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Recent numerical results [Gonzalez et al., Phys. Rev. Lett. 122, 017201 (2019); Shimada et al., J. Phys. Conf.
Ser. 969, 012126 (2018)] point to the existence of a partial-disorder ground state for a spin-1/2 antiferromagnet
on the stuffed honeycomb lattice, with 2/3 of the local moments ordering in an antiferromagnetic Néel pattern,
while the remaining 1/3 of the sites display short-range correlations only, akin to a quantum spin liquid. We
derive an effective model for this disordered subsystem, by integrating out fluctuations of the ordered local
moments, which yield couplings in a formal 1/S expansion, with S being the spin amplitude. The result is an
effective triangular-lattice XXZ model, with planar ferromagnetic order for large S and a stripe-ordered Ising
ground state for small S, the latter being the result of frustrated Ising interactions. Within the semiclassical
analysis, the transition point between the two orders is located at Sc = 0.646, being very close to the relevant
case S = 1/2. Near S = Sc quantum fluctuations tend to destabilize magnetic order. We conjecture that this
applies to S = 1/2, thus explaining the observed partial-disorder state.
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I. INTRODUCTION

Frustration counteracts the tendency of a spin system to
order magnetically at low temperatures, and, if strong enough,
can lead to quantum disordered ground states devoid of spon-
taneous symmetry breaking. Such states are conceptually fas-
cinating, a prime example being gapped quantum spin liquids
with intrinsic topological order and fractionalized excitations,
evoking continued both theoretical and experimental interest
[1,2]. A prototypical frustrated spin system is the triangular-
lattice antiferromagnet [3,4]. Following Anderson’s proposal
that the spin-1/2 Heisenberg model may host a resonating-
valence-bond (RVB) state, recent numerical studies confirm
that upon amending the nearest-neighbor model with further
frustrating interactions, such as second-neighbor exchange,
indeed stabilizes a quantum spin liquid [5–8].

While quantum disorder, nontrivial topology, and fraction-
alization are typically properties of the whole system, in-
triguing cases with coexisting topological and nontopological
components have been discussed in different settings [9–11].
In particular, it has been suggested that frustration may lead
to partially disordered states, where a disordered subsystem
coexists with a magnetically ordered part. While these studies
have been mostly concerned with Ising models [12–14] or
classical systems [15] at finite temperature, a recent density-
matrix-renormalization-group (DMRG) study by Gonzalez
et al. [16] has discovered such phenomenology in a SU(2)-
invariant quantum spin system.

Reference [16] considered a spin-1/2 Heisenberg anti-
ferromagnet on the triangular lattice with a

√
3 × √

3 su-
perstructure (also dubbed stuffed honeycomb lattice), i.e., a
honeycomb lattice with exchange coupling J , supplemented
by spins in the center of each hexagon which are coupled by
J ′ to the surrounding spins, Fig. 1. For a range of finite small
couplings J ′/J , the central spins were found to be decoupled

from the Néel-ordered honeycomb subsystem. In this partial-
disorder phase, the central spins are short-range correlated,
as opposed to previous models of partial disorder (PD), in
which the disordered subsystem had a classical extensive
degeneracy. Importantly, PD in the stuffed honeycomb lattice
is a quantum effect, as the (semi)classical ground state at
any finite J ′ < J involves ferromagnetic order of the central
spins, with the honeycomb spins canting in the direction of
the ordering axis of the central spins. The existence of PD
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FIG. 1. (a) Illustration of the correlated partial-disorder phase
[16], in which the honeycomb spins have collinear Néel order and the
central spins, located on an effective triangular lattice (dotted), are in
a quantum disordered state with short-ranged correlations (possibly
RVB-like, illustrated in purple). (b) Classical ground state of the
Heisenberg antiferromagnet on the stuffed honeycomb lattice with
J ′ � J . The spins on the A, B sublattices continuously cant as a
function of J ′/J , interpolating between collinear AB order at J ′ = 0
and 120◦ ABC order at J ′ = J . (c) Phase diagram for S = 1/2 as
proposed in Ref. [16] based on DMRG simulations.
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physics in the stuffed honeycomb lattice is supported by an
exact diagonalization (ED) study which shows a phase with
vanishing magnetization at weak J ′ [17].

The goal of this paper is to identify the mechanism which
causes the PD state in the stuffed honeycomb-lattice Heisen-
berg model. The fact that PD exists in the regime of small J ′
allows us to attack the problem perturbatively: We integrate
out the degrees of freedom of the honeycomb subsystem,
assuming collinear Néel order of the latter. We work to second
order in J ′ and apply a systematic 1/S expansion such that
our study is formally controlled in the semiclassical (large-S)
limit. We obtain an anisotropic effective spin model for the
central spins on an emergent triangular lattice. The interac-
tions among the central spins induced by magnons are given
by predominantly ferromagnetic transverse (xy) interactions
and frustrating Ising interactions for the z components, with
the leading terms arising at different orders in 1/S: The
leading xy coupling scales as S0, while the leading Ising
interaction scales as S−1. As a result, the effective model
displays ferromagnetic in-plane order at large S, while at small
S the Ising interactions become dominant, favoring an out-of-
plane stripe-ordered ground state. With all effective couplings
calculated to order S−1, we find the transition between the two
competing ground states to be located at Sc = 0.646, being
remarkably close to the case of S = 1/2 considered in the
numerical studies. Moreover, the transition is masked by a
small window of more complicated (most likely incommensu-
rate) order, and magnetization corrections grow near S = Sc.
We therefore argue that fluctuations in this frustrated effective
model destabilize magnetic long-range order for S = 1/2,
which then leads to a PD phase for the stuffed honeycomb
antiferromagnet.

The remainder of the paper is organized as follows: In
Sec. II we introduce the Hamiltonian and review previous
numerical results. Section III outlines the derivation of the
effective spin model, which is discussed in Sec. IV. Section V
discusses global properties of the partial-disorder phase be-
yond the effective model. A discussion (Sec. VI) closes the
paper.

II. MODEL

We consider local moments on the stuffed honeycomb
lattice, consisting of a honeycomb lattice with central spins
placed in each hexagon, as depicted in Fig. 1(b). The situation
corresponds to a

√
3 × √

3 supermodulation of a triangular
lattice.

A. Heisenberg Hamiltonian

The local moments on the honeycomb lattice (with A, B
sublattices) are coupled antiferromagnetically with a coupling
J > 0. Each central spin (sublattice C) couples with interac-
tion J ′ > 0 with its nearest neighbors on the A, B sublattices,
such that the Hamiltonian of the full model reads H = HJ +
HJ ′ with

HJ = J
∑
〈i j〉

�Si,A · �S j,B

HJ ′ = J ′ ∑
〈i j〉

s=A,B

�Si,s · �S j,C . (1)

At J ′ = J , the model reproduces the Heisenberg antiferromag-
net on the isotropic triangular lattice, while for J ′ = 0 the
system reduces to antiferromagnetically coupled spins on the
honeycomb lattice, with the central spins being decoupled. For
the subsequent analysis, it will be convenient to consider a unit
cell containing A, B,C sites, with the primitive lattice vectors
given by �n1,2 = (±1,

√
3)T /2.

B. Previous numerical results

The classical ground state of Eq. (1) on the stuffed honey-
comb lattice for 0 � J ′ � J is depicted in Fig. 1(b), with the
A, B-sublattice spins canting at an angle φ = arcsin(J ′/(2J ))
to the direction transverse to the C sublattice. This leads to the
familiar 120◦ triangular-lattice order at J = J ′ and collinear
order of the honeycomb spins in the limit J ′/J → 0. The
classical system thus displays ferrimagnetic behavior at 0 <

J ′ < J , with the ground state having a nonzero magnetization
in the spin direction of the central spins.

The authors of Ref. [16] focus on the case of small J ′/J
and find that the classical order persists in linear spin-wave
theory (LSWT) even for infinitesimal J ′, with the C sublattice
magnetization mC taking more than 80% of its classical value.
Their DMRG results for the spin-1/2 system, however, show
clear signatures of a PD phase at 0 < J ′ � J ′

c ≈ 0.18, with
vanishing mC = 0 and collinear Néel order on the honeycomb
subsystem. Notably, in PD the central spins are found to be
ferromagnetically correlated, hinting towards the presence of
an effective interaction between these spins. For J ′ > J ′

c a
canted state is found, with canting angles closely matching the
LSWT result. At J ′

c the central-spin magnetization mC changes
abruptly (as do nearest-neighbor spin correlators). Altogether,
this points toward a first-order transition between a PD state
and a semiclassical canted state as a function of J ′/J , Fig. 1(c).

Furthermore, recent ED results by Shimada et al. [17] for
systems up to 36 × 36 sites indicate that the spontaneous
magnetization of the semiclassical ferrimagnetic phase for
J ′ < J vanishes noncontinuously below some nonzero J ′

c. This
would be consistent with the existence of PD, however the
value of the critical J ′

c and precise nature of the correlations
below J ′

c appear to be difficult to obtain in ED due to limited
accessible system sizes.

III. DERIVATION OF AN EFFECTIVE MODEL

The PD phase is realized for small J ′, suggesting that
the coupling between the honeycomb spins and central spins
can be treated perturbatively. In the limit J ′ 
 J it appears
justified to neglect feedback effects of the central spins on the
honeycomb spins, such that the natural effective model for
the system involves central spins on an emergent triangular
lattice, with effective interactions resulting from the coupling
to the honeycomb system.

The goal of this section is thus to derive this effective spin
model for the central spins by perturbatively integrating out
quantum fluctuations around the Néel-ordered ground state of
the honeycomb spins, which we treat in a 1/S expansion. For
a detailed derivation we refer the reader to Appendix A.

We emphasize that the magnons in the honeycomb system
are gapless, and integrating out theses gapless degrees of
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freedom may in general induce singular interactions. We thus
apply a staggered field h in the direction of the Néel order on
the honeycomb sublattices, giving rise to a gap in the magnon
dispersion, and take the massless limit h → 0 at the end.

Without loss of generality, we parametrize the semiclassi-
cal Néel order of the honeycomb system by �SA = Sẑ and �SB =
−Sẑ such that the Hamiltonian with a staggered field reads
HJ,h = HJ − 3JSh

∑
i(S

z
i,A − Sz

i,B). We consider magnon ex-
citations on top of this ordered ground state by representing
the SU(2) spin algebra in terms of Holstein-Primakoff bosons
a, b, admitting a systematic expansion in 1/S. The 1/S ex-
pansion is formally justified for S � na,b, where the bosonic
densities na = a†a, nb = b†b quantify the mean deviation
from the classical reference state. This implies that the expan-
sion is applicable (even for S � 1) for magnetically ordered
states with small intrinsic fluctuations, such as the collinear
state on the honeycomb lattice of interest here. We expand
HJ = H(0)

J,h + H(2)
J,h + H(4)

J,h + O(1/S) where H(n) contains n

boson operators. The leading order H(0)
J,h ∼ S2 represents the

classical ground-state energy. The bilinear piece corresponds
to LSWT and can be written as

H(2)
J,h = JS

∑
q

[ f (q)aqb−q + H.c. + 3(1 + h)(a†
qaq + b†

qbq)],

(2)
where f (�q) = 1 + ei�q·�n1 + ei�q·�n2 with �n1,2 defined as above.
H(2)

J can be diagonalized by means of a Bogoliubov

transformation, yielding two magnon modes [having ne-
glected a global energy shift and employing inversion sym-
metry ε(q) = ε(−q)]

H(2)
J,h =

∑
q

ε(q)(α†
qαq + β†

qβq), (3)

where ε(q) = JSω(q) with the dimensionless dispersion
ω(q) =

√
9(1 + h)2 − | f (q)|2. The quartic part of the Hamil-

tonian corresponds to magnon-magnon interactions,

H(4)
J,h = −J

4

∑
i,δ

[a†
i aiaibi+δ + aib

†
i+δbi+δbi+δ

+ 2a†
i aib

†
i+δbi+δ + H.c.]; (4)

we note that cubic boson terms are absent in the present
collinear case. The quartic terms give rise to self-energy
corrections to the magnon Green’s function. In general, the
self-energy corrections can be split into a static Hartree-Fock
contribution �HF arising from “balloon” diagrams as shown in
Fig. 2(b) and a frequency-dependent contribution represented
by “sunset” diagrams, with the latter scaling as 1/S [18,19].
An explicit expression for �HF is given in Appendix A.

The interaction vertices for the coupling of the magnons
to the central spins �Si (omitting the label C for brevity) can
be determined by expanding HJ ′ in 1/S, yielding up to third
order

HJ ′ = J ′∑
q

⎡
⎣
⎛
⎝√S

2
	a

qaq + 1

4
√

2S

∑
k,p

	3a
q;k,pa†

k+p−qakap +
√

S

2
	b

qb†
−q + 1

4
√

2S

∑
k,p

	3b
q;k,pb†

−kb†
−pb−(k+p−q)

⎞
⎠S−

−q + H.c.

+
∑

k

(
	aa

q,ka†
k+qak + 	bb

q,kb†
k+qbk

)
Sz

q

]
, (5)

where we have made the S scaling for the respective vertices explicit (for definitions of the various vertices we refer the reader to
Appendix A). Note that Eq. (5) does not contain a term linear in S, which corresponds to the fact that mean fields on the central
spins vanish—apparently a prerequisite to obtain a PD phase.

We are now in a position to integrate out the bosonic modes, yielding an effective model for the central spins which are
arranged on a triangular lattice. At order (J ′)2 and next-to-leading order in 1/S the effective action takes the form

Seff =
(
J ′)2

J

∫
dτdτ ′

[∑
q

S+
q (τ ) jxy(q, τ − τ ′)S−

−q(τ ′) + Sz
q(τ ) jz(q, τ − τ ′)Sz

−q(τ ′)

]
(6)

with dimensionless couplings j. The relevant processes con-
tributing to this order are shown in Fig. 2: The coupling jxy as
a result of transverse magnon modes is given by the magnon
propagator and subleading Hartree-Fock corrections for both
the propagator and vertex, while the longitudinal jz results
from magnon bubble diagrams.

The effective model manifestly breaks SU(2) spin rotation
symmetry and is invariant only under a U(1) symmetry of
rotations about the z axis. Physically, this is due to the
background spin order of the honeycomb subsystem, which
itself spontaneously breaks SU(2) spin rotation symmetry at
T = 0 (see Sec. V C for a discussion of the case T > 0),
i.e., the effective model simply inherits the symmetry of the

full system. Considering a generic large-S expansion around
a classically ordered state (i.e., in a symmetry-broken phase),
it is easily seen that the SU(2) symmetry is indeed broken at
every order in 1/S.

The time dependence of the couplings in Eq. (6) is a
consequence of retardation effects. In order to obtain a “static”
spin Hamiltonian Heff for the central spins, we employ the
instantaneous approximation j(q, τ − τ ′) → j(q)δ(τ − τ ′),
where j(q) is given by the ω → 0 limit. This approxima-
tion is justified as long as there is a separation of en-
ergy scales between the fast (high-energy) magnon modes
at an energy scale J and the low-energy central spins at a
scale J ′ 
 J .
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FIG. 2. Feynman diagrams for processes contributing to the
effective action (symmetry-related processes are not shown).
(a) Leading-order contribution S0 to Jxy, (b) Hartree-Fock correction
to the propagator, of order 1/S, (c) correction to magnon-spin vertex
at order 1/S, (d) particle-hole (vanishes at T = 0), and (e) particle-
particle bubbles mediating a longitudinal interaction at order 1/S.

We thus find the static transversal coupling to be given by

jxy(q) = − 1

2ωq

∑
δ=α,β

[
|	δ|2

(
1 − �HF

q

Sωq

)
+ [	δ	3δ∗

q

]
4S

]
,

(7)
and the longitudinal coupling

jz(q) = − 1

2S

∑
k

[ ∣∣	αβ

q,k

∣∣2 + ∣∣	βα

q,k

∣∣2
ω(k) + ω(q + k)

]
, (8)

with the explicit form of the vertices 	 detailed in
Appendix A. The couplings given above implicitly depend
(through the dispersion and the Bogoliubov factors appearing
in the vertices) on the staggered field strength h. In order to
extrapolate h → 0 and to identify the most important spin
interactions, it is convenient to work in real space. Fourier-
transforming thus leads to the effective Hamiltonian

Heff = (J ′)2

J

N∑
n=0

∑
〈i j〉n

[
jxy
i j

(
Sx

i Sx
j + Sy

i Sy
j

)+ jz
i jS

z
i Sz

j

]
, (9)

where 〈i j〉n denotes a bond between nth nearest neighbors
on the triangular lattice of central spins. Working to order
S−1, the transverse coupling jxy

i j = jxy,0 + jxy,1 contains both
a leading jxy,0 ∼ S0 and subleading jxy,1 ∼ S−1 contribution,
while the longitudinal coupling scales as jz

i j = jz,1
i j ∼ S−1.

We truncate the generated (long-ranged) interactions after
the N th nearest neighbor, finding that the properties of the
effective model, discussed in Sec. IV, do not significantly
depend on the truncation after the most dominant interactions
are taken into account. The h → 0 limit is taken by first
evaluating the expressions in Eqs. (7) and (8) for fixed h
and then fitting the results to a leading-order scaling form
in h obtained by a continuum approximation. For details on
the extrapolation, we refer the reader to Appendix B. The
obtained values of the couplings are shown in Table I, and
Fig. 3.

We note that the above scheme naturally yields on-site
spin couplings (n = 0), corresponding to (retarded) self-
interactions of the spins mediated by magnons. In the

TABLE I. Effective couplings obtained for model (9) for the nth
nearest neighbors. Note that n = 0 corresponds to an anisotropic on-
site coupling, yielding a single-ion anisotropy for any S > 1/2.

n jxy,0 S jxy,1 S jz

0 − 0.653991 0.3165606 − 0.1684154
1 − 0.153987 0.0745365 − 0.0114266
2 0.027187 − 0.0131602 0.0235538
3 − 0.016334 0.0079060 − 0.0005096
4 0.001881 − 0.0009108 0.0022996
5 − 0.002153 0.0010418 0.0007775
6 0.000684 − 0.0003309 0.0008679
7 0.000021 − 0.0000099 0.0006570
8 − 0.000385 0.0001868 0.0004147
9 0.000150 − 0.0000716 0.0003788

instantaneous approximation, the on-site couplings jxy
ii �= jz

ii
combine to a single-ion anisotropy for any S > 1/2, while
simply yielding a global energy shift at S = 1/2. In order to
allow for a consistent large-S study, we henceforth include the
single-ion anisotropy in the analysis of the effective model
(i.e., in classical iterative minimization and linear spin-wave
theory) [20].

IV. ANALYSIS OF THE EFFECTIVE MODEL

The anisotropic effective model obtained in the previous
section contains an xy interaction which has a dominant
ferromagnetic coupling on nearest neighbors to order S0. As
visible from Table I, this coupling gets significantly reduced
at order S−1 by self-energy and vertex corrections. The most
important z-Ising coupling is an antiferromagnetic second-
neighbor interaction.

0 1 2 3 4

r = |�δ0,i|

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

0.05

j(
r)

Sjz,1

jxy,0

Sjxy,1

jz, S = 0.65

jxy, S = 0.65

FIG. 3. Dimensionless couplings in the effective triangular-
lattice XXZ model as a function of the real-space distance to the i-th
nearest neighbor. Shown are the coefficients of the 1/S expansion
jxy,0, S jxy,1, S jz,1 as well as the couplings evaluated for S = 0.65,
i.e., close to S = Sc.
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(a)

(b)

J JΔE ∼ J

FIG. 4. Processes giving rise to the dominant xy and z inter-
actions in the effective model. (a) Exchange process for antiferro-
magnetic initial and final configurations in second-order perturbation
theory, involving a honeycomb-spin flip with energy cost J . This
process is not realized for parallel configurations and thus gives
rise to a ferromagnetic transversal interaction at order S0. (b) The
presence of two honeycomb-spin flips (representative for a coherent
two-magnon excitation, pictured by colorized spins) on nearest-
neighbor bonds gives rise to antiparallel fields on central spins in
next-nearest hexagons [21], yielding an effective antiferromagnetic
Ising z interaction (indicated in purple) for second neighbors on the
effective triangular lattice (dashed) at order S−1.

A. Qualitative discussion of dominant processes

We quickly discuss the physical picture behind the most
important effective interactions. The nearest-neighbor xy
(transverse) interaction is pictorially shown in Fig. 4(a). Two
nearest-neighbor central spins can exchange their spin orienta-
tion with an intermediate honeycomb-spin flip (which, loosely
speaking, can be understood as a one-magnon excitation). As
the energy cost of the intermediate state is �E ∼ J , second-
order perturbation theory leads to matrix elements of the form

〈↑↓ |Heff | ↓↑〉 ∼ − (J ′)2

J
, (10)

corresponding precisely to the scaling of the effective action
in Eq. (6). Note that this exchange process constitutes the
leading-order contribution to jxy. It can only be realized
for antiparallel nearest-neighbor spins in the initial and final
configurations, thus leading to an effective ferromagnetic xy
interaction, as also observed in the effective model. We note
that a dominant ferromagnetic nearest-neighbor coupling in
the effective model is consistent with the observed ferromag-
netic spin correlation for PD in the DMRG data [16].

The dominant contribution of the (longitudinal) z-Ising
interaction is antiferromagnetic on next-nearest neighbors.
The computation of this coupling (cf. Sec. III) involves the
evaluation of a magnon-bubble diagram, as displayed in
Fig. 2, corresponding to the coherent two-magnon excitation.
This process can be illustrated by considering flipping two
neighboring spins on the Néel-ordered honeycomb lattice (we
emphasize that the spin flip is not equivalent to a magnon
excitation, which is rather a coherent superposition of the
spin flips due to the Bogoliubov transformation), as shown

in Fig. 4(b). This double spin flip induces antiparallel fields
along the spin quantization axis on next-nearest hexagons,
therefore favoring an antiparallel alignment of the central
spins in the respective two hexagons. This process hence
induces an antiferromagnetic Ising interaction of next-nearest
neighbors on the effective triangular lattice. It appears likely
that this interaction is further enhanced when taking into
account magnon-magnon interactions, because of nearest-
neighbor magnon attraction. However, this only contributes to
jz at order S−2 and is not included in the present calculation.

B. Classical ground states

Since the strengths of xy and z interactions display a
different scaling as a function of S, we expect the nature of the
ground state to change as a function of S. We hence inspect the
family of effective models parameterized by S: For each fixed
S we have a specific triangular-lattice XXZ model, which we
again analyze in a formal 1/S expansion.

In this subsection, we start by considering the classical
ground states. Noting that at S � 1 only the xy interaction
in (9) is of relevance (and subleading corrections are small),
while at sufficiently small S the z terms are dominant, it is
legitimate to consider the two interactions separately. First,
we determine the order favored by the xy interaction by
finding the wave vector Q corresponding to minima of jxy(q)
according the Luttinger-Tisza method. One finds a unique
minimum at Q = 0 for any S, corresponding to ferromagnetic
order with spins lying in the xy plane (subsequently dubbed
“XY-FM”).

The Luttinger-Tisza method cannot straightforwardly be
applied to the case of pure Ising interactions. Instead, we
approach the problem of finding the ground state of the Ising
part of the Hamiltonian by iteratively minimizing the energy
on finite lattices of various sizes. We find that the system
orders in a two-up-two-down stripe phase, commonly dubbed
〈2〉 [22], which spontaneously breaks the C3 triangular lattice
rotation symmetry, corresponding to the ordering wave vector
Q〈2〉 = (0, π/

√
3)T (and C3-symmetry related). The phase di-

agram of the Ising model with competing (i.e., ferro-antiferro
on nearest and next-nearest neighbors) interactions on the
triangular lattice has been explored extensively by Kaburagi
and Kanamori, confirming 〈2〉 as the ground state in the
parameter range relevant to our model [23,24]. It has been
noted that in general competing short-range ferromagnetic
and longer-range dominantly antiferromagnetic interactions
often favor striped phases [25,26] and can lead to rich phase
diagrams with exotic critical properties [22,27,28].

Returning to the combined XXZ model for a given S in
Eq. (9), we study the (S-dependent) competition of trans-
verse and longitudinal interaction terms at the classical level.
Numerical results on various system sizes show that above
Sc � 0.6462, the classical ground state is given by XY-FM,
while for smaller S the lowest-energy configuration is given
by 〈2〉, see also Fig. 5. This appears to be consistent with the
qualitative discussion above in which we noted that at large
S the ferromagnetic xy interaction is dominant, while the jz

coupling becomes important compared to jxy for sufficiently
small S � 1.

155156-5



URBAN F. P. SEIFERT AND MATTHIAS VOJTA PHYSICAL REVIEW B 99, 155156 (2019)

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

S
z

FIG. 5. Metastable configuration obtained through iterative min-
imization of the classical Hamiltonian (9) for S = 0.64 on a 36 ×
36-site cluster (shown: zoom), illustrating the competition between
in-plane ferromagnetic and out-of-plane stripe order. The arrows
represent the projection of the spins in the xy plane, with the
color indicating the strength of the z component. Clearly visible
are domains of 〈2〉 ordering. The corresponding domain walls are
accompanied by in-plane ferromagnetic ordering.

We note that there is a small window around Sc in which
both XY-FM and 〈2〉 become unstable in favor of an incom-
mensurate phase (dubbed “IC”). To map out the extent of this
window, it is more convenient to use LSWT, as described in
the following section.

C. Magnetization corrections in linear spin-wave theory

The fact that the transition between ferromagnetic and
stripe order occurs at Sc, very close to the case of S = 1/2
considered in the numerical studies, indicates that the physics
of PD is closely linked to the appearance of this transition. It
is also clear that the competition of XY-FM and 〈2〉 at small S
(and thus PD) is an inherently quantum effect, driven by spin
fluctuations of the honeycomb lattice. To further explore the
competition between the xy and z interactions in Heff and the
resulting quantum fluctuations, we consider magnon excita-
tions on top of either ferromagnetic or the striped ground state
of the S-dependent effective model (9) in LSWT.

Expanding about the ferromagnetic state, we find that the
spin-wave dispersion becomes imaginary for S < 0.6471. The
dispersion closes at the (incommensurate) wave vector QIC =
(0, 1.959)T (and C3-symmetry related). Complementary, ex-
panding around the classical 〈2〉 reference state, the spin-wave
dispersion becomes imaginary for S > 0.6462 at a very small
Q. The finite window 0.6462 < S < 0.6471 in which LSWT
for both XY-FM and 〈2〉 breaks down hints at an additional
phase, with a possible incommensurate ordering as indicated
by the gap closing in LSWT in the XY-FM. Iterative mini-
mization in the IC window, e.g., at S = 0.6469 indeed yields
configurations in which the spins align ferromagnetically in
the xy plane and have a (incommensurately) modulated z
component. Inspecting the static structure factor, we find the
ordering wave vector to be given by QIC (to our numerical
accuracy). The ordering pattern appears to be related to 〈2〉,
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S
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m
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0.00
0.05
0.10
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0.20
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FIG. 6. Classical ground states and corrections to the (staggered)
magnetization obtained in LSWT for the effective model (9). In
the white region marked IC, LSWT for both XY-FM and 〈2〉 break
down, and the classical ground state is given by an incommensurate
modulated stripe phase.

as also seen from the fact that QIC is close to Q〈2〉. We have
checked on finite-size lattices that the classical energy of the
incommensurate configuration is indeed lower than the com-
peting commensurate reference states. This incommensurate
phase thus masks a critical value Sc at which the energies
XY-FM and 〈2〉 are degenerate, as we demonstrate employing
a toy model in Appendix C. The phase diagram resulting from
this discussion is in Fig. 6.

In addition, we have computed the magnetization correc-
tions �m in LSWT for the two respective ground states;
these are also shown in Fig. 6. We note a strong increase of
the magnetization correction as the spin-wave theory breaks
down when tuning towards IC from both sides. Therefore we
consider it likely that long-range order disappears completely
near Sc once quantum fluctuations are fully taken into account.

Given that the derivation of the effective model is based
on a 1/S expansion (and involves further approximations,
cf. Sec. III), we conjecture that the true Sc is close to the
physical value S = 1/2, and the central spins are in a quantum
disordered state for S = 1/2. This then yields the PD state
observed in numerical studies [16,17]. Clearly, higher orders
in 1/S as well as higher orders in J ′, the latter generating
multispin exchange interactions which themselves tend to
destroy long-range order [29], may be important for a fully
quantitative understanding.

It is worth emphasizing that the theme of supplementing
a frustrated Ising model by (ferromagnetic) transverse xy
interactions, yielding strong quantum fluctuations, is also key
for stabilizing a Z2 spin liquid in the easy-axis kagome-lattice
spin model studied by Balents, Fisher, and Girvin [30], and
the U(1) spin liquid in the pyrochlore lattice [31].

V. CORRELATED PARTIAL DISORDER BEYOND
THE EFFECTIVE MODEL

In this section we comment on features of the putative
correlated PD phase beyond our effective model.
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A. Energetic competition between PD and
(semi)classical canting

As visible from the phase diagram in Fig. 1(c), the PD
phase competes energetically with the semiclassical canted
state. We thus discuss the energy contributions of the two
competing phases as a function of J ′/J .

In the classical ground state of the model (as discussed
in Sec. II), the honeycomb spins cant at an angle φ =
arcsin(J ′/(2J )) with the central spins pointing in a direction
transverse to the Néel order. For J ′ 
 J this yields a canting
angle φ ∝ J ′/J . Considering that the interaction between hon-
eycomb and central spins is of the form J ′�SA/B · �SC and using
that �SA/B · �SC ∼ φ ∼ J ′/J for small canting angles, we thus
find that the mean-field energy of central spins in the canted
phase scales as J ′2/J . Further we have �SA · �SB ∼ 1 − φ2/2.
Taken together, we see that the energy gain of the canted
state relative to the decoupled (collinear) state at J ′ = 0 scales
as J ′2/J .

The energetics of the PD phase is determined by the
effective model for the central spins, while mean-field en-
ergies between the two subsystems vanish. The effective
model was derived in second-order perturbation theory, see
Eq. (6). It is thus clear that the energy gain of the PD
phase, relative to the decoupled state at J ′ = 0, also scales
as J ′2/J .

With the two phases having the same energetic J ′ scaling,
no further qualitative arguments can be made as to which
phase has a lower energy. We conclude that—if the PD phase
has lower energy than the canted phase for small J ′/J , as
indicated by the numerics [16,17]—the first-order transition
at J ′

c will occur at J ′
c/J of order unity, where contributions in

higher order in J ′/J become important.

B. Topological properties

In PD, the central spins are in a correlated quantum disor-
dered phase. Although the precise nature of the phase cannot
be obtained on the level of our analysis, it appears likely that
this disordered state of the central spin subsystem by itself
possesses topological order. Note that this implies that the
notion of topological order is expected to be applicable to the
entire system, in the sense of the existence of superselection
sectors.

We mention similarities to two systems in which a sub-
system is in a topological state. First, a topological spin-glass
phase has been proposed in diluted spin ice, in which defect-
induced “ghost spins” eventually freeze while the remaining
system stays in the Coulomb phase [11]. However, in the
present PD phase the situation is reversed: The fluctuations of
the ordered “bulk” state stabilize a disordered phase of a sub-
system. Second, the model for correlated PD discussed here
also bears similarities to fractionalized Fermi liquids (FL∗),
in which conventional electronic charge carriers coexist with
local moments which itself form a fractionalized spin liquid
[9,10]. One conceptual difference is that the two subsystems
of FL∗ can be adiabatically decoupled in two-band models,
while such a decoupling is not possible in the present PD
phase.

C. Experimental signatures

As the defining feature of PD is the emergence of a
conventionally ordered and a quantum disordered subsystem,
its qualitative properties can be obtained by combining the
ones of the two subsystems. Assuming that the disordered
component is a quantum spin liquid phase with fractionalized
quasiparticles, the full system will then feature both sharp
spin-wave modes associated with the Néel-ordered honey-
comb component and a continuum of fractionalized quasi-
particles, which can be probed by inelastic neutron scatter-
ing. The separation of energy scales will lead to a magnon
bandwidth of order J , while the continuum of fractionalized
quasiparticles is on the order of J ′2/J . These two components
will also show different neutron polarization dependencies.

The fact that 1/3 of the spins of the system are quan-
tum disordered due to frustration can also be observed in
thermodynamic signatures. In particular, the entropy per site,
S(T )/N , can be expected to have a plateau at the value
of 1/3 ln 2 for temperatures on the order of the effective
couplings for the central spins, T ∼ J ′2/J . In this context
we note that, in the two-dimensional model at hand, spon-
taneous symmetry breaking is forbidden for any T > 0 due
to Mermin-Wagner’s theorem [32]. However, at low but finite
temperature the correlation length of the honeycomb subsys-
tem is exponentially large, such that sharp magnon modes are
the relevant excitations in this renormalized classical regime,
and our analysis remains valid.

VI. SUMMARY AND OUTLOOK

We have provided an effective theory for the correlated
partial disorder phase detected in Ref. [16] in the stuffed
honeycomb antiferromagnet, by deriving an effective model
for the central disordered spins in the presence of collinear
background order. Our perturbative treatment is controlled in
the limit J ′ 
 J and includes subleading corrections in 1/S.
Within our semiclassical analysis, the effective triangular-
lattice XXY model undergoes a transition from an in-plane
ferromagnet to an out-of-plane stripe phase, the latter driven
by competing Ising interactions, at a critical Sc � 0.646, with
an intermediate incommensurate phase. With magnetization
corrections growing near the transition, we argue that fluctua-
tions due to the competition of ferromagnetic and stripe orders
lead to a quantum disordered ground state for the central spins.
Given that S = 0.646 is close to S = 1/2, we conjecture that
this mechanism drives the correlated partial disorder phase
observed numerically [16,17].

Our analysis calls for further numerical investigations.
First, it would be of particular interest to investigate the
obtained effective triangular-lattice XXZ model beyond the
semiclassical techniques employed here. A DMRG study
could provide further insights into the nature of the quantum
disordered phase anticipated for S = 1/2. Second, one can
modify the behavior of the full stuffed honeycomb-lattice
model, by introducing additional interactions between the
central spins. Based on our results, we predict that explicit
antiferromagnetic interactions of order (J ′)2/J either between
first-neighbor or second-neighbor sites on the central-spin
lattice lead to stripe order on the C sublattice.
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On the experimental front, the
√

3 × √
3 distortion of

triangular lattice leading to a stuffed honeycomb lattice is
of significance for modeling basal planes in magnetic per-
ovskite ABX3 compounds. Notably, RbFeBr3 shows signs of
PD at low temperatures, however due to a large easy-plane
anisotropy the local moments on the plane are rather thought
to be described by an effective spin-1 XY model [33,34].
The stuffed honeycomb lattice Heisenberg antiferromagnet
has also been studied as a model for the triangular lattice
spin-1/2 antiferromagnet LiZn2Mo3O8, in which 2/3 of the
spins are in a disordered state below a critical temperature
[35]. It has been suggested that the local moments on an
emergent stuffed honeycomb lattice form a spin liquid which
is stabilized by the central spins as magnetic impurities (as
opposed to the case discussed in this work, in which the
central spins enter a quantum disordered phase). However, in
these scenarios a frustrating next-nearest neighbor coupling is
crucial for destabilizing the magnetic order of the honeycomb
lattice [36,37]. We note that alternative explanations for the
unusual magnetic behavior of LiZn2Mo3O8 have been put
forward [38,39].

ACKNOWLEDGMENTS

We thank L. Janssen for useful discussions. This research
has been supported by the DFG through SFB 1143 (Project
A01) and the Würzburg-Dresden Cluster of Excellence on
Complexity and Topology in Quantum Matter—ct.qmat (EXC
2147, Project-id 39085490).

APPENDIX A: DERIVATION OF THE EFFECTIVE MODEL

We integrate out the fluctuations of the honeycomb spins in
the form of magnons by employing a path integral approach.
Denoting bosonic magnon modes as a, b and the central spins
by S, the partition function in imaginary time for the full
system is given by

Z =
∫

D[a, b, S]e−SJ −SJ′ . (A1)

Expanding the exponential in J ′, we obtain

Z = Z0

∫
D[S]e−Seff , (A2)

with the effective action given by
Seff = 〈SJ ′ 〉J + 1

2

(− 〈
S2

J ′
〉
J + 〈SJ ′ 〉2

J

)+ O(J ′3), (A3)

where 〈O〉J = 1/Z0
∫
D[a, b] Oe−SJ denotes the expectation

value with respect to the honeycomb magnon action and Z0

the corresponding partition function. The actions noted above
are to be taken in imaginary time.

1. 1/S expansion

We find the magnons of the honeycomb system in 1/S
expansions by employing the Holstein-Primakoff (HP) repre-
sentation with bosonic modes a,

S+
A =

√
2S − naa, S−

A = a†
√

2S − na (A4)

Sz
A = S − na, (A5)

and similarily for �SB, after having picked a local basis by
rotating the spins on the B sublattice by π around the x axis.
After expanding in powers in 1/S, the Hamiltonian reads
HJ,h = H(0)

J,h + H(2)
J,h + O(1/S0), where H0

J,h corresponds to

the classical ground state energy and H(2)
J,h, which is bilinear

in the bosons, is given by (2). After performing a gauge trans-
formation aq → e−iφq aq with φq = arg f (q), the Hamiltonian
can be diagonalized by a Bogoliubov transformation

aq = uqαq − vqβ
†
−q (A6)

b†
−q = −vqαq + uqβ

†
−q, (A7)

where uq = cosh θq and vq = sinh θq with tanh(2θq) =
| f (q)|/(3 + 3h), yielding Eq. (3). The free magnon Green’s
functions are then given by [19]

Gα
q (iω) = Gβ

q (iω) = J (iω − εq)−1. (A8)

a. Self-energy correction to magnon propagator

The leading-order correction to the magnon propagator
due to quartic interactions of the HP bosons, Eq. (4), can
be obtained by normal ordering the magnon operators α, β

after a Bogoliubov transformation, or equivalently by a static
mean-field decoupling scheme. To this end, we note that the
nonvanishing boson bilinear expectation values in momentum
space are given by

〈a†
qak〉 = 〈b†

−qb−k〉 = v2
k δq,k (A9a)

〈aqb−k〉 = 〈a†
qb†

−k〉 = −ukvkδq,k . (A9b)

Decoupling into the above channels and Bogoliubov trans-
forming, one obtains the quadratic Hamiltonian

: H(0)
J : = J

∑
q

�HF(q)(α†
qαq + β†

qβq) (A10)

with the Hartree-Fock self-energy given by

�HF(q) = −1

6

9(1 + h) − | f (q)|2
ωq

×
∑

k

[
9(1 + h) − | f (k)|2

ωk
− 3

]
, (A11)

which coincides with Oguchi’s result for bipartite antiferro-
magnets [40].

Having obtained the magnon self-energy, we note that
inverting Dyson’s equation for the magnon Green’s func-
tion, G = G + G�G yields Gq(iω)−1 = J−1(iω − ε(q) −
J�(ω, q)), with the static self energy given by �(ω, q) =
�HF

q . It should be emphasized that by summing up all one-
particle irreducible contributions to the propagator correction
through the use of Dyson’s equation, one automatically takes
all powers of 1/S into consideration, which leads to an incon-
sistency in our 1/S systematics. To remedy this inconsistency
we use the fact that the self-energy is subleading [� ∼ S0

while ε(q) ∼ S] and expand the interacting Greens function
in powers of 1/S, obtaining

Gq(iω) = Gq(iω) + Gq(iω)�HF
q Gq(iω) + O(1/S3). (A12)
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b. Magnon-central spin interaction

Expanding HJ ′ in 1/S yields the Hamiltonian given in
Eq. (5), with the vertices defined as

	a
q = fA(q)e−iφq , 	b

q = fB(q), (A13a)

	aa
q,k = −e−iφk f ∗

A (q), 	bb
q,k = f ∗

B (q), (A13b)

	3a
q;k,p = − fA(q)eiφk+iφp−iφk+p−q , (A13c)

	3a
q;k,p = − fB(q). (A13d)

The structure factors fA and fB for coupling the A and
B sublattices to the central spins are given by fA(�q) = 1 +
ei�q·(�n2−�n1 ) + ei�q·�n2 and fB(q) = 1 + e−i�q·�n1 + ei�q·(�n2−�n1 ). We
now rewrite HJ ′ in terms of the Bogoliubov modes αq, βq,
yielding

HJ ′

J ′ =
∑

q

{[(√
S

2
	α

q + 1

4
√

2S
	3α

q

)
αq

+
(√

S

2
	β

q + 1

4
√

2S
	3β

q

)
β

†
−q

]
S−

−q + H.c.

+
∑

k

[
	αα

q,kα
†
k+qαk + 	αα

q,kβ−(k+q)β
†
−k

	
αβ

q,kα
†
k+qβ

†
−k + 	

βα

q,kβ−(k+q)αk
]
Sz

q − Sz
0	

bb
0,q

}
, (A14)

where we have dropped in the interest of brevity all arising
three-boson terms after normal ordering in anticipation of the
Hartree diagram shown in Fig. 2(c): The boson loops will then
just give α, β occupation numbers, which vanish at T = 0.
However, the normal ordering does give rise to corrections
to the vertices 	α and 	β as shown above. Note that the last
summand arises from reordering the b†b term for notational
convenience and is canceled after normal ordering ββ†. For
further considerations this term will be neglected as it does not
contribute to any connected diagrams. The vertices in (A14)
are given by

	α
q = 	a

quq − 	b
qvq, 	β

q = −	a
qvq + 	b

quq (A15a)

	3α
q = (

2	3a
q uq − 2	3b

q vq
)∑

k

v2
k (A15b)

	3β
q = (−2	3a

q vq + 2	3b
q uq

)∑
k

u2
k (A15c)

	αα
q,k = 	aa

q,kuk+quk + 	bb
q,−(k+q)vk+qvk (A15d)

	
ββ

q,k = 	aa
q,kvk+qvk + 	bb

q,−(k+q)uk+quk (A15e)

	
αβ

q,k = −	aa
q,kuk+qvk − 	bb

q,−(k+q)vk+quk (A15f)

	
βα

q,k = −	aa
q,kvk+quk − 	bb

q,−(k+q)uk+qvk . (A15g)

For the subsequent analysis it is useful to note the
	

βα

−q,k+q = 	
αβ∗
q,k (and α ↔ β analogous).

2. Longitudinal coupling

We can now compute the connected diagrams that con-
tribute to Eq. (A3) at quadratic order. The two magnon dia-
grams relevant for xy interactions are shown in Figs. 2(a) and
2(b). As explained above, the magnon loop to be computed
in the Hartree correction (b) reduces to a renormalized spin-
boson vertex at T = 0, so that the leading and subleading
contributions to the transversal coupling are simply given by
a single magnon contraction. With the Green’s functions for
the (free) magnons Gα

q (τ ) = −J〈Tτ αq(τ )α†
q (0)〉 and similarly

for βq one obtains (setting τ ′ = 0 for convenience)

jxy(τ, q) = 1
2

{
Gα (τ, q)

[
S
∣∣	α

q

∣∣2 + 1
4(	α

q 	3α∗
q

)]
+ (α → β, τ → −τ )

}
. (A16)

Fourier transforming [with Gα
q (iω) = Gβ

q (iω) as given in
Eq. (A12)] and taking the static limit ω = 0 then yields
Eq. (7).

3. Transversal coupling

Turning to the longitudinal coupling, we find that at T =
0, only particle-particle bubbles for the bosons (as shown in
Fig. 2) contribute. For the nonvanishing terms, after changing
to the frequency domain (with bosonic Matsubara frequencies
ω, ν), we find

jz(iν, q) = −1

2Jβ

∑
ω

∑
k

{∣∣	αβ

q,k

∣∣2Gα
q+k (−iω − iν)Gβ

−k (iω)

+ ∣∣	βα

q,k

∣∣2Gα
k (iω)Gβ

−k−q(−iω + iν)
}
. (A17)

The Matsubara summations can be evaluated with standard
methods to yield, at T = 0 and using inversion symmetry
ε−k = εk ,

1

Jβ

∑
ω

Gk+q(−iω)G−k (iω − iν) = J

iν + εk + εk+q
, (A18)

and analogous for the second term in Eq. (A17). Taking the
static limit ν → 0 yields Eq. (8) in the main text.

APPENDIX B: GAPLESS LIMIT BY h → 0
EXTRAPOLATION

The expressions for the effective couplings given in
Eqs. (7) and (8) depend on the staggered field h. We evaluate
the couplings numerically for fixed h on a lattice with N × N
unit cells up to N = 365 and Fourier transform to real space
according to

ji j = 1

N

∑
q

j(q)ei�q·(�ri−�r j ). (B1)

Since at any finite h > 0 the dispersion ω(q) is gapped
and correlations decay exponentially, we perform a finite-
size fit of the form ji j (N, h) = j∞i j (h) + Ah exp[−chN], with
j(h), Ah, and ch as free parameters.

We now discuss the h → 0 extrapolation which involves
nonanalyticities. As the gap of ω(q) closes for h → 0, the
momentum summations involved in computing j(h) split in
a lattice contribution for momenta |q| � �, and a continuum
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contribution for λ < |q| < �, where λ and � are the cor-
responding IR and UV cutoffs. The leading-order behavior
for small h will thus be given by the leading order in h
of the continuum contribution. Note that the gap h acts as
an effective IR cutoff, such that we can either evaluate the
integral at λ = 0 and then take h → 0 or equivalently evaluate
the momentum space integral at h = 0 and then take the limit
λ → 0.

1. Transversal coupling

Proceeding, we separate jxy(q) in Eq. (7) into the leading
order and subleading terms. For the leading order, using
explicit expressions for the Bogoliubov coefficients yields

∣∣	α
q

∣∣2+∣∣	β
q

∣∣2 = 3(1 + h)
(∣∣	a

q

∣∣2+∣∣	b
q

∣∣2)−2| f (q)|[	a
q	

b∗
q

]
ω(q)

.

(B2)
Expanding the denominator for small q up to quadratic order,
the continuum contribution to the coupling is of the form
(setting r = ri − r j)

j(r) ∼
∫

d2q

(2π )2 eiq·r
(

27h

ω(q)2
+ 9(1 − h)q2

ω(q)2

)
. (B3)

The squared dispersion in the long-wavelength limit reads

ω(q)2 � 9h(h + 2) + 3/2q2. (B4)

Counting powers of momenta, we find that the second term
gives a regular contribution, while the first integral formally
is log divergent. This divergence, however, is canceled by the
factor h originating from expanding the vertex: Explicitly, the
first integrand of the form eiq·rh/(q2 + h) can be evaluated
analytically to yield a modified Bessel function (having ab-
sorbed numerical prefactors),

j(r) ∼ h

4π
K0(hr2), (B5)

such that no divergent terms appear as h → 0. Expanding the
Bessel function, we thus obtain a scaling function

jxy,0
i j (h) ∼ jxy,0

i j + Ah log h + Bh + Ch3 log h + Dh3 (B6)

for h 
 1. The prefactors A, . . . , D depend on the distance
(ri − r j ) to the respective neighbor and can be determined by
a nonlinear fitting routine.

The analysis for the subleading terms in jxy proceeds
similarly. Crucially, we note that the vertices 	3α

q and 	3β
q

in Eqs. (A15b) and (A15c) each contribute a constant factor
(i.e., independent of q) that involves a momentum summation
over the Bogoliubov coefficient. Using that v2

k ∼ cosh(2θk ) =
| f (k)|/ω(k) and similarly u2

k ∼ sinh(2θk ) = 3(1 + h)/ω(k)
we find that the leading-order contribution to the h → 0
scaling due to the summation is of the form (note �2 � h)

∫
k<|�|

d2k
1√

k2 + h
= −

√
h +

√
h + �2 ∼

√
h + O(h).

(B7)
Since these factors are q independent; they also multiply
h-independent terms appearing in the full evaluation of the
subleading corrections, multiplying the scaling form of jxy,0
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0.0080
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y
,1

3

From finite-size scaling

Fit, j = (0.008) + (−0.005)
√

h

+(0.069)h log h + (0.254)h + (−0.403)
√

h
3

FIG. 7. Example for the h → 0 extrapolation (here: subleading
contribution to transversal coupling between third-nearest neighbors)
by fitting finite-size scaled data to the ansatz given in Eq. (B9).
The obtained errors for the fitting parameters are found to be less
than 1%.

by a factor
√

h. Furthermore, we note that the self-energy at
h = 0

9(1 + h) − | f (q)|2
ωq

h→0−−→ ωq. (B8)

The scaling behavior of the self-energy correction to jxy thus
scales similarly to (B6), such that in total the following scaling
ansatz for the subleading corrections is assumed

jxy,1
i j (h) ∼ jxy

i j + A h log h + B
√

h + Ch + D
√

h
3
. (B9)

An example for the h → 0 extrapolation for the subleading
term with fit according to the scaling form given above is
shown in Fig. 7.

2. Longitudinal coupling

We now discuss the scaling behavior of jz
i j . Since the

expression (8) involves odd powers of ω(q), which lead to
nonanalytic behavior (i.e., the continuum limit and h → 0 do
not commute), we consider the case of h = 0 and work at a
finite cutoff λ as discussed above. For simplicity we consider
the first vertex in (8) and expand∣∣	αβ

q,k

∣∣2ωkωq+k ∼ (2k2 + 2k · q + q2 − 2|k||k + q|). (B10)

Using the above expansion and that ω(k) ∼ |k| for h = 0,
the continuum term of the bubble diagram reads after some
algebra (again dropping prefactors)

jz(q) ∼
∫

d2k

∣∣	αβ

q,k

∣∣2ωkωq+k

|k||k + q|(|k| + |k + q|) =
∫

d2k
1

|k|

−
∫

d2k
1

|k + q| −
∫

d2k
4|k| − 4|k + q|
k2 − |k + q|2 . (B11)

The first two integrals are seen to be regular from power
counting, as are the subsequent Fourier transformations at a
finite �. We note that these regular terms will in general be
polynomials in λ. From Eq. (B4) it is seen that the mass
dimension of the momenta [k] = 1/2 and thus the cutoff
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scales as λ ∼ √
h, such that a generic scaling form will be

a polynomial in
√

h.
For the third integral in (B11), which we denote by I (q), it

is convenient to invert k → −k and split the integrand,

I (q) =
∫

d2k
4|k| − 4|k + q|
k2 − |k + q|2 =

∫
d2k

4|k|
k2 − |k − q|2

− 4
∫

d2k
|k − q|

k2 − |k − q|2 . (B12)

Shifting momenta k → q − k in the second integrand, it is
seen that both integrands are equivalent. The evaluation of
the integral follows to a large extent the steps involved in
the derivation of the RKKY interaction potential in two di-
mensions [41,42]. It is convenient to also directly perform the
Fourier transform,

I (r) =
∫

d2q
∫

d2k
k

q

eiq·r

q − 2k · q
. (B13)

Using that
∫ 2π

0 dφ(q − 2k cos φ)−1=θ (q−2k)2π
√

q2 − 4k2
−1

and performing the angular part of the q integral yields

I (r) ∼
∫ �

λ

dk
∫ ∞

1
dq′ J0(2krq′)k2√

(q′)2 − 1
, (B14)

where we have substituted q = 2kq′. If we neglect the UV
cutoff for the inner integral, the result of the q integration can
be given in a closed form

I (r) ∼
∫ �

λ

dkk2Y0(kr)J0(kr), (B15)

where Y0 is a Bessel function of the second kind. By inspecting
the integrand it is seen that the above integral is regular for a
fixed � < ∞. To obtain the λ → 0 scaling, we consider kr 

1 and expand the integrand. Integration is then trivial, and the
leading order terms are given by λ3 log λ and λ3. Taking into
account the mass scaling of the cutoff as discussed above thus
yields a scaling ansatz of the form

jz
i j (h) ∼ jz

i j + A
√

h + Bh + C
√

h
3 + D

√
h

3
log h. (B16)

APPENDIX C: MINIMAL MODEL FOR XY-FM
TO STRIPE TRANSITION

The competition of XY-FM and 〈2〉 can be studied by
means of a simplified toy model. To this end, we con-
sider a Hamiltonian on the triangular lattice with ferro-
magnetic nearest-neighbor xy interactions and competing
ferromagnetic-antiferromagnetic Ising z interactions on near-
est and second-nearest neighbor bonds,

H = −
∑
〈i j〉

[
jxy
1

(
Sx

i Sx
j + Sy

i Sy
j

)+ jz
1

(
Sz

i Sz
j

)]

+
∑
〈〈i j〉〉

jz
2Sz

i Sz
j (C1)

with jxy
1 , jz

1, jz
2 > 0. For 〈2〉 to be the lowest-energy con-

figuration for the Ising terms, we take jz
2 > jz

1 [23]. We
now introduce a one-parameter family of ground states �S =
S(0, sin ϕ,± cos ϕ)T , where the positive sign is to be taken on
the A, B sublattices and the negative on the C, D sublattices of
a 4 × 1 unit cell on the triangular lattice.

Minimizing the classical energy as a function of ϕ, we find
that the two configuration XY-FM (ϕ = π/2) and 〈2〉 (ϕ = 0)
are degenerate in energy for

−3 jxy
1 + (

jz
1 + jz

2

) = 0. (C2)

Taking, for simplicity, jxy
1 = 1, jz

1 = λ and jz
2 = 2λ, with λ ∈

[0, 1] being a tuning parameter corresponding to S in the ef-
fective model (i.e., fixing the relative strength of longitudinal
and transversal interactions), we compute the magnetization
corrections for both reference states in LSWT as a function of
λ (see also Sec. IV). We find that the degeneracy point is (as in
the full model) masked by a mixed phase, with primary ferro-
magnetic in-plane order and a small incommensurately mod-
ulated out-of-plane-component. This incommensurate phase
extends from 0.91 � λ � 1.0.
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