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Nonequilibrium charge transport through Falicov-Kimball structures connected to metallic leads
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Employing a combination of a sign-problem-free Monte Carlo approach and nonequilibrium Green’s-function
techniques, we study nonequilibrium charge transport in a model heterostructure, where a two-dimensional
spinless Falicov-Kimball system is coupled to two noninteracting leads. We show that the transport characteristic
depends sensitively on the electrostatic potential in the system and exhibits different properties for different
phases of the Falicov-Kimball model. In particular, pronounced steplike changes of the current and transmission
are observed at the phase boundaries, evident even on a logarithmic scale. Analyzing finite-size effects, we find
that with the method used a relatively small system can be utilized to address specific thermodynamic limits.
Phenomenon of the localization is discussed as well.
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I. INTRODUCTION

The study of strongly correlated electron systems (SCESs)
has been a field of intensive research for several decades. In
recent years, the investigation of out-of-equilibrium phenom-
ena has received particular attention. Experimental studies in
this context comprise a variety of different techniques and
architectures including time-dependent problems in quantum
dots [1–8], molecular bridges and nanowires [9–14], layered
systems, junctions, and heterostructures [15–18], as well as
dynamics of quenched cold atoms in optical latices [19–22]
or ultrafast electronics [23–25] and pump-probe experiments
on charge density wave (CDW) materials [26–28]. Theoretical
investigations have focused on open questions related, e.g., to
the formation of nonthermal steady state [29,30], dynamical
phase transitions, and hidden metastable phases revealed by
driving [31–35] as well as to the evolution of open quantum
systems in general [36,37].

To study these open questions, a variety of theoretical
methods have been employed. Some of them are rather
versatile, e.g., methods based on nonequilibrium Green’s
functions [38–41]; however, they often rely on significant
approximations, which limit their validity to certain parameter
regimes, such as, e.g., weak coupling [42–44]. Other methods,
e.g., nonequilibrium dynamical mean-field theory (DMFT)
[45,46], require so-called nonequilibrium impurity solvers
[47–54]. Although there is rapid progress in the development
of these solvers, their application is still numerically very
demanding. Especially challenging is the study of long-time
evolution including nonequilibrium steady-state properties.
It is, therefore, important to study special cases of SCES
models, which can be addressed by less demanding but still
exact methods. The results of such studies not only help
us to gain a deeper understanding of nonequilibrium phe-
nomena but can also serve as testing tools for addressing
more challenging systems. An example of such a model,
which in recent years played an important role in the stud-
ies of nonequilibrium SCESs, is the Falicov-Kimball model
(FKM).

The spinless version of the FKM was initially introduced
as a limiting case of the Hubbard model, where one electron
species is localized [55]. Later, but independently and with
spin degrees of freedom, the model was used for the metal-
insulator transitions in rare-earth and transition-metal com-
pounds [56]. The FKM has been used successfully for the de-
scription of numerous equilibrium phenomena (for overviews
see Refs. [57–60]), for different properties of layered systems
[61–64] and for problems related to transport, time evolution,
and nonequilibrium steady states [31,65–72]. From the con-
ceptual point of view, the most profound advantage of the
FKM is the fact that it is exactly solvable in the limit of
infinite dimension (infinite coordination number) by means
of DMFT [73] and that for finite lattices it can be addressed
by an exact, sign-problem-free Monte Carlo (MC) method
[74–77]. In addition, both these methods can be extended
to nonequilibrium without the necessity to introduce any
approximation [45,46,72,78].

In the present paper, we introduce a combination of
the sign-problem-free MC method with a nonequilibrium
Green’s-function technique, which allows us to address the
nonequilibrium steady state of a composite structure consist-
ing of a finite FKM system (or its various generalizations) and
infinite leads. An important advantage of this method is that
it can be applied to any lattice geometry and particle filling
in finite dimension. The only limiting factor is the total size
of the system. The method is therefore especially useful for
lattices with only few atomic layers in one or two directions
(layered systems) connected to semi-infinite leads [61,79].
For such geometries, the method can describe large enough
systems to approach the thermodynamic limit.

Inspired by the recent rapid progress in understanding
the equilibrium and nonequilibrium properties of the two-
dimensional (2D) FKM [67,72,80,81] we primarily concen-
trate on charge transport through finite square FKM lattices
driven by voltage differences of the lead potentials (for il-
lustration see Fig. 1). Our focus is on how different phases
of the FKM influence the transport characteristics and how
the nonequilibrium steady state influences the typical phases
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FIG. 1. (a) Schematic picture of the heterostructure. The black
part represents the FKM system with nearest-neighbor hopping t .
The red parts are noninteracting leads with hopping tL,R and the
hybridization interaction with hopping γL,R is indicated in blue. (b,
c) Illustration of the introduced voltage bias with two limiting cases
of the potentials taken into account in the present paper. The elliptic
DOSs of the leads are shifted by εL,R and the condition μL,R = εL,R is
used to keep the bands half filled at any applied voltage. The system
potential used is either (b) flat εflat = −U/2 or (c) tilted εtilt(see the
text).

of the FKM. Although, in the present paper, we primarily
concentrate on square lattices, we show that the results are
also valid for more general layered systems.

The rest of the paper is organized as follows. In Sec. II,
we introduce the model and outline the methodology. In
Sec. III we discuss two different choices of the electrostatic
potential in the system. We analyze the equilibrium properties
of the FKM necessary for understanding the nonequilibrium
steady state for the two choices in Secs. III A 1 and III B 1.
In Secs. III A 2 and III B 2 the respective transport properties
of the FKM are analyzed. We show that the potential has a
crucial effect on the transport properties and that the current is
very different in the ordered and disordered phase. The effects
of the system size are discussed in Secs. III A 3 and III B 3.
Section IV concludes with a summary.

II. MODEL AND METHOD

We consider a composite structure consisting of a large but
finite central system described by the spinless FKM and two
infinite leads. The Hamiltonian of this heterostructure reads
H = HS + ∑

l=L,R Hl
lead + Hl

hyb [for illustration see Fig. 1(a)],
where

HS = −
∑
i, j

ti jd
†
i d j + U

∑
i

f †
i fi d†

i di

+
∑

i

εd
i d†

i di +
∑

i

ε
f
i f †

i fi (1)

represents the central system.
Here, the first term describes spinless electrons moving on

a lattice. The geometry of the lattice and the hopping ampli-
tudes are defined by the hopping matrix t. In the present paper,
we focus on square lattices with a constant nearest-neighbor
hopping amplitude t . We assume periodic boundary condi-
tions at the edges perpendicular to the system-lead interface.
This mitigates the finite-size effects in the y direction. Most
of the results presented below have been obtained for lattice
size L = Lx × Ly = 20 × 20. Nevertheless, the method can be
used for any Hermitian matrix t. The second term represents
a Coulomb-like local interaction between the localized f

particle and itinerant d electron on the same lattice site. The
last two terms describe the position-dependent potentials that
act on both particle species. This potential can be, in principle,
influenced by the leads and, depending on the interpretation
of the FKM, can differ for f and d particles [82]. However,
throughout this paper we will assume that the f particles
are also spinless electrons and are, therefore, affected by
the potential equally as d electrons. Correspondingly, we set
ε

f
i = εd

i . This choice is advantageous with respect to the
interpretation of the FKM as a limiting case of the Hubbard
model [55]. Moreover, we fix the number of f particles to
Nf = L/2. This reflects the fact that only d electrons are
directly coupled to the leads, which act as infinite reservoirs,
and that the model does not contain a hybridization between
the two particle species. The specific profiles of the potential
are discussed in Sec. III.

The leads are taken to be noninteracting:

Hl
lead = −tl

∑
〈m,n〉

(c†
l,mcl,n + cl,nc†

l,m) + εl

∑
n

c†
l,ncl,n, (2)

where 〈m, n〉 is a sum over the nearest-neighbor sites; tl is the
hopping for lead l = L, R; and εl represents an energy shift.
Finally, the hybridization between lead l and the system is
described by the term

Hl
hyb = −γl

⎛
⎝∑

〈i,n〉
c†

l,ndi + d†
i cl,n

⎞
⎠, (3)

with γl being the corresponding hopping parameter. We as-
sume that the hybridization is turned on adiabatically starting
in the distant past with a decoupled state, where both leads and
system had been in thermal equilibrium. Note that the initial
conditions play an important role because the FKM is an
integrable model with the occupations of the f particles being
integrals of motion [83]. The importance of initial conditions
was already demonstrated in nonequilibrium DMFT studies
of the time evolution of the FKM after a quench [66]. We
partially address this problem by using two different system
potentials.

It is advantageous to rewrite the full model in a different
basis using the fact that the f -particle occupation numbers
f †
i fi commute with the entire Hamiltonian and are thus

good quantum numbers. This allows us to replace f †
i fi by

its eigenvalues wi = 0 or 1 and write a partial Hamiltonian
for a particular classical configuration w. This significantly
simplifies the problem. The system Hamiltonian for a chosen
configuration w reads

Hw
S =

∑
i, j

hi jd
†
i d j +

∑
i

ε
f
i wi =

∑
α

ε̃α d̃†
α d̃α +

∑
i

ε
f
i wi,

(4)

where hi j = (Uwi + εi )δi j − ti j and where we have diago-
nalized the first term by formally applying a simple unitary
transformation:

di =
∑

α

Uiα d̃α, d†
j =

∑
β

d̃†
βU

†
βi,

with ε̃α being the eigenvalues of matrix h and where matrix
U consists of the related eigenvectors arranged in columns.
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The matrix U can be computed numerically for a finite system
and it can be chosen to be real. We can formally apply an
equivalent transformation also to lead terms

cl,n =
∑

k

Vl,nk c̃l,k, c†
l,n =

∑
k

c̃†
l,kV

†
l,kn,

leading to

Hl
lead =

∑
k

ε̃l,k c̃†
l,k c̃l,k, (5)

Hl,w
hyb =

∑
α,k

γ̃l,kα c̃†
l,kd̃α + γ̃

†
l,αkd̃†

α c̃l,k, (6)

where γ̃l,kα = −γl
∑

〈i,n〉 V
†
l,knUiα keeps track of the actual

geometry of the system-lead interface and therefore cannot be
taken constant.

The transformed Hamiltonian (4)–(6) describes a relatively
simple noninteracting model where both the “level” energies
ε̃α and the hybridization strength γ̃l,αk are functions of the
configuration w. The nonequilibrium transport in this kind of
models is a well-studied problem [84] and the exact form of
the steady-state Green’s functions is given by [38]

Gr,a(E ) = gr,a(E ) + gr,a(E )�r,a(E )Gr,a(E ), (7)

G<(E ) = Gr (E )�<(E )Ga(E ). (8)

Here, Gr (a) is the retarded (advanced) Green’s function of
the whole structure, G< is the lesser Green’s function, and
gr (a)(E ) is the retarded (advance) Green’s function of the bare
system with components

gr,a
αβ (E ) = δαβ

E − ε̃α ± i0
. (9)

The total tunneling self-energies �r,a,< = �r,a,<
L + �r,a,<

R
have the components

�r,a,<
l,αβ

(E ) =
∑

k

γ̃ ∗
l,αkgr,a,<

l,k (E )γ̃l,kβ,

where gr,a,<
l (E ) is the noninteracting Green’s function of the

isolated lead l . To simplify the analysis, we assume leads
with zero hopping in the direction parallel to the system-
lead interface, i.e., the leads consist of identical semi-infinite
chains with hopping tl . The exact self-energies for this choice
of leads can be found analytically [85,86] and read

�r,a
l,αβ

(E ) = 	l,αβ (E ) ∓ i

2

l,αβ (E ),

�<
l,αβ (E ) = i
l,αβ (E ) fl (E − μl ),


l,αβ (E ) = 2πγ 2
l U

{sl }
αβ ρl (E ),

	l,αβ (E ) = 2γ 2
l

B2
U {sl }

αβ (E − μl ),

U {sl }
αβ =

∑
i ∈ {sl}

U†
βiUiα, (10)

where {sL,R} are the sets of system lattice positions at the left
and right interfaces, fl (E ) is the Fermi function, and μl=L,R is

the chemical potential of the leads. The leads are characterized
by a smooth surface density of states (DOS):

ρl (E ) = 2

πB2

√
B2 − (E − εl )2,

with band half width B = 2tl centered around εl .
The tunneling current for fixed configuration w has a

compact Landauer-Büttiker form [38]:

Iw =
∫

dE

2π
T w(E )[ f (E − μL ) − f (E − μR)], (11)

with the transmission function

T w(E ) = Trd [�L(E )Gr (E )�R(E )Ga(E )], (12)

where the trace goes over the d-electron subsystem. In the
following we set μL = εL and μR = εR, which corresponds to
half-filled lead bands, and we introduce a finite voltage drop
as V = μL − μR with condition μL = −μR.

It is worth noting that the numerical solution of Eq. (7),
which represents a system of linear equations for complex
matrices of the size L × L, together with the matrix mul-
tiplication in Eq. (12), present the bottleneck for the nu-
merical evaluation. This is because, despite the broaden-
ing provided by the self-energy, the Green’s functions can
still contain sharp δ-function-like features, especially at low
temperatures and for strong interaction U . The evaluation
of the current therefore requires a dense mesh of energies
E [see, e.g., Fig. 6(h)]. Fortunately, this part can be easily
parallelized.

So far, we have addressed only the problem for a fixed con-
figuration w. The calculation of average values of any operator
Ô for the d electrons requires a trace over the f particles
as well. Considering the above stated initial condition and
assuming that the leads are not affected by the system, the
trace over the classical degrees of freedom reduces to a simple
formula:

〈Ô〉 = 1

Z

∑
w

e−βF (w)〈Ô〉d , (13)

where

F (w) = − 1

β

∑
α

ln[1 + e−βε̃α ] +
∑

i

ε
f
i wi, (14)

with Z = ∑
w e−βF (w) being the partition function and 〈.〉d

being the trace over the d-electron subsystem for fixed w [74].
E.g., the total (bulk) DOS of the isolated system is defined as
DOS(E ) = Trw

∑
α δ(E − εα )/L and the DOS of the coupled

heterostructure is defined as DOS(E ) = TrwTrd i[Gr (E ) −
Ga(E )]/2πL, where Trw ≡ 1

Z

∑
w e−βF (w). Calculation of the

averages of operators which reflect the real-space distributions
requires us to retrace the unitary transformation. For example,
the average d-electron occupation on a particular site i of a
coupled system is given by

〈
ni

d

〉 = −iTrw

∫
dE

∑
α,β

UiαU†
βiG

<
αβ (E ), (15)
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and the local density of states (LDOS) can be calculated using

LDOSi(E ) = i

2πL
Trw

⎡
⎣∑

α,β

UiαU†
βiG

r
αβ (E )

−
∑
α,β

U†
αiUiβGa

αβ (E )

⎤
⎦. (16)

The power of this approach lies in the fact that the averaging
in Eq. (13) can be performed by a simple sign-problem-free
Monte Carlo method [74–77]. In this method, the classical
configuration w is updated following the Metropolis algo-
rithm, where the difference in the free energy, Eq. (14), for
different w is used to build a Markov chain. To obtain the free
energy a single-particle quantum problem is solved exactly in
every Monte Carlo step by numerical diagonalization, which
can be done efficiently [87]. It is worth noting that this method
is not limited to the equilibrium or steady state as the time
evolution is accessible as well [72].

Because of the broadening of the Green’s functions, pro-
vided by the coupling to the leads, we can also calculate the
zero-temperature characteristics. In this case, the Monte Carlo
averaging can be avoided. All that is needed is the correct f -
electron ground-state configuration. We calculate the ground
states using a simple simulated annealing method [88], which
is similar to the Monte Carlo method presented here, with the
difference that the ground-state energy EGS(w) = ∑Nd

α=1 ε̃α +∑
i ε

f
i wi for a particular configuration is used instead of F (w)

to calculate the weights in the annealing process.

III. RESULTS

Because of the vastness of the parameter space we have
restricted the present paper to symmetric couplings of γ =
γL = γR = 2t and 4t . These values provide a sufficient broad-
ening of the transmission function even for zero temperature
(T = 0). We also use relatively broad DOSs for the leads
with the half width B = BL = BR = 10t or 20t , which are,
however, still narrow enough to study the effects related to
a finite band.

As already stated, the profiles of εd and ε f can be in-
fluenced by the leads and should be, in general, calculated
self-consistently. Following Ref. [89] we instead consider two
limiting cases: a flat potential, where εflat

i = εd
i = ε

f
i = −U/2

[Fig. 1(b)] for every lattice point i, and a tilted potential
εtilt

i = εd
i = ε

f
i = −U/2 + nx(εL − εR)/(Lx + 1) [Fig. 1(c)],

where nx numbers the layers from left to right. Note that
for the purpose of this paper we use the term “layer” for
a single chain parallel to the interface (y direction). Both
potential profiles are centered around −U/2. This choice fixes
the half-filling condition at zero chemical potential for the
whole system but not in every particular layer. We assume
that the realistic profile should be in between these two cases.
These two choices can be also understood as two different ini-
tial conditions. This follows from the fact that the f electrons
are integrals of motion. Their distribution is fixed by the initial
thermalization. The flat potential describes a situation where
the system was initially completely isolated from the leads

and for the tilted potential the voltage drop heavily influenced
the system potential before the coupling was switched on.

A. Flat potential

We start our analyses with the flat electrostatic potential,
which we suppose is more realistic than the tilted one, at least
for a large system. Our primary goal is to address two rather
general questions, namely, how the coupling to the leads and
the finite voltage influence the phases of the FKM and how
these phases, if still present, influence the charge transport
in the heterostructure. Therefore we first discuss the phase
diagram of the spinless FKM.

1. Phase diagram and equilibrium properties

The general phase diagram of the spinless FKM is pro-
foundly rich and includes stable exotic orderings such as
stripes and various charge segregations [60,76,90,91]. More-
over, the phase diagram is fairly complicated even at half
filling, where the FKM with flat potential is at low temperature
always in the CDW phase for any bipartite lattice [75,92–95].
In Fig. 2(a), a simplified version of the phase diagram is
plotted for an isolated 2D FKM system. The three main
regions that are crucial for our study of transport are the
low-temperature ordered phase (OP), the disordered phase
for weak interaction (DPw), and the disordered phase for
strong interaction (DPs). The equilibrium d-electron DOS
in OP [Fig. 2(e)] contains a CDW gap with a width equal
to U at zero temperature. The width of the CDW gap does
not change with increasing temperature, but rather the gap
is filled in by subgap states [96–98]. The gap is completely
closed in DPw [Fig. 2(c)] and a narrower Mott gap stays open
between Hubbard-like bands in DPs [Fig. 2(d)]. Nevertheless,
a CDW pseudogap can be present in the DOS even at high
temperatures.

Because of the absence of the gap in the DOS [Fig. 2(c)],
the DPw was initially considered to be metallic in two dimen-
sions [74,75], but recent studies on bigger clusters showed
that in the thermodynamic limit it is actually an Anderson
insulator phase and that for any finite system the DPw also
contains a crossover from the Anderson insulator to a broad
weak localization phase at weak interactions [80,99].

It is worth noting that the phase diagram is in principle
even more complicated. For example, for some parameters it
is possible to have a CDW gap in the DOS but a nonzero DOS
at the Fermi level [96,98,100]. Here we focus on the phases
mentioned above.

We first investigate the influence of the leads in equilib-
rium. The phase boundary between OP and disordered phases
is not affected by finite γ . This is because the phase transition
is mostly driven by the ordering of f particles and, as their
occupations are integrals of motion, the full system always
keeps the thermalized f -particle distribution of the decoupled
system. This is, however, not necessarily true for the DPs-
DPw phase boundary, which mostly reflects the transition
from finite to zero gap in the DOS of d electrons.

We show a comparison of the total DOS at the Fermi level
(E = 0) for the isolated and coupled system (with γ = 2t) in
Fig. 2(b). It is evident that the coupling closes the Mott-like
gap otherwise clearly developed in the DPs. The reason is
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FIG. 2. (a) Simplified phase diagram of the isolated system with
ordered phase (OP) and disordered phases in weak (DPw) and strong
(DPs) interaction regimes. The lines represent phase boundaries for
the flat potential εflat . The dots show an estimate for εtilt at V = 5t ,
taken from the position of the maxima of the approximated specific
heat [74] for L = 20 × 20. (b) Equilibrium d-electron DOS at E =
0 for coupled (red) and decoupled (blue) systems calculated in the
vicinity of DPw-DPs transition for the flat system potential for T =
1t and plotted as a function of U . (c–e) Illustration of the typical
d-electron DOS for DPw (c), DPs (d), and OP (e) from the phase
diagram (a). Blue lines have been calculated for the isolated system,
and red and green lines in (c) have been calculated for the coupled
system. (f) Local DOS of the coupled system at equilibrium for the
first three system layers parallel to the interface. (g) Local DOS of
the coupled system calculated at the Fermi level for all system layers
and various values of U in the Mott regime. In all cases the system
size is L = 20 × 20.

the leaking of the leads’ metallic densities of states into the
system. This is illustrated in Fig. 2(g), where we plot the
LDOS calculated for the first three system layers parallel
to the interfaces. The LDOS of the first layer (blue line) is
strongly broadened by the coupling. The effect quickly van-
ishes with increasing distance from the interface. The decay
is exponential for strong interaction, which is in compliance
with DMFT studies [58,61]. We show this in Fig. 2(g), where
we plot the dependence of LDOS(E = 0) on the distance
from the left interface for L = 20 × 20 and three values of
U . The leaking of the leads’ DOS into the system is the
dominant contribution to the LDOS(E = 0) for strong inter-
action [Fig. 2(g)], because there the Mott-like gap is clearly
developed for the isolated system even for finite lattice sizes.
Therefore, the exponential decay of the LDOS(E = 0) with
the distance from the interfaces reflects directly the vanishing
influence of the leads. Note that the decay clearly depends on
U and it is therefore more complicated for intermediate and
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FIG. 3. (a–c) The generalized inverse participation ratio calcu-
lated for the coupled system and for different U and L. The results
plotted in (a) are multiplied by L and in (b, c) are multiplied by
Ly. (d–f) The size scaling of the generalized inverse participation
ratio at the Fermi level in three regimes discussed in the main text.
(g) The generalized inverse participation as a function of U for dif-
ferent temperatures and L = 20 × 20. All figures show equilibrium
state (V = 0) with coupling γ = 2t and half bandwidth of the bands
set to B = 10t .

weak coupling where, in addition, the gap is not yet opened
even for a decoupled system. It is therefore challenging to
analyze quantitatively the effect of the leads on DPs-DPw
transition. Nevertheless, we will readdress the question in the
next section, where we discuss the transport properties.

The broadening of the DOS of the coupled system allows
us to define the averaged generalized inverse participation
ratio (gIPR) [101,102]

gIPR(E ) = Trw

∑
i LDOS2

i (E , w)

DOS2(E ,w)

for the coupled system without the necessity to regularize the
possible δ functions. The inverse participation ratio and its
generalization are used for the identification of localization
in isolated strongly correlated electron systems in equilibrium
[101–103]. Here we show that it can be useful also for the
analysis of an open system.

The gIPR scales as 1/L for completely itinerant system
states. Considering the exponential decay of the influence of
the lead DOS shown in Fig. 2(g), the ratio scales as ∼1/Ly

for energies within the gap as here the dominant contribution
comes from the interfaces. The ratio should converge to a
finite value with increasing L for localized system states and
should be constant for a sufficiently large system and strong
localization. The inverse participation ratio is therefore ideal
for studying the complicated transition from the Fermi gas at
U = 0 to the Mott-like phase for U � 6t [80].

Figure 3 shows an analysis of the gIPR for the coupled
system in equilibrium. Figures 3(a)– 3(c) depict its energy
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dependence for weak (U = 1t), intermediate (U = 5t), and
strong interaction (U = 8t) and different lattice sizes. For
weak interaction the gIPR scales as ∼1/L [note that the data
in Fig. 3(a) are multiplied by L] for a broad range of energies
around zero and significantly deviates from this scaling only
for energies outside the range of the isolated-system DOS
where the main contributions come from the leads’ broad-
ening. This is shown also in Fig. 3(d), where we plot the
scaling of the gIPR at the Fermi level for small U . The value
of gIPR(E = 0) × L is practically constant for U � t and one
can conclude that in this region the states are predominantly
delocalized for a finite number of layers.

For strong interaction U [Figs. 3(c) and 3(f)], gIPR scales
as 1/Ly in the region of the Mott gap, as well as for energies
outside the full width of the DOS of the isolated system, as
expected for a gapped system. The scaling in the intermediate
interaction region (3t � U � 6t) is not that straightforward.
The dependence of gIPR(E = 0) on U shows a maximum
in this region evident in Fig. 3(g) and the scaling [Fig. 3(e)]
seems to point to a finite value of gIPR(E = 0) in the thermo-
dynamic limit. Both these results indicate an Anderson-like
localization for states near E = 0 which is in compliance with
a previous study of the isolated system by Antipov et al. [80].
However, a more thorough analysis on a significantly larger
system is necessary to confirm this conjecture.

Note that the change of the temperature does not play a
significant role if T is much higher than the critical temper-
ature Tc(U ) of the order-disorder transition [Fig. 3(g)]. How-
ever, this changes when the temperature approaches Tc. The
sensitivity of gIPR(E = 0) on temperature is most notable
in the intermediate interaction regime. Nevertheless, we can
conclude that all main phases of the FKM are still present
even for the coupled heterostructure, which includes different
localization regimes in the DPw.

2. Transport properties

We start our discussion of the transport properties for the
flat potential by considering a finite L = 20 × 20 system and
first explain its most important features. Only afterwards we
discuss the effects of the system size on the transport in detail
(Sec. III B 3).

The real-space distribution of the d electrons of the decou-
pled system either is homogeneous or forms a CDW pattern.
In both cases the flat potential fixes the average d-electron
occupancy to Ly/2 for every layer. The nonequilibrium dis-
tribution of the coupled system shown in Fig. 4 is somewhat
different. Following the respective chemical potential of the
coupled leads, the distribution is elevated or lowered close
to the interface for T = 0. In the central region, the distribu-
tion approaches Ly/2. At high temperatures, the normalized
occupations for very high voltage have nearly a linear slope
(see the open black circles in Fig. 4). A significant spatial
difference at high voltage can be seen also in the LDOS shown
in Figs. 4(c) and 4(d). The shifted leads’ surface densities of
states ρL(E ) and ρR(E ) broaden the system LDOS asymmetri-
cally. As expected, the effect is most notable at the interfaces.
For example, the part of the system LDOS located outside the
width of ρl (E ) of the neighboring lead is broadened only by
the temperature.
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FIG. 4. (a, b) Normalized d-particle occupations per layer paral-
lel to the system-lead interfaces for a coupled system with γ = 2t ,
B = 10t , flat system potential, with interactions (a) U = 2t and
(b) U = 5t . The filled circles show the zero-temperature results for
various V . The open circles represent the high-temperature result for
T = 1t and V = 10t . (c, d) The nonequilibrium LDOS calculated
at the interfaces and central part of the system for high temperature
(T = 1t) and high voltage V = 10t .

Figure 5 shows examples of I-V characteristics of
the FKM system for three values of U which, accord-
ing to Fig. 2(a), represent the weak-interaction (U =
2t), intermediate-interaction (U = 5t), and strong-interaction
(U = 10t) case. The results in Figs. 5(a)–5(c) have been
calculated using the coupling γ = 2t and a bandwidth of B =
10t . The current in Fig. 5(d) was obtained for the same ratio
γ /B but a broader band, B = 20t . The two high-temperature
cases T = 1t and 0.2t illustrate how the decreasing
temperature influences the transport in the disordered phases.
Temperature T = 0.1t addresses the transport just below the
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FIG. 5. Current-voltage characteristics for flat system poten-
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and (d) U = 10t , B = 20t . Note that the curves for the two lowest
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FIG. 6. (a–g) Transmission function for the flat system potential
for coupling γ = 2t , band half width B = 10t , and different values
of U , T , and V . (h) Detail of the Hubbard-like satellite for γ = 4t ,
band half width B = 20t , and strong interaction U = 10t plotted for
the V = 0t and 20t cases.

phase boundary and T = 0t shows the system without ther-
mal excitations. To understand the I-V characteristics, we
also present in Fig. 6 the related transmission functions for
selected voltages. The transmission functions are particularly
useful as they contain the most detailed information about
elastic transport. The nonequilibrium transmission for small
V resembles the equilibrium DOS. Similarly to the total DOS,
and despite the strong modulation of the LDOS [Figs. 4(c)
and 4(d)], the transmission function changes significantly
with voltage only when V � B [see, e.g., case V = 15t in
Figs. 6(a), 6(d) and 6(g)]. However, the most important fea-
tures considering transport are much more pronounced in the
transmission function than in the DOS or LDOS already in
equilibrium. This is particularly true for the pseudogap around
E = 0, which is evident even for high temperature and weak
interaction [cf. Figs. 4(c) and 6(a)]. A similar statement is
true also for the typical subgap structures for intermediate and
strong interaction [Figs. 6(b) and 6(c)]. This suggests that the
f -electron configurations responsible for the closing of the
CDW gap at high temperatures have low transmission which
can be again attributed to a significant localization of the
d electrons.

Most of the features of the current can be understood by
following the two windows confining the integration over the
relevant part of the transmission function in Eq. (11). The first
one is the Fermi function window, the width of which is pro-
portional (and at zero temperature identical) to V . The second
one is the band window W = 2B − V [see Fig. 1(b)], which
restricts the width of the transmission function [Eq. (10)].

The basic profile of the current for T = 1t is quite similar
for all values of U . The current increases up to V ∼ B and
then decreases to zero. The increase of the current reflects

the broadening of the Fermi function window. Around V = B
the two windows change their roles because for V > B it
holds that W < V and the decrease of the current reflects the
decrease of W . This is a typical effect of the finite bandwidth
of the leads, but their shape and the width of the DOS of the
isolated system play a role as well.

As expected, the maximal current decreases with increas-
ing U because the d electrons become more localized. How-
ever, whereas the current maximum is increasing with de-
creasing temperature for U = 2t and 5t , it seems to rapidly
vanish for U = 10t in Fig. 5(c). This is again a direct con-
sequence of the finite bandwidth of the leads. For U = 10t ,
V > 10t , and B = 10t and regardless of the broad Fermi
window, the transmission function fenced by W covers only
the sub-CDW gap structures in Figs. 6(c) and 6(f), which
vanish with decreasing T . Therefore, the current drops rapidly
with decreasing T and also for V > B. To analyze the in-
fluence of the Hubbard-like satellites on the current in the
strong-interaction regime, we have calculated the current also
for broader bands B = 20t while keeping the ratio γ /B = 0.2
[see Fig. 5(d)]. The results confirm the trend of increasing the
current maximum with decreasing temperature.

An opposite trend can be observed in the region where V <

U (and V ∼ 2B). For U = 2t , T = 1t , and small voltages, the
current depends approximately linearly on V but decreases
with both increasing U and decreasing T . The decrease is
a consequence of the opening and deepening of the CDW
pseudogap with decreasing temperature and opening of the
Mott pseudogap with increasing U in the transmission func-
tion. This can be seen in Fig. 6(g), where the transmission
function is almost negligible in the interval |E | < U/2 already
for T = 0.1t and even at weak interaction. The increase of
the Fermi window to V ∼ U leads to a sharp increase of the
current in Fig. 5 as now the window covers the states outside
the CDW gap as well.

We illustrate the different trends in different voltage re-
gions again in Figs. 7(a) and 7(b), where we show the current
as a function of the temperature for voltages V � U and
V ∼ B (close to optimal voltage with maximal current). The
opposite trends are clearly demonstrated for temperatures near
and below the DP-OP transition. For V � U , the current
drops around the critical temperature. This change is steplike
for weak interaction (where the high-temperature phase is
DPw) and gradual on the logarithmic scale otherwise. On the
other hand, the current increases dramatically just below the
critical temperature for V ∼ B. Interestingly, this means that
the current can signal the order-disorder phase transition of
the system differently for low and optimal voltage.

This result can be understood by focusing on three tenden-
cies. First, the Fermi window becomes sharper with decreas-
ing temperature, which puts more “weight” on the transport
through the central regions of the DOS. The second tendency
is that the Hubbard-like maxima in the transmission function
are becoming narrower and higher with decreasing temper-
ature [cf. Figs. 6(c) and 6(h)]. The sharp Fermi window,
therefore, ensures a sharp increase of the current in the interval
of voltage that covers the Hubbard-like satellites. This is
most profoundly seen in Fig. 5(d). For zero temperature, the
current sharply increases in the range U < V � 13t , which
covers exactly the Hubbard-like satellites in the transmission
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V = 1t and 10t . (d) Transmission function at E = 0 as a function of
U for T = 1t and V = 0 and 10t .

function [see the detail in Fig. 6(h)]. For higher voltages, the
current decreases. This is initially caused by a small decrease
of the transmission function shown in Fig. 6(h) but mostly
by closing of the band window W . The third tendency is the
rapid disappearing of the CDW in-gap states with decreasing
temperature. For small voltages (V < U ) and low tempera-
tures, this leads to a drop in the current. The difference in
the temperature dependencies between the weak and strong
intersection reflects the fact that for strong interaction there
is already a Mott gap in the DOS even above the critical
temperature.

We can therefore conclude that the three typical phases of
the 2D FKM have a qualitatively different influence on the
charge transport properties reflected in current characteristics.
Moreover, the transition between the phases can be seen
directly from the transmission function. We illustrate this in
Figs. 7(c) and 7(d), where the transmission function at E = 0
is plotted as a function of temperature (c) and U (d). Note
that at equilibrium the transmission function is qualitatively
equivalent to the conductance and it is relatively insensitive to
voltage at E = 0 [see the overlap of the curves in Figs. 7(c)
and 7(d)]. Therefore, the sudden drop of the transmission
over several magnitudes that signals the critical temperature
in Fig. 7(c) points to a qualitative change in the character
of transport between DPw and OP. Even more interesting is
the exponential drop of the transmission with increasing U in
Fig. 7(d). Although the total nonequilibrium DOS plotted in
Fig. 2(b) shows that the Mott gap in DPs is closed by coupling
to the leads, the drop of the transmission function points to a
similar critical U as the DOS of the decoupled system even
after introducing a relatively high voltage (V = 10t). This
reflects the rapid decrease of the influence of the leads on
the LDOS [Figs. 2(g) and 2(h)] with the distance from the
interface. Consequently, the DPw-DPs phase boundary seems
to be unaffected by the coupling to the leads and clearly
manifests itself in the transport properties.
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FIG. 8. Current densities plotted (a) as a function of voltage for
a system with fixed Lx = 20 and different Ly and T = 1t ; (b) as a
function of voltage for a system with fixed Ly = 20 calculated for
different numbers of layers Lx and T = 1t ; (c) as a function of inverse
linear size 1/Ly for Lx = 20, γ = 0.2B, U = 2t , U = 10t , optimal V ,
and zero temperature, where the current density for U = 10t , T =
1t was multiplied by 10 for the sake of clarity; (d) as a function of
inverse linear size 1/Lx for a system with fixed Ly = 20, γ = 0.2B,
U = 2t , U = 10t , and optimal V , for high and zero temperature; and
(e) for a system with Ly = 20 (green and red) and Ly = 30 (blue),
where the current densities in are multiplied by Lx .

3. System size effects

In this section, we consider the effect of the system size
on the transport properties. In Fig. 8(a), the current densi-
ties (I/Ly) are plotted as functions of the voltage for high
temperature (T = 1t), flat potential, weak coupling U = 2t ,
and different Ly, starting with a single chain (Ly = 1). The
current density rapidly saturates with increasing Ly. This is
a general feature as we show in Fig. 8(c), where the current
densities are plotted for weak (U = 2t) and strong interaction
(U = 10t) at zero and high temperature as functions of 1/Ly.
The chosen voltages are close to their optimal values, where
the biggest differences in current density for various Ly are
observed. All four curves are practically saturated at Ly = 20.
This means that the results obtained for Ly = 20 are actually
a good representation of a system in the limit Ly → ∞.

We next focus on the other dimension, Lx. Figure 8(d)
shows examples of the current densities for fixed Ly = 20 but
different Lx starting with a single layer. For zero temperature,
the current density rapidly saturates with increasing Lx. This
is because for the flat potential the localized f particles at
zero temperature form a periodic (checkerboard) potential and
there are no further sources of scattering. We conclude that
the system L = 20 × 20 is sufficient for addressing transport
through an infinite zero-temperature 2D FKM system at half
filling.
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FIG. 9. (a, b) The generalized inverse participation ratio for weak
(U = 1t) and strong interaction (U = 8t) and large voltage drop.
(c, d) The linear size scaling of the gIPR on Ly for fixed Lx = 20
and the densities at various energies. (e, f) The linear size scaling
of the gIPR on Lx for fixed Ly = 20. The weak-interaction limit is
plotted for V = 10t , γ = 2t , and B = 10t . The strong-interaction
case is shown for V = 20t , γ = 4t , and B = 20t .

The situation is different for T = 1t where the current
density decreases with the increasing Lx [Fig. 8(d)]. Never-
theless, the size dependence is different for weak and strong
interaction U . In Fig. 8(e), we plot the same current densities
multiplied by Lx and as a function of Lx. Whereas for strong
interaction the current density drops much faster than linearly,
for U = 2t the scaled current density initially increases and
then seems to saturate with Lx. Note that there is actually
a small decrease of ILx/Ly for Lx > 30; however, this is
related to fixed value of Ly. We confirmed the saturation by
studying the dependence for Ly = 30. Interestingly, this linear
dependence of the current density on the system size together
with almost linear I-V characteristics for V � 5t in DPw
points to a metal-like behavior. This might come as a surprise
as it was recently shown that the 2D FKM is an insulator in all
its phases [80], but it is actually consistent with the analysis of
the gIPR for both isolated [80] and coupled systems (Fig. 3)
which show a strong delocalization of the density of states for
finite systems at weak interactions.

We analyze this for the case of high voltage by study-
ing again the gIPR. Although the mutual shift of the ρL

and ρR also introduces a spatial asymmetry in the LDOS,
qualitative tendencies are still obvious. Figures 9(a) and 9(b)
show the gIPR profile for E relevant for the transport at V =
10t for weak interaction and V = 20t at strong interaction.
Figures 9(c)–9(f) show its finite-size scaling for chosen en-
ergies. The wide plateau in the energy profile of the weak
coupling which scales roughly with 1/L points to a prevailing
delocalization. However, the scaling is not as convincing

as for the equilibrium case. This may point to a stronger
localization or could be a consequence of the discussed shift
of the LDOS. The scaling is much more clear for the strong
interaction (U = 8t). Figures 9(b) and 9(d) show that gIPR
scales with Ly only within the Mott gap and outside the normal
width of the DOS of the isolated system, where the broadening
of the edge layers dominates. The gIPR is practically constant
for all energies plotted in Fig. 9(f) including the energies
within the isolated system DOS range. This points to a strong
localization of all states relevant for the transport which
explains the exponential drop of the current with the system
width in Fig. 8(e).

B. Tilted potential

1. Phase diagrams

The phase diagrams of the tilted potential are in general
more complex than for the flat one. Because the tilt is in-
troduced before the coupling is switched on, the f -particle
distribution is thermalized already under the influence of
the electrostatic potential εtilt . The interplay of tree differ-
ent energy scales, namely, the hopping term −t , potential
εtilt

i , and U , leads to a rich ground state summarized in the
simplified phase diagram in Fig. 10(a). The ground-state f -
particle configurations are a mixture of segregated [91,104]
and checkerboard phase (CheP) [see Figs. 10(b)–10(d)]. Note
that the phase boundary between pure CheP and mixed phase
(MixP) is stable. We have observed only small changes (below
5%) with increasing system lattice size. On the other hand, the
boundary between pure segregated phase (SegP) and MixP is
relevant only for L = 20 × 20. This boundary shifts to higher
V with increasing lattice size and for Lx → ∞ and finite
voltages the pure SegP might not exist at all.

It was shown before that the spinless FKM at neutral filling
(Nf = Nd ) and in the vicinity of the half-filling condition
contains different ordered phases for the same parameters but
at different temperatures [76,105]. The potential tilt leads to
a similar, although less pronounced, situation. In Fig. 2(a)
we show the estimated critical temperatures for the OP-DP
transition (red filled circles) calculated for V = 5t and L =
20 × 20. The segregation starts to form well above these
transitions. This can be seen in Figs. 10(e) and 10(f), where
examples of the normalized f -particle occupation per layer
parallel to the interfaces are plotted for a range of temper-
atures. The estimated critical temperatures in Fig. 2(a) are
therefore related to the formation of the checkerboard pattern
in the central region of the lattice. Consequently, the biggest
difference between the phase boundaries for εflat and εtilt plot-
ted in Fig. 2(a) is in the parameter regime where V � U . In
this regime, the checkerboard region is much smaller than the
segregated one. Moreover, because for fixed parameters the
total size of the checkerboard region increases with increasing
Lx the phase boundary in this region is not saturated yet for
L = 20 × 20. We have observed that with increasing lattice
size the boundary approaches the one for εflat. Nevertheless,
for a finite system and tilted potential, the finite voltage can
influence the OP-DP transition even before the coupling is
turned on.

Because of the segregation, the tilt has a dramatic effect on
the system even at high temperatures. This can be seen in the
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FIG. 10. (a) Ground-state phase diagram for tilted potential and
L = 20 × 20. Note that the boundary between CheP and MixP is
stable, but the boundary between MixP and SegP depends on the
system size. (b–d) The representative ground-state configurations of
f particles (blue filled circles) and d electrons (orange filled circles)
for the decoupled system representing SegP (b), MixP (c), and CheP
(d). (e, f) Examples of the normalized f -particle occupations (Nf /Ly)
per layer for tilted potential, lattice L = 20 × 20, and parameters
γ = 0, U = 5t, and V = 5t and 10t , respectively.

dependence of the DOS on U for E = 0 plotted in Fig. 11(a).
A sufficiently tilted potential can close the well-developed
Mott gap even for a decoupled system and strong interaction
[U = 10t in Fig. 11(a)]. The finite coupling closes the gap
in the entire range of V but the increase of the DOS at the
Fermi level as a consequence of increasing tilt is still visible.
We have observed that introducing the tilt has often a similar
effect on the DOS as has the reduction of U for the flat
potential. It closes the pseudogap, and the typical sub-CDW
gap structures, usually present for strong interactions even
above critical temperature, are merging with the Hubbard-like
satellites [cf. Figs. 11(b)–11(d) with Figs. 2(c) and 2(d)].

The role of the segregation in this effect even at high
temperatures can be understood by following the examples of
the LDOS for particular system layers in Figs. 11(e)–11(g).
Figure 11(e) shows the LDOS of the coupled system for
U = 2t and V = 5t , where the ground state is completely seg-
regated. All LDOSs resemble the DOS of a weakly interacting
system, where the absence or presence of f particles at the
interfaces manifests itself by a constant shift competing with
εtilt

i . For U = 2t and V = 5t [Fig. 11(f)], the LDOS in the
center region has a profile typical for the disordered phase at
intermediate coupling, but the effect of the segregation is still
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FIG. 11. (a) DOS of d electrons at E = 0 for a system with
tilted potential calculated as a function of voltage drop at T = 1t
for a decoupled (U = 2t, 5t, 10t) and coupled scenario (U = 10t ,
γ = 2). (b–g) Examples of DOS for tilted potential and different
model parameters calculated for decoupled (blue) and coupled (red)
systems with L = 20 × 20. (e–g) Local densities of states calculated
for layers at the edges and in the center of the coupled system. The
parameters are the same as in (b–d).

obvious at the interfaces. As there is no segregation for U =
10t and V = 5t the “center” of ρL(E ) and ρL(E ), respectively,
and the system LDOS at interfaces are almost aligned (εL

∼=
εtilt

1 + U/2 and εtilt
Lx

+ U/2 ∼= εR), therefore LDOSs are shifted
mostly by εtilt and otherwise resemble a broadened DOS of the
strongly interacting disordered phase.

2. Transport properties

As already shown above, the tilt of the potential can
have a profound effect on the electron distribution. A similar
result was obtained for the Hubbard model by Okamoto
[89]. However, in that particular study both potential profiles
still gave rather similar current-voltage characteristics. In the
case considered here, the consequences of the tilted potential
for the charge transport are significant. This can be seen
already for the noninteracting case plotted in Fig. 12(a), where
we compare I-V characteristics of both potential profiles at
high and zero temperature. The current for the tilted case
is significantly smaller than for the flat potential. This is
also signaled by a significant decrease of the transmission
function [Fig. 12(c)] already for small voltages. Although a
clear difference between tilted and flat geometry is evident
for the interacting system as well [see Fig. 12(b)], it is much
less dramatic than for U = 0. This may partially explain the
similarities in the currents in Okamoto’s work [89], where U
was rather large.

The significant difference of the transport results for εflat

and εtilt can be understood by comparing the transmission
functions. Whereas the transmission functions for the flat
potential in Fig. 6 do not change significantly with voltage
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FIG. 12. (a, b) Comparisons of current-voltage characteristics
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was calculated for U = 2t . The other parameters are γ = 2t , B =
10t , and L = 20 × 20. (c) Comparison of the transmission functions
for the noninteracting system with flat and tilted potential for small
voltage V = 3t .

unless V > B, the tilt of the potential has a profound ef-
fect already for small voltages (see Fig. 13). This is fur-
ther complicated by the strong spatial dependence of the
LDOS on V and U that influences the overall transmis-
sion differently in central and segregated regions. The low
transmission at energies |E | < U/2 for the central region
is responsible for the gap in the transmission function but
it has to compete with growing segregation that is closing
the gap.

The transmission function changes rapidly with increas-
ing voltage for U = 2t at both zero and high temperatures
[Figs. 13(a) and 13(b)]. First, the pseudo-CDW gap closes.
This again resembles the effect of lowering U . Besides filling
the gap, the increasing voltage leads to narrowing of the
transmission function. The combination of these two effects at
high temperature leads initially to a significant increase of the
transmission function around E = 0. Further increase of the
voltage introduces the segregation in the f -particle subsystem
and the transmission function drops down. Consequently,
when we compare the I-V characteristics of the flat and tilted
potential, plotted in Fig. 12(b), the curves coincide only for
V < U . The tilt shifts the maximum of the current to lower
voltage (V ∼ 5.5t) and a rather steep decline follows for the
voltages that are well below V ∼ B. Therefore, and in contrast
to the flat potential, the drop of the current is a consequence
of the vanishing transmission function and not of closing the
band window W .

The situation is more complicated for U = 5t . On one
hand, the increasing voltage is closing the gap, but, on the
other, it pushes the in-gap maxima and Hubbard-like satellites
together. This makes the pseudogap shallower but also effec-
tively broader. As for the weak interaction, with increasing
V the transmission function initially increases in the central
region [Fig. 13(c)]. The transmission function drops again
at higher voltages where the segregation starts to form. The
voltage dependence of the transmission function for U = 10t
is similar to U = 5t [Fig. 13(d)] but the central region is
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FIG. 13. (a–d) Transmission functions for the tilted system po-
tential and different values of U , T , and V . Other parameters are
lattice size L = 20 × 20, coupling γ = 0.2B, and band half width
(a–c) B = 10t and (d) B = 20t .

suppressed, which is related to the gap in the LDOS of the
central layers even for high voltages as seen in Fig. 11(g).

The complicated dependences of the transmission function
on the voltage for U = 5t and 10t is imprinted in the I-V
characteristics plotted in Figs. 14(b) and 14(c). The current for
U = 5t and T = 1t has almost a plateau for 1 � V < 5. This
is because two opposite tendencies are active in this region.
The increasing width of the Fermi window should increase
the current, but it has to compete with the effective increase
of the width of the pseudogap and the decreasing amplitude of
the Hubbard-like satellites. The following maximum reflects
the increase of the transmission function in the central region
[Fig. 13(c)]. This effect is even more pronounced for strong
interaction, resulting in two tiny (see the scale) maxima in the
current.

The kinks and sharp steps visible in the I-V characteristics
at zero temperature in Figs. 14(a) and 14(b) reflect the changes
in the ground-state f -particle distribution. The MixP does not
change from CheP to SegP in a continuous way but rather
steplike. We have found that with increasing V the segregated
phase always grows by filling and emptying a whole layer.
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Every such change can lead to a sharp feature in the I-V
characteristics.

The presence of the segregated regions significantly influ-
ences the temperature dependence of the current as illustrated
for U = 5t in Fig. 14(d). We have not observed any sharp
increase of the current below critical temperature typical for
high-voltage dependencies for the flat potential. This is a con-
sequence of the significant suppression of the Hubbard-like
satellites for increasing voltage. A sharp exponential decrease
of the current below the critical temperature can be observed
for V = 5t . With further lowering of the voltage, the sharp
steplike decrease changes into a smooth dependence typical
for the DPs-OP transition.

3. System size effects

The finite-size dependence for the system with tilted poten-
tial is quite complicated. This is illustrated in Fig. 15. As for
the flat potential case, the current density converges rapidly
with increasing Ly and is practically saturated for Ly = 20.
The saturation is monotonous for high temperature, but it
oscillates at T = 0t . Small oscillations are evident even above
Ly = 20. The potential tilt has a bigger influence on the scal-
ing in the x direction. The red filled circles in Fig. 15(d) show
that this is true already for the noninteracting case, where the
f particles do not play a role. The current density seems to
be converging to finite values for weakly and noninteracting
cases at zero temperature. However, this convergence is slow
and much larger lattices than for the flat potential are needed
to confirm the plateau. For the same reason, it is not obvious
from the numerical results that the weakly interacting case at
high temperature approaches zero for Lx → ∞. All this shows
that the profile of the system potential has a dramatic effect on
the steady-state transport.
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FIG. 15. Current densities plotted (a) as a function of voltage
for a system with Lx = 20 and different vertical sizes Ly at T = 1t ;
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numbers of layers Lx at T = 1t ; (c) as a function of inverse linear
size 1/Ly for a system with Lx = 20 and optimal V , where the data
for U = 5t and T = 1t were multiplied by 20 for the sake of clarity;
and (d) as a function of inverse linear size 1/Lx for a system with
Ly = 20.

IV. CONCLUSIONS

We have studied charge transport in a model heterostruc-
ture, where the central system is described by a Falicov-
Kimball model, which is coupled to metallic leads. The
method used is based on a combination of a sign-problem-
free MC approach and nonequilibrium Green’s-function tech-
niques. Due to its efficiency, this methodology allows us
to study large enough structures to approach the condensed
phase limit.

We have specifically considered charge transport through
a 2D FKM for two types of electrostatic potentials in the
system, including a flat and a tilted form. In both cases,
the transport characteristic is closely related to the phases of
the FKM. For a flat potential, the current signals a DP-OP
transition by a sharp steplike increase or decrease of the
current depending on the bias voltage. The transition from
DPw to DPs can be clearly identified from the properties of
the transmission function and it is not affected even by a
high voltage. Different regimes of localization can be seen
even for high voltages. The tilted potential, on the other hand,
introduces new phases including charge segregation. A signif-
icant tilt can close the Mott gap and fill in the CDW pseu-
dogap and therefore significantly affects the current-voltage
characteristics.

We have, furthermore, analyzed the dependence of the
transport properties on the size of the system and shown
that a size of Lx = 20 × 20 is sufficient for addressing the
condensed phase limit. Moreover, we have found that the
finite-size scaling of the current is qualitatively different for
weak and strong interaction.

In the present paper, we have adopted several simpli-
fications, the lifting of which could be interesting for fu-
ture investigations. First, the leads were modeled by mu-
tually disconnected semi-infinite chains. Second, it would
be interesting to include part of the leads at the interfaces
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into the system, because the proximity to the system can
change the electron distribution in these areas of the leads
[62,106]. Finally, we have assumed that in equilibrium the
system and the leads have the same effective chemical po-
tential and, therefore, there is no evident effect of elec-
tronic charge reconstruction at the interfaces [107]. This will
typically not be the case in real materials. The extension of the
paper to include these aspects will the subject of future work.
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