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Evidence for mixed phases and percolation at the metal-insulator transition in two dimensions
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The in-plane magnetoconductance of the strongly interacting two-dimensional electron system in a silicon
MOSFET (metal-oxide-semiconductor-field-effect transistor) exhibits an unmistakable kink at a well-defined
electron density, nk . The kink at nk is near, but not at the critical density nc determined from resistivity
measurements, and the density at which nk occurs varies with temperature. These features are inconsistent with
expectations for a quantum phase transition. We suggest instead that this is a percolation transition and present a
detailed model based on the formation of a mixed insulating and metallic phase within which a metal-insulator
transition takes place by percolation.
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I. INTRODUCTION

Based on the famous 1979 paper by Abrahams et al.
[1], as well as several carefully executed experiments on
different materials, it was assumed for many years that a
metal-insulator transition cannot occur and no metallic phase
can exist in a two-dimensional electron/hole system. It was
therefore a surprise when experimental studies in the 1990s
appeared to show that such a transition does take place in low
disorder, dilute two-dimensional (2D) electron systems when
strong electron interactions rather than the kinetic energy are
dominant and determine the behavior of the system [2–4]. In
addition to the dramatic change in resistivity that signals the
onset of a conducting phase, unusually interesting behavior
was found for the magnetoresistance both above and below
the critical electron density nc. On both sides of the transition,
the resistivity rises sharply with increasing in-plane magnetic
field up to a field Bsat, above which it becomes essentially
constant. Shubnikov–de Haas measurements [5–7] have
demonstrated that Bsat signals the onset of full polarization of
the electron spins.

A great deal of discussion ensued concerning these ex-
perimental observations: is this a true quantum phase metal-
insulator transition, which many believed cannot occur in two
dimensions, or can be explained within any one of a number
of relatively benign scenarios. (For reviews, see Refs. [8–10]).

While abrupt changes and divergences have been reported
at nc for a variety of physical properties [8–11], the benign
behavior of the magnetoresistance at the critical electron den-
sity has been an enigma since its discovery [12,13]. While the
resistivity displays a sharp change as one crosses the transition
at the critical density, the magnetoresistance appears to vary
smoothly without exhibiting any change that would signal the
onset of a new phase [14].

In this paper we report the results of detailed measurements
of the magnetoresistance of a two-dimensional low-disorder,
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dilute, strongly interacting system of electrons in a silicon
metal-oxide-semiconductor-field-effect transistor (MOSFET)
over a broad range of electron densities. Despite the striking
similarity of the magnetoconductance in the metallic and
insulating phases and the gradual evolution of the behavior
found to date as the transition is crossed, we report that the
in-plane field Bsat required to fully polarize the electron spins
exhibits an abrupt kink as a function of electron density that
signals the occurrence of a transition at a well-defined density
nk that varies with temperature and is near, but not at, the
density nc for the metal-insulator transition determined from
resistivity measurements. These features are inconsistent with
the behavior expected for a quantum critical transition. We
propose instead that the kink signals the occurrence of a tran-
sition by percolation within a mixed metallic-insulating phase.

II. EXPERIMENTAL PROCEDURE

Measurements were performed down to 0.27 K in an
Oxford Heliox He-3 refrigerator on the same type of high-
mobility silicon MOSFET samples as those used in previous
studies [11,15]. Here we report data taken for a sample with
critical density nc ≈ 7.74 × 1010 cm−2 in the absence of
magnetic field and ≈9.0 × 1010 cm−2 in a field sufficient
to fully polarize the electron spins [15]. Contact resistance
was minimized by using a split-gate geometry which permits
high electron density to be maintained near the contacts
independently of the value of the electron density in the
main part of the sample. This is a particularly important
feature that enables reliable measurements in the dilute 2D
electron system in the deeply insulating state where the resis-
tivity reaches very high values. By contrast with the lock-in
techniques that were sufficient for our earlier measurements
of higher density, metalliclike samples that have relatively
low resistivities [16], the measurements here were taken by
a protocol similar to that described in Ref. [15], where a
Keithley Source Measure Unit SMU 236 was used to apply
a small dc current (as low as a few pA) through the sam-
ple and the voltage was measured by a standard four-probe
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FIG. 1. The resistivity as a function of parallel magnetic field at
T = 0.27 K plotted on a semilogarithmic scale for different electron
densities (in units of 1010 cm−2), as labeled. The small decrease
of the resistance in some of the curves for magnetic fields above
saturation is due to minor misalignment of the field away from the
in-plane direction. Upper inset: The resistivity deduced from the
slope of the linear portion of the corresponding I-V characteristic
for each density and temperature; here T = 0.27 K, B = 0 T; ns ≈
4.7 × 1010 cm−2. Lower inset: A plot of ρ as a function of electron
density ns illustrates the abrupt change in resistivity at nc.

method. For each density and temperature, the resistivity ρ

was deduced from the slope of the linear portion of the cor-
responding I-V characteristic, as shown in the upper inset to
Fig. 1.

III. EXPERIMENTAL RESULTS

For various different electron densities, Fig. 1 shows the re-
sistivity at T = 0.27 K as a function of magnetic field applied
parallel to the plane of the sample. In agreement with data
shown in earlier reports [14], the in-plane magnetoresistance
rises dramatically with increasing magnetic field and reaches
a plateau above a density-dependent field Bsat. The behavior of
the magnetoresistance is qualitatively the same in the insulat-
ing phase as it is in the conducting phase and appears to evolve
continuously and smoothly, with no indication that a transition
has been crossed. As shown in the lower inset of Fig. 1, this
is in clear contrast with the dramatic change found for the
zero-field resistance as the electron density is reduced below
nc, a change that becomes sharper and more pronounced as
the temperature is reduced into the millikelvin range.

Following the procedure used in a previous study [16], we
determine the normalized magnetoconductivity:

σnorm ≡ σ (B = 0) − σ (B)

σ (B = 0) − σ (B → ∞)
= �σ

�σtotal
. (1)
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FIG. 2. (a) Normalized conductivity as defined by Eq. (1) plotted
as a function of in-plane magnetic field B; T = 0.27 K. The inset
shows �σtotal = [σ (B = 0) − σ (B → ∞)] versus electron density
ns. (b) Normalized conductivity as a function of B/Bsat , where the
fitting parameter Bsat was chosen to yield a collapse of the normalized
conductivity onto a single curve.

Note that the normalized magnetoconductivity is sim-
ply the field-dependent contribution to the conductivity,
�σ = [σ (B = 0) − σ (B)], normalized by its full value,
�σtotal = [σ (B = 0) − σ (B → ∞)].

Figure 2(a) shows the normalized conductivity at T =
0.27 K as a function of in-plane magnetic field for different
electron densities. The inset is a plot of �σtotal = [σ (B =
0) − σ (B → ∞)] as a function of electron density. Notwith-
standing the apparent continuity of the behavior of the magne-
toconductance across the transition, the inset shows that there
is a sharp change in the magnetoconductivity in the vicinity of
a critical density nc.

As shown in Fig. 2(b), a density-dependent parameter can
be chosen that provides a collapse onto a single curve for
all the data obtained at base temperature; note that the scale
of Bsat was chosen such that the onset of saturation occurs
at x = 1 = B/Bsat. Data were also taken at 0.36, 0.50, 0.75,
and 1.0 K. Figure 3 illustrates that the Bsat obtained at 0.36
and 1.0 K are also self-similar and collapse onto a single curve
(data for 0.5 and 0.75 K not shown).

Figure 4 shows a plot of Bsat for a broad range of electron
density at five different low temperatures. A clear kink occurs
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FIG. 3. To illustrate the collapse obtained at each (constant)
temperature, the normalized conductivity is shown as a function of
B/Bsat at two temperatures above base: (a) 0.36 K; (b) 1.0 K.
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FIG. 4. Bsat as a function of electron density for different temper-
atures, as labeled. The inset shows the terminal, low-density value of
Bsat as a function of temperature.

at a density (that varies with temperature), below which Bsat

decreases with decreasing electron density and assumes a
constant terminal value, Bld . The inset shows a plot of the
constant terminal value of Bld as a function of temperature.
To aid the discussion below, Bsat at the base temperature
(T = 0.27 K) is shown separately in Fig. 5.

Figure 6 shows Bsat as a function of the temperature
T for various different electron densities. For each of the
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FIG. 5. Bsat as a function of ns at base temperature. The closed
circles are for the sample for which most of the data were obtained,
while the half-open squares were obtained for a similar sample with
a different value of nc (see the Appendix A). To aid the discussion in
the text, the dotted line is an approximate straight line fit to the high
density values, extended to lower densities.
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FIG. 6. Bsat as a function of temperature T . For the six lower
densities, which are insulating, the lines are linear fits to the data not
including the data at the lowest temperature T = 0.27 K, which lie
above the curve. The upper two curves are on the metallic side of the
transition. The inset shows the slope A of the Bsat vs T curves in the
insulating phase as a function of electron density.

six densities on the insulating side of the transition, Bsat is
consistent with the linear fits shown. Thus, Bsat = AT . Note
that the lowest temperature points all deviate upward from
the straight lines. Although we ascertained that the resistance
of the sample exhibited exponential (variable-range-hopping)
behavior down to base temperature, it is possible that the
electron system was not thermally well connected to the bath
at our lowest temperatures. More densely spaced data taken
at lower temperatures are needed to determine whether Bsat

tends to zero in the limit of zero temperature. By contrast,
Bsat extrapolates to a finite value at T = 0 for the two highest
(metallic) densities, signaling the entry into a different phase.
For the insulating phase, the inset shows that the slope A of
the straight line fits as a function of electron density decreases
as the density is reduced and levels off to a constant value.

IV. DISCUSSION

In this paper we report measurements of the resistivity as a
function of in-plane magnetic field in the strongly interacting
two-dimensional electron system in a silicon MOSFET over a
broad range of electron densities spanning the insulating and
metallic phases at several temperatures below 1 K. Plotted
as a function of in-plane magnetic field, B, the normalized
conductivity defined by Eq. (1) then yields a set of self-similar
curves that can be collapsed onto a single curve for all mea-
sured electron densities and temperatures using a parameter
Bsat, where Bsat is the in-plane magnetic field required to fully
polarize the electron spins in the system. Bsat is found to
exhibit surprising, complex and interesting behavior as shown
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in Figs. 4 and 5. We call attention to the following notable
features:

(A) While Bsat follows the straight line behavior expected
for a Fermi liquid at high electron densities (see the dotted
red line in Fig. 5), there is a clear upward deviation from the
straight line as the electron density approaches a kink.

(B) Shown by the arrow in Fig. 5, there is an unmistakable
kink at a well-defined density nk followed by an abrupt
decrease of Bsat as the electron density is further reduced. The
kink at nk signals the occurrence of a transition at a density
that coincides with neither the zero-field critical density nc

nor its value in a magnetic field. It occurs at finite temperature
and its position varies with temperature.

(C) As the electron density is decreased into the insulating
phase, the saturation magnetic field Bsat decreases and reaches
a constant, limiting value Bld at low electron density, with a
limiting value Bld that depends on temperature.

As we will argue below, these features are consistent
with a model that considers mixed metallic and insulating
phases near the metal-insulator transition provided that the
insulating component is the phase with the lower electron
density. Indeed, local measurements of the compressibility by
Ilani et al. [17] in the interacting GaAs-based 2D system have
demonstrated the presence of an admixture of microscopic
fractions of different phases. Suggestions for such mixed
phases include an insulating component associated with a
disorder potential [18], the formation of insulating inclusions
due to density inhomogeneities [19], the formation of insu-
lating Wigner crystallites in a Fermi sea of electrons [20],
a non-Fermi-liquid two-phase state involving nonconducting
spin droplets [21,22], and mesoscopic fluctuations [23].

A. High density region

At high densities the two-dimensional electron gas is in
a Fermi-liquid phase and the saturation magnetic field corre-
sponds to the Zeeman field that fully polarizes the spin of all
the electrons corresponding to a Zeeman field that is of the
order of the Fermi energy. As a result, the saturation magnetic
field at high densities varies linearly with the total density. As
the electron density is reduced toward the kink, regions of an
insulating phase begin to form. Since the insulating regions
have density lower than the remaining Fermi-liquid regions
(with correspondingly lower saturation field), their density
will be smaller than the average density. The density of the
remaining Fermi-liquid regions will therefore be larger than
the average density (corresponding to higher saturation field).
As discussed explicitly in Appendix B, the conductivity of
the sample is determined mainly by the properties of parallel
paths through the Fermi liquid which have much higher con-
ductance than the parallel paths through insulating regions. As
a result, Bsat is determined largely by the conduction through
the Fermi-liquid regions. Since the electron density of Fermi-
liquid regions is higher than the average density, Bsat shows an
upward deviation as the average density is decreased.

B. The KINK—A transition by percolation

The upturn from linear dependence continues until the
percolation limit is reached. At this point, due to the increase

of the volume fraction of insulating regions, there no longer
exists an uninterrupted path for the electrons to travel through
the Fermi-liquid regions. All the paths connecting the two
edges through the Fermi liquid are now blocked by insulating
regions and the (much lower) conduction proceeds by hop-
ping [15]. At these densities, the Fermi-liquid and insulating
regions act as resistances in series, and the conductivity of the
sample is thus mainly determined by the lower conductivity
of the insulating regions. The insulating regions have much
lower saturation magnetic fields and the percolation transition
thus leads to a sharp drop of the saturation magnetic field.

In a nutshell, the conduction at densities above the kink
depends overwhelmingly on the conductivity of the Fermi-
liquid regions which have higher than average density, while
the conduction below the kink depends mainly on the con-
ductivity of the insulating regions, which have lower than
average density. Since the conductivity of the Fermi-liquid
and insulating regions affect the density in fundamentally
different ways, the saturation magnetic field measured through
conductance shows the abrupt kink in Fig. 4.

The kink occurs at finite temperature, its density, nk ,
changes with temperature, and nk is not the same as either the
critical density nc or its value in a magnetic field. In fact, the
electron density at which the kink occurs varies with temper-
ature; we expect that its position will depend on the tempera-
ture dependence of the volume distribution of insulating and
metallic regions. A major implication is that this transition is
not the same as the famous quantum phase transition that has
been claimed on the basis of numerous measurements in many
different dilute two-dimensional strongly interacting systems
[8–11]. Instead, we suggest it is a percolation transition that
occurs within a mixed phase system.

It should be noted that a percolation transition has been
claimed by a number of investigators, including He and Xie
[18] who proposed a percolation transition due to the disorder
landscape below a liquid-gas critical temperature; Meir [24]
who suggested a percolation transition due to finite dephasing
time at low temperature; and Das Sarma and co-workers
[19,25] who advocated a density inhomogeneity driven per-
colation transition due to the breakdown of screening in the
random charged impurity disorder background.

C. Low-density region

Clearly shown in Fig. 4, the saturation field Bsat decreases
as the density is reduced below nk and becomes constant at
a temperature-dependent low-density value Bld that decreases
with decreasing temperature. The inset to the figure shows the
low-density Bld versus temperature T . Based on the few points
available, Bsat goes linearly to zero at T = 0. By the same
token, Fig. 6 shows that Bsat is a linear function of temperature
that is consistent with Bsat → 0 at T = 0. As noted earlier,
more densely spaced data taken at lower temperatures are
needed to determine whether Bsat tends to zero in the limit
of zero temperature. The slope of these curves decreases with
decreasing density and saturates to a constant value, as shown
in the inset. The fact that Bsat versus temperature becomes
independent of the electron density at very low densities
implies that in this regime the magnetoresistance is associated
with noninteracting electrons that respond to the externally
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applied magnetic field individually and independently. That
the slope of the curves deviates from this terminal value as
the electron density is increased may be due to the onset
of electron-electron interactions. The limiting value of the
slope is the same as the temperature dependence of saturation
magnetic field for the polarization of single electrons. This
feature indicates that the conductivity at lowest densities is by
noninteracting low-density excited electrons at temperatures
well below the Fermi temperature.

D. A quantum phase transition manquée

Based on our measurements and analysis of the magne-
toconductance of strongly interacting electrons in 2D in a
high-mobility silicon MOSFET, we suggest that the system
is headed toward a phase transition between an insulating
phase at low density where Bsat → 0 in the limit of zero
temperature and a metallic phase at higher electron density
where Bsat remains finite as T → 0. However, the system
becomes unstable as the critical point is approached and
separates instead into a mixture of component phases of a
nature that has yet to be determined. Rather than approaching
a quantum critical point as the electron density is varied and
the temperature is reduced toward T = 0, the system develops
mixed conducting/insulating phases where a metal-insulator
transition occurs by percolation.

E. Comparison with earlier work

The kink we report in this paper was not observed in any
of the earlier magnetotransport measurements of Bsat as a
function of electron density [16,26–33]. While a few papers
included data for insulating electron densities [31], most of
these earlier measurements were obtained for densities on the
metallic side of the transition. Measurements in GaAs-based
systems by Yoon et al. [26] and in high-mobility SiGe by Lu
et al. [33] yielded results that are in clear disagreement with
ours. It is possible that the results we have obtained require
some degree of disorder (not too much, not too little), and that
no mixed phases are formed in the limit of zero disorder.

Based on measurements of Bsat as a function of metallic
electron densities in silicon MOSFETs, our group [16] and
contemporaneous work of Shashkin et al. [27] inferred that
Bsat extrapolates to zero at a finite critical density nc, implying
that there is a ferromagnetic instability and a quantum phase
transition at that density. By tracing Bsat carefully through
the transition region, we have now shown that, rather than
going to zero as assumed earlier, Bsat remains finite (it actually
exhibits a kink). This implies that there is no instability and
no divergence (at least at finite temperature), and thus no
evidence for ferromagnetism in this system, in agreement with
recent measurements of Pudalov et al. [34].

V. SUMMARY AND CONCLUSIONS

We have shown that the in-plane magnetic field required
to fully polarize the electrons in a strongly interacting elec-
tron system in two dimensions exhibits a clear, heretofore
unobserved, kink as a function of electron density. On the
basis of our data and analysis, we suggest that the behavior
of the 2D electron system in silicon MOSFETs is consistent

with a finite-temperature percolation transition within a mixed
electronic phase.

Our results are novel and important, and promise to open
new avenues of investigation using the behavior of the magne-
toconductance as a tool. In particular, more data at much lower
temperatures are needed to determine the position of the kink,
nk , as the temperature, magnetic field, and disorder are varied,
and to investigate the relation of nk to the critical density, nc, of
the metal-insulator transition determined from measurements
of the resistivity, thermopower, magnetic response, and other
experimental probes.
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APPENDIX A

It is illuminating to consider a cross comparison between
the data obtained for this sample with similar data obtained
earlier for a sample of lower mobility and a higher level
of disorder and higher critical density nc ≈ 9.0 × 1010 cm−2

(compared to nc ≈ 7.74 × 1010 cm−2). Shown in Fig. 7, the
square (round) symbols denote the results for the sample with
higher (lower) critical density. The points overlap nicely in
the insulating and metallic phase far from nc. Not surprisingly,
however, the behavior of Bsat near nc is shifted to reflect the
different values of the critical concentration. Clearly, the crit-
ical behavior associated with the metal-to-insulator transition
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FIG. 7. Comparison between Bsat at T = 0.27 K (black dots)
for the sample currently under study and Bsat deduced from the
conductivity data in Fig. 1(b) in Ref. [29] (red open squares); the
vertical lines show the two different critical densities nc explicitly.
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simply shifts as the critical density shifts to lower densities
for lower disorder samples, leaving the behavior far from the
transition intact. This needs to be kept in mind whenever a
comparison is made between different samples.

APPENDIX B

The general features of the model we propose rely solely on
the development with decreasing electron density of a mixed
phase composed of a Fermi liquid (or gas) and an insulating
component of lower electron density than the liquid. In order
to understand the origin of the kink in Bsat versus the electron
density ns, we need to examine the nature of the conductivity
over the entire range of electron densities, both above and
below the kink.

Many techniques have been used to calculate the con-
ductivity of composite conductors [35]. The model we pro-
pose below applies to any mixture of a conducting and an
insulating phase provided that the insulating phase has the
smaller electron density. For specificity, we choose to consider
an electronic microemulsion composed of insulating Wigner
crystals and a conducting Fermi liquid, as suggested by Spivak
and Kivelson [20,36]. We propose a simplified model that
captures the essential effect of the geometry of the crystalline
and liquid regions on the measured saturation field.

We consider the sample to be a rectangle with width D
perpendicular to the direction of the current and length L along
the direction of current. We assume the effective length of the
Fermi-liquid and Wigner crystal regions are lF and lW and
their effective widths are dF and dW , respectively. At large
densities, Bsat decreases linearly with the decrease of density,
the behavior expected for a Fermi liquid. As the density
is decreased toward nk , the Wigner crystal regions start to
emerge in the parent Fermi liquid. The Wigner crystal regions
have insulating behavior but the sample presents conducting
behavior so long as the Fermi-liquid regions are large enough
to percolate between the two edges. Assuming that the length
of the Fermi and Wigner regions are of the order of the sample
length, the conductance is through parallel Fermi-liquid and
Wigner crystal regions connecting the two ends of the sample.
The effective conductivity of the sample will then be

σ = σF
dF

D
+ σW

dW

D
, (B1)

where σW and σF are the conductance of Wigner crystal and
Fermi liquid, respectively. Since σW � σF , and assuming that
for densities above nk the Wigner crystal regions are not much
larger than the Fermi-liquid regions (dw �� dF ), Eq. (B1)
gives σ ≈ σF

dF
D and the normalized conductivity in Eq. (1)

reads

σnorm(B) ≈ �σF

�σF,Total
= σ F

norm(B). (B2)

Thus, for densities above nk , the saturation magnetic field
corresponds to that of the Fermi liquid. It is important to
understand how the emergence of Wigner crystal regions
affect the density in the remaining Fermi liquid. Since Wigner
crystals have a lower density than the parent Fermi liquid,
their formation causes the density of the remaining liquid to
increase, with a consequent deviation of Bsat upward from

straight line behavior as the kink is approached from above.
Figures 4 and 5 show such an increase of Bsat versus total
density ns as the density is decreased toward the kink.

As the density is decreased further, the fraction of the
Wigner crystal regions increases and, ultimately, there will be
no path through the Fermi-liquid regions to connect the two
edges of the sample. We suggest that the appearance of the
kink at the density nk corresponds to a percolation transition.
At densities below nk , the paths connecting the two edges
of the sample pass through Wigner crystal and Fermi-liquid
regions in series. The effective conductivity of the sample is
then given by

σ = L

D

σF σW dF

σF lW + σW lF
. (B3)

As the Wigner crystal and Fermi-liquid regions are in series,
their effective lengths cover the length of the sample, i.e., L =
lW + lF . The normalized conductivity is then

σnorm(B) =
σW (0)

σW (0)
σF (0) + lW

lF
(0)

− σW (B)
σW (B)
σF (B) + lW

lF
(B)

σW (0)
σW (0)
σF (0) + lW

lF
(0)

− σW (∞)
σW (∞)
σF (∞) + lW

lF
(∞)

. (B4)

Note that, due to the Pomeranchuk effect, the Wigner
crystal fraction over the sample depends on in-plane magnetic
field as well as temperature [20]. The dependence is explicitly
presented in Eq. (B4) as lW

lF
(B).

To understand the kink in Bsat versus the total density ns

curve, we need to examine the conductivity given by Eq. (B4)
for densities slightly smaller than the kink. In this case, the
size of the Wigner crystals is small (lW � lF ) such that σW

σF
�

lW
lF

and the difference between the normalized conductivity of
the Fermi liquid and the normalized conductivity of the whole
sample is approximately

σ F
norm(B) − σnorm(B)

σ F
norm(B)

≈
[
σF (0)2

σW (0)

lW
lF

(0)

(
1

σF (0) − σF (B)
− 1

σF (0) − σF (∞)

)

− σF (B)2

σW (B)

lW
lF

(B)

σF (0)−σF (B)
+ σF (∞)2

σW (∞)

lW
lF

(∞)

σF (0)−σF (∞)

]
.

(B5)

It can be readily seen from Eq. (B5) [or Eq. (B4) for
that matter] that when lW → 0, the normalized conductivity
σnorm(B) approaches the normalized conductivity of the Fermi
liquid [σ F

norm(B)], as was the case for densities larger than the
kink density. This leads to the continuity of Bsat versus density
at the kink density nk .

As for the change of the slope of Bsat versus density at nk ,
we can see from Eq. (B5) that, as the density is decreased
below nk , the normalized conductivity starts to deviate from
that of the Fermi liquid.

We now show that σ F
norm(B) > σnorm(B). As discussed in

Ref. [20], at low enough temperature and for magnetic fields
of the order of saturation magnetic field, the volume fraction
of Wigner crystal is of the order of the volume fraction for
infinite magnetic field [i.e., lW

lF
(Bc) ≈ lW

lF
(∞)]. Equation (B5)
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then simplifies to

σ F
norm(B) − σnorm(B)

σ F
norm(B)

=
[
σF (0)2

σW (0)

lW
lF

(0) − σF (∞)2

σW (∞)

lW
lF

(∞)

]

×
[

1

σF (0) − σF (B)
− 1

σF (0) − σF (∞)

]
. (B6)

Here σF (B) is a decreasing function of B and its value at
B = 0 is 2σF (∞). The conductance of Wigner crystals is not
sensitive to the applied magnetic field. If the magnetic-field-
induced increase of lW due to the Pomeranchuk effect is not

too large [i.e., lW
lF

(∞) < 4 lW
lF

(0)], which we expect at least for
low enough temperatures [20], the value given by Eq. (B5)
is positive. As a result, σnorm(B) = 0.99 is achieved at a
magnetic field which is less than the saturation magnetic field
of the Fermi liquid. This result explains the rapid decrease of
Bsat versus density at nk which corresponds to a percolation
transition in the mixed phase.

At the lowest densities, the insulating phase covers the
whole sample. As a result, the conduction is by individually
excited electrons which effectively form a low-density gas. In
this limit, the effect of the Zeeman field is to polarize the spin
of individual electrons and we can readily show that the slope
of the saturation magnetic field versus temperature is the same
as for individual electrons.
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