(t ) is characterized by the same long-time scale T2. By
choosing homogeneous coupling constants Ak we can ensure
that the long-time decay, T ∗ < t , is entirely controlled by the
quadrupolar coupling.

For I = 3/2, the quadrupolar coupling strength is set to
Qr = 0.15, since this value has been successfully used to
model experimental data [15,33]. Qr were chosen for I =
5/2, 7/2 and 9/2 (marked by X in the inset of Fig. 2) so
that all correlation functions exhibit a similar long-time decay.
Interestingly, the Qr that achieve this agreement of C2(t ) for
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FIG. 3. C4(ω1, ω2) and C2(ω1)C2(ω2) as the result of a classical
simulation. The cumulate S4 spectrum is shown in Fig. 7. The
external magnetic field is bx = 5.

these different combinations of I and N obey the relation

QrI (I + 1) = aI (I + 1) + b, (35)

with a = 0.068 ± 0.002 and b = 0.30 ± 0.03 obtained via
linear regression. The classical computations of C2(t ) that
have been made for an effective spin vector length of I = 1/2
follow this relation roughly (marked by a triangle in the inset
plot).

C. Fourth-order spin noise in the CSM

A comparison of the quantum-mechanical and classical
simulation results for the fundamental features of the fourth-
order cumulant S4 is the topic of this section. We discuss how
the shape of S4 is determined by its components C4 and C2 as
well as the dependence of the spectrum on �bext. The classical
simulation is presented as a limiting case to the quantum-
mechanical calculation. To set the stage we limit ourselves for
now to the CSM, which excludes the quadrupolar interaction.

1. Components of S4 depending on external
magnetic field strength

Each S4 spectrum consists of two parts: C4(ω1, ω2) and
the product C2(ω1)C2(ω2), cf. Eq. (28). The results of the
classical simulation for bx = 5 are depicted in Fig. 3. Since
both terms only contain quadratic expressions, their individual
contributions are positive.

C2(ω) is to good approximation a Gaussian with the mean
given by

√
b2

x + 1/2, cf. [14], and its variance σ 2 is deter-
mined by the Fourier transform of the envelope of the central
spin dynamics in the time domain for large magnetic fields
(ωfluc/2)2 [29]. Since ω1 and ω2 are independent variables, the
covariance is the identity matrix in the multivariate Gaussian
given by C2(ω1)C2(ω2) as shown in the right panel of Fig. 3.

C4(ω1, ω2) is plotted in the left panel of Fig. 3. It only
contributes on the diagonal ω1 = ω2. This fact is intuitively
accessible in the classical approach. In each configuration the
hyperfine interaction changes the initial frequency given by
the generated Overhauser field only marginally. Therefore, the
Fourier transform of Ci

2(t ) can be described by a narrow peak
and the product of two distributions can only be nonzero at
the overlap. For better visibility the δ peaks are broadened
to a Lorentzian with a width of γ T ∗ = 0.01. In the direction
of the diagonal, the spectrum follows a Gaussian distribution

FIG. 4. S4(ω1, ω2)ω2
fluc as well as C4(ω1, ω2)ω2

fluc and
C2(ω1)C2(ω2)ω2

fluc for bx = 1 in the classical simulation with
N = 100 bath spins. In the bottom right panel the diagonal cut
through all three spectra is shown.

N (
√

b2
x + 1/2, (ωfluc/2)2). This agrees with the result of FOA

[29], since a high magnetic field suppresses spin flips, leading
to an Ising model and which features a Gaussian distribution
of polarization due to the central limit theorem.

Combining the two contributions C4(ω1, ω2) and C2(ω)
leads to dominating correlations on the diagonal ω1 = ω2 as
well as anticorrelations elsewhere in the (ω1, ω2)-plane as a
consequence of the subtraction of both terms in Eq. (22).

To parametrize the diagonal cut we define Sdiag
4 (ω̃) =

S4(ω̃/
√

2, ω̃/
√

2) and plot Sdiag
4 (ω̃) in the bottom right panel

of Fig. 4. For small magnetic fields the spectrum changes dis-
tinctively, as can be seen in Fig. 4. Again we find a Gaussian
centered around

√
b2

x + 1/2 with a variance of (ωfluc/2)2 but
with reduced spectral weight. For bx = 0 the correlator C2

features a strongly pronounced δ peak at (ω1, ω2) = (0, 0),
as seen in Fig. 1, with a maximum weight of one third of
the total spectral weight in the case of homogeneous cou-
pling constants [29]. Increasing the strength of the external
magnetic field not only shifts the position of the Gaussian
depending on the external magnetic field but also transfers the
weight of the δ peak to the Gaussian. For higher magnetic
fields, e. g., bx = 5, the contribution at (0,0) has vanished, and
only the Gaussian remains. The same behavior also influences
the C4 part of the spectrum, where we can observe a not yet
disappeared δ peak at the origin of coordinates for bx = 1.

After establishing the qualitative features of C4 as well
as the product C2C2 for smaller and intermediate transversal
field strength bx by the classical simulation, we compare
these results with the quantum-mechanical calculations for a
very small bath but with large nuclear in I = 9/2 along the
diagonal ω1 = ω2.

Sdiag
4 (ω̃) for high magnetic fields is shown in Fig. 5. The

definition can be used analogously for the diagonal cuts
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FIG. 5. Sdiag
4 (ω̃) for high (bx = 50, 100, 200) transversal mag-

netic fields. Computed via the quantum-mechanical scheme for
N = 3 bath spins with a spin length of I = 9/2. The spectra are
shifted by

√
2ωmax = √

2
√

b2
x + 1/2. The frozen Overhauser field

approximation (FOA) is included for comparison.

through the C2(ω1)C2(ω2) and C4(ω1, ω2) spectra. While the
quantum-mechanical spectra is centered around

√
b2

x + 1/2
at all magnetic fields and is tracing the Gaussian envelope
established in the classical simulation for smaller fields, it
develops a comb of peaks at high magnetic fields. At larger
fields, spin-flip processes are suppressed, and the dynamics
becomes increasingly dominated by the Ising part of the CSM
in x direction. The peak location is governed by the hyper-
fine interaction, with the distance decreasing with increasing
bath sizes, ∝ 1/

√
N . The width of the peaks relates to the

variability of the Ak . This phenomenon can not be observed
with a classical computation, where higher magnetic fields
only shift the spectrum which maintains its continuous shape.
With higher numbers of bath spins and a distribution of
Ak with high variability, the quantum-mechanical spectrum
would approach the results of the classical simulation.

2. Classical simulation as a limiting case
of the quantum-mechanical treatment of S4

While the classical approach always yields a continuous
frequency spectrum, the variation of nuclear spin length
as well as the bath size merits a more in-depth investiga-
tion for the quantum-mechanical simulation. Figure 6 shows
the quantum-mechanical results for S4(ω1, ω2) obtained by
Eq. (28) for different spin lengths (I = 3/2, 5/2, 7/2) and
a fixed number of bath spins (N = 3) in a transversal field
bx = 5 applying an average over Na = 32 configurations of
{Ak}. The spectrum becomes more continuous with a growing
spin length, due to the exponential increase in the Hilbert
space dimension and the larger number of nondegenerate
eigenenergies. As seen in the left panel of Fig. 6, the nonzero
contributions to S4 are concentrated at a sparse number of
(ω1, ω2) frequency pairs for N = 3I = 3/2-spins, due to the
limitations of the energy excitation spectrum. The δ peaks
in Eq. (28) are broadened by a factor γ T ∗ = 0.01. Correla-
tions (red) are restricted to the frequency subspace ω1 = ω2,

FIG. 6. S4(ω1, ω2) computed for a bath size of N = 3 with spin
lengths I = 3/2, I = 5/2, and I = 7/2 and an Ak configuration
with r0 = 0.8. The transversal magnetic field is set to bx = 5, and
quadrupolar interaction is switched off.

while the anti-correlations (blue) can be found in an area
centered around ω1 = ω2 ≈ bx. Note the similarity between
the classical results (Fig. 7, bottom right panel) and the
quantum-mechanical solution for N = 3 and I = 7/2 (Fig. 6,
right panel), solidifying the conjecture that the quantum-
mechanical spectra approaches the results of the classical
simulation in the limit of I → ∞.

The fourth-order cumulant spectra S4(ω1, ω2) are pre-
sented for different N and a fixed spin length I = 9/2 at
bx = 5 in Fig. 7. For N = 1, the position of the nonzero
contributions are clearly governed by the Zeeman splitting
of the nuclear spins coupled to the central spin via a sin-
gle hyperfine coupling constant A = ωfluc. This results in
(2I + 1)2 equidistant peaks on a grid around the point given
by (ωL, ωL ), that are positive at the ω1 = ω2 diagonal and
negative everywhere else. For larger bath sizes the spectrum
becomes more continuous. At N = 3 bath spins of length
I = 9/2 the S4 spectrum, as displayed in the bottom left panel
of Fig. 7, is already qualitatively very similar to the classical
result depicted on the bottom right panel of Fig. 7.

FIG. 7. S4(ω1, ω2) computed for N = 1, 2, 3 bath spins with I =
9/2, and for N = 100 classical spins. The transversal magnetic field
is bx = 5, and quadrupolar interaction is not included.
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FIG. 8. S4/ω1, ω2) with a magnetic field bx = 5, with different
spin lengths I , bath sizes N , and interaction strengths Qr . The
parameters are chosen for similar behavior in the second-order spin
correlation, see Fig. 2.

The simulations show that the classical calculations are
valid limits of the quantum-mechanical calculations for I →
∞ and N → ∞. Furthermore, we established that fourth-
order cumulant does not vanish implying that the central
spin does not behave as a classical random variable whose
noise spectrum is purely of Gaussian type. The physics is
driven by the coherent precession around the external constant
magnetic field in combination with a slowly varying nuclear
spin dynamics. The FOA reveals the restriction of C4 to the
frequency diagonal, which is shared by both approaches that
explicitly include the nuclear spin dynamics.

D. Influence of quadrupolar interaction on S4(ω1, ω2 )

Within the CSM, the positive correlations are restricted to
the diagonal ω1 = ω2 related to the spectral confinement of
C4(ω1, ω2) leading to anticorrelation everywhere else in the
frequency plane. In this section, we add the nuclear-electric
quadrupolar interaction HQ to the CSM and investigate its
influence onto S4.

1. Fourth-order spin noise at intermediate and large magnet fields

Here, we focus on intermediate and large magnet fields
since in this regime the spin-noise power spectrum C2(ω)
remains unaltered in the presence of quadrupolar interaction.
In leading order C2(ω) is described by a Gaussian [29,46]
centered around ω1; see also Sec. V B.

Figure 8 shows S4(ω1, ω2) computed quantum mechan-
ically for bath spin lengths I = 3/2, 7/2, 9/2 as well as
the results of the classical approach. The strength of the
quadrupolar coupling is chosen such that C2(t ) agrees for
bext = 0 independent of the spin length; see the discussion
in Sec. V B. While the fourth-order contribution to S4 is
restricted to the diagonal, ω1 = ω2 without quadrupolar in-
teraction, the introduction of quadrupolar couplings causes
a broadening of the heretofore sharp peak. But while the

FIG. 9. The same data plotted in Fig. 8, cut in the diagonal ω1 =
ω2, Sdiag

4 (ω̃), as well as in the antidiagonal cut ω1 + ω2 = 2ωmax,
Sadiag

4 (ω̃). Sdiag
4 (ω̃) without quadrupolar coupling was added in the

right panel for comparison.

quantum-mechanical cumulant spectra look very similar, the
classically computed S4 exhibits a much smaller broadening
of the positive contribution around ω1 = ω2, and a quali-
tatively different peak shape as can be seen in the bottom
right panel of Fig. 8. Since the quadrupolar interaction does
not affect the shape of C2(ω) for transversal magnetic fields
bx > 1 in both approaches, the mismatch between quantum-
mechanical and classical fourth-order cumulant is related
to C4.

To quantify the influence of the quadrupolar coupling
strength Qr onto the cumulant S4, we analyze the broaden-
ing of C4 perpendicular to the frequency diagonal. For that
purpose, we parametrize the antidiagonal cut in the vicinity
of its global maximum, S4(ωmax, ωmax), with ωmax/ωfluc =√

b2
x + 1/2 by ω1 + ω2 = 2ωmax. We define the corresponding

antidiagonal cut as

Sadiag
4 (ω̃) = S4

(
ωmax + ω̃√

2
, ωmax − ω̃√

2

)
(36)

so that the global maximum is located at the relative frequency
ω̃ = 0.

The diagonal and antidiagonal cuts of the data presented in
Fig. 8 are plotted in Fig. 9. The same parameters that produced
congruent results for conventional spin-noise spectrum C2(ω)
as shown in Fig. 1, now lead to markedly different behavior.
The left panel shows the diagonal cuts computed with the
quantum-mechanical method for different nuclear spin length
I and bath size N and is augmented by the results of the
classical approach for N = 100 nuclear spins. The diagonal
cuts exhibit roughly the same Gaussian behavior independent
of Qr , but its amplitude decreases by about a factor five. This
is a direct result of the broadening observed in Fig. 8, as the
total spectral weight of C4 as well as S4 remains conserved.
The drop in amplitude is not uniform, but is more pronounced
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FIG. 10. Sadiag
4 (ω̃) quantum mechanically calculated with N = 3,

bx = 5, and I = 9/2 for different Qr . The inset plot shows the
full width half maximum �1/2 of C4 in relation to the quadrupolar
coupling strength Qr .

in S4 computed via the classical approach, suggesting that
the quadrupolar coupling has a stronger effect there. In the
quantum mechanically computed S4 the amplitude decreases
with larger I .

On the right panel of Fig. 9 the antidiagonal cuts are
shown for the same parameters as in the left panel. Added
for comparison is Sadiag

4 (ω̃) for Qr = 0 obtained with the same
broadening parameter γ . Sadiag

4 (ω̃) reveals a fundamentally
different curve shape depending on the computational ap-
proach. While the classical curve exhibits a cusp, which could
be fitted by a power law, the quantum-mechanical approach
yields a Gaussian shape.

The scaling behavior, which allows us to match classical
and quantum mechanical results for C2(ω) by adjusting Qr , cf.
Sec. V B, therefore only holds for the second-order spin noise
and not the fourth-order spin-noise bispectrum. It stands to
reason that the quantum-mechanical method includes features
that have been neglected in the classical approach, such as the
noncommutability of the bath spin components.

In order to connect the relative quadrupolar coupling
strength Qr with the broadening of the antidiagonal, we
plotted Sadiag

4 (ω̃) for different Qr and fixed N = 3 and I = 9/2
in Fig. 10. The contribution C2(ω1)C2(ω2), can be represented
by a Gaussian with the variance σ 2 = (ωfluc/2)2 independent
of Qr compatible with the FOA [29]. The fourth-order contri-
bution C4 in contrast changes markedly with the quadrupolar
interaction strength. Fitting only C4 with a Gaussian leads to
the relation between the full width half maximum �1/2 and
the quadrupolar coupling strength Qr shown in the inset of
Fig. 10. For small Qr , the dependence is roughly linear, before
the increase flattens at Qr > 0.1. For Qr → 0, the Gaussian
curve becomes a sharp peak �1/2 → 0 limited here due to the
Lorentz broadening simulating a finite measuring time Tm.

FIG. 11. Sadiag
4 (ω̃) quantum mechanically calculated with N = 3,

Qr = 0.08, and I = 9/2 for different transversally applied external
magnetic fields bx .

Figure 11 depicts the antidiagonal cut Sadiag
4 (ω̃) for differ-

ent magnetic fields bx and fixed spin bath size and spin length.
The quadrupolar coupling induced broadening decreases with
an increasing magnetic field strength: the dynamics of the
system is dominated by the Zeeman energy, and HQ becomes
an increasingly weaker perturbation. This agrees well with
the observation of the fourth-order spin correlation function
in the time domain [33], where the high magnetic fields shift
the decay time from O(ns) to an exponential decay with a
magnetic-field-dependent decay time T2 ∝ O(μs) [9,31,32].

We performed the same type of simulations as in Fig. 10
using the classical approach. Figure 12 shows Sadiag

4 (ω̃) for
different Qr . Since C2(ω) remains invariant under the change
of Qr , the change in the spectrum is directly linked to the
change of C4(ω1, ω2). As in the quantum-mechanical simu-
lations, the quadrupolar interaction lifts the spectral constrain
to ω1 = ω2 in C4(ω1, ω2). The overall sum-rule for C4(ω1, ω2)

FIG. 12. Cuts for the classically calculated Sadiag
4 (ω̃). The inset

plot shows the full width at half maximum �1/2 of the C4 part
dependent on the quadrupolar coupling strength Qr .
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implies a decrease of the peak at ω̃ = 0 and an increas-
ing distribution of spectral weight into the (ω1, ω2) plane.
Since the shape of the classical Sadiag

4 (ω̃) is non-Gaussian,
we extracted the full width half maximum �1/2 of C4 as
function of Qr and plotted the result as inset in Fig. 12. In full
agreement with the quantum-mechanical approach we find a
linear dependency of �1/2 on Qr for small Qr < 0.35. The
finite offset at Qr = 0 is related to the finite size effect of
the Fourier transformation for Tm < ∞. The absolute value
of �1/2, however, differs between the quantum-mechanical
and the classical simulations, which we attribute to the bath
size difference. For larger quadrupolar interaction strength the
width �1/2 does not increase further. This agrees qualitatively
with the quantum-mechanical simulation where the full width
half maximum also flattens out. As an upper bound we assume
�1/2/ωfluc = 0.147 which was measured at Qr = 0.7.

But most importantly the shape of Sadiag
4 (ω̃) is deformed

from an approximately exponential shape to a Gaussian with a
peak at the mean value. A similar behavior can be observed in
the quantum-mechanical simulation for the external magnetic
field dependency with fixed Qr as depicted in Fig. 11. The
increase of the external magnetic field goes together with the
change of the broadening at bx = 100 and its final exponential
shape at bx = 200.

The approach of a constant �1/2 for larger values of Qr

can be understood by inspecting the dynamics of an iso-
lated nuclear spin that is determined by two energy scales:
the Zeeman energy and the quadrupolar coupling. For small
magnetic fields the quadrupolar coupling leads to energy
separated time-reversal pairs of doublets that are only weakly
perturbed. In this limit, an increasing quadrupolar coupling
linearly widens the energy separation between these time-
reversal pairs: spin-flip scattering processes between differ-
ent doublets are suppressed. Consequently the central spin
dynamics becomes independent of Qr once the quadrupolar
interaction considerably exceeds the Zeeman energy leading
to a constant �1/2 for larger values of Qr . For a very large
Zeeman energy the quadrupolar interaction can be seen as
weak perturbation; the crossover happens when the energy
scales are comparable. In the large field limit, the effect of
the quadrupolar interaction is suppressed again leading to a
narrowing of the spectra in Fig. 11 as already discussed above.

In a real system, the individual values of qk are dependent
on the local strain tensor that is not explicitly known in detail.
In the numerical simulation the parameter Qr was fixed by
connecting the simulated second-order spin correlation func-
tion with the corresponding experiments [13,31,32]. However,
for a specific nuclear spin in the simulation the ratio between
the Zeeman energy and qk does not only depend on the
distribution of the strain fields but also on the average value
of qk that remains N dependent. Since the classical simulation
involves more spins, the individual values of qk are smaller.
Therefore, a larger value of Qr is required to obtain the same
response in S4, which explains the difference between �1/2

for the same absolute value of Qr in the simulations.
The main message of the section is that S4 spectroscopy in

larger magnetic field will open a new door to gain access on
the distribution by measuring �1/2(bx ). Although the absolute
value of �1/2(bx ) depends in detail on the distribution of

FIG. 13. Comparison of C2(ω) with and without HQ. The left
panel shows the results of quantum-mechanical calculation, with
N = 1, I = 9/2, and Qr = 0.08, the right panel the classically com-
puted spectrum using N = 100, Qr = 0.33.

the couplings qk , studying the field-dependent width gives
an indication of the average crossover scale from dominating
quadrupolar interaction to a dominating nuclear Zeeman term
[31–33].

2. Fourth-order spin noise in the crossover regime

Now we turn to the crossover regime where the Zeeman
energy is of the order of ωfluc, i.e., bx ≈ 1. The electron
spin dynamics is governed by the external magnetic field and
the fluctuating Overhauser field, which have equal strength.
Furthermore, the nuclear Zeeman energy is weak such that
the nuclear spin dynamics is dominated by the nuclear-electric
quadrupolar interaction in combination with the weak Knight
field generated by the electron spin. We are interested in
comparing two extreme limits: the dynamics of the smallest
system one can imagine, including only a single nuclear spin,
and the limit of large number of spins. While N = 1 requires a
purely quantum-mechanical calculations, we mimic the large
N limit with a classical simulation of N = 100 bath spins.

In this regime HQ does not only influence S4 but also mod-
ifies C2(ω). The change of C2(ω) induced by the quadrupolar
interaction is depicted in Fig. 13 for bath sizes N = 1 (left
panel) and N = 100 (right panel).

We use the corresponding spin noise C2 to calculate
the fourth-order cumulant. In Fig. 14 the classical and the
quantum-mechanical results of S4 are presented for bx = 1.
Note that the quantum-mechanical S4 on the left computed in
the limit of weak measurement for N = 1, is near identical
to the S4 presented for strong and continuous measurement in

FIG. 14. S4 for a smaller magnetic field of bx = 1. Left is the
quantum-mechanical calculation, with N = 1, I = 9/2, and Qr =
0.08. On the right is the classically computed spectrum with N =
100, Qr = 0.33.
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Ref. [38]. For small ω1 or ω2 we also found alternating signs
of correlations in the (ω1, ω2)-plane. Fixing ω1/ωfluc = 1 and
increasing ω2 reveals first weak anticorrelation (encoded in
blue), then correlations (encoded in red) before switching
back to anticorrelations. Also, the strong correlations are
not confined to the diagonal as depicted in Fig. 7 but are
significantly spread due to the presence of the quadrupolar
couplings.

The classically obtained S4 on the right shows the effects of
quadrupolar coupling in small magnetic fields for a far bigger
bath of N = 100, which results in a continuous spectrum with
similar features. These are the anticorrelation contributions at
the axis with a dip in anticorrelation along ω1/2/ωfluc = 1, as
well as the broadening of the correlation on the diagonal.

3. Discussion

While the second-order spin correlation function C2(t )
decays fast on the time scale T ∗ in finite magnetic field
that long-time effects of nuclear quadrupolar coupling cannot
be observed in the electron spin dynamics, they modify the
frequency characteristics of the fourth-order spin correlation
function significantly. The positive correlations in the spin
noise power bispectrum that are pinned to the frequency
diagonal in the CSM are broadened and acquire a finite
width proportional to the nuclear coupling strength at a large
magnetic field.

With and without quadrupolar interaction the classical
and the quantum mechanical method yield congruent results
for the second-order correlation. The same is true for the
fourth-order correlation without quadrupolar interaction. If
quadrupolar interaction is introduced, both the classical and
quantum-mechanical method show qualitatively similar be-
havior: a broadening of the correlation peak along the ω1 +
ω2 = const. cut. But, as can be seen in Fig. 9, the spectra
of different methods exhibit a quantitatively different curve
progression, and to not follow the same scaling behavior
presented in Sec. V B. This shows that the fourth-order cor-
relation yields uniquely quantum-mechanical information that
appears with the introduction of quadrupolar interaction into
the system, as has been previously shown in Ref. [33].

It is straightforward to extend the investigation to an ar-
bitrary angle between the z axis and the applied magnetic
field. This is a well-studied problem in the context of the
standard SNS and it turns out that a tilted magnetic field does
not provide additional new information. Therefore, we do not
include these results in this paper. For the limiting case of a
single bath spin, i.e., N = 1, we refer to Fig. 6 in Ref. [38],
which extrapolated to continuous spectra as obtained with our
classical simulation.

VI. CONCLUSION

We presented a combination of a quantum-mechanical and
a classical simulation to the fourth-order noise correlation
function, to calculate the spin-noise power bispectrum in a
quantum dot in the presence of the nuclear-electric quadrupo-
lar interaction in the limit of a very small and a very large
nuclear spin bath. Our approach is valid in the limit of a
nearly perturbation-free off-resonance detection of the spin

polarization in the quantum dot ensemble using the Faraday
rotation of a weak linear polarized optical probe signal.

The second-order spin correlation function C2(t ) is used as
a gauge to connect the nuclear spin length I and the effective
quadrupolar interaction strength Qr to the number of nuclear
spins of the spin bath in all calculations. To account for the
effect of quadrupolar interaction in a classical spin dynamics,
we derived a modification of the effective Knight field in
classical equations of motions.

The quantum-mechanical and the classical spin-noise bis-
pectrum agree well for the CSM. The quantum-mechanical
bispectrum converges to the result of the classical simulation
for large nuclear spin bath and large nuclear spin length.
In both cases the quantum-mechanical eigenvalue spectrum
approaches a continuum distribution. Interestingly, already
relatively small spin baths provide a good representation of
a larger bath bispectrum.

The fourth-order cumulant S4 is made up of two basic
building blocks: C4(ω1, ω2) and C2(ω1)C2(ω2). The decompo-
sition of those parts show that the product of the second-order
spin noise gives a two-dimensional Gaussian, which is solely
responsible for anticorrelation in the spectrum while C4 is
nonzero only on the diagonal in the CSM.

Adding the quadrupolar interaction term HQ to the CSM
is causing a broadening of C4 across the diagonal. The width
of this broadening is directly proportional to the quadrupolar
coupling strength at small couplings and a finite magnetic
field. The width could be used as a direct experimental probe
of the average quadrupolar interaction strength in a sample.
The near perfect agreement observed in C2(ω) between the
classical and the quantum-mechanical simulations is slightly
modified in the bispectrum. The qualitative agreement be-
tween the bispectra of both methods with comparable pa-
rameters is remarkable concerning the location of the corre-
lation as well as the anticorrelations. The broadening of the
quantum-mechanical spectra C4 along the diagonal, however,
is more pronounced than in its classical counterpart, while the
decrease of the amplitude due to quadrupolar interaction is
stronger for the results of the classical method. The difference
in the shape between the results of both methods becomes
visible in the cut through the diagonal.

We have proven that the simple linear response theory
to higher correlation functions [34,35] produces congruous
results to those obtained with an elaborate weak measurement
theory presented in Ref. [38]. This shows that the assumption
of a nonperturbative measurement yields identical results that
the weak measurement theory in the weak coupling limit [38].
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