
PHYSICAL REVIEW B 99, 155151 (2019)

Rapid filling of the spin gap with temperature in the Schwinger-boson mean-field theory
of the antiferromagnetic Heisenberg kagome model
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Using Schwinger-boson mean-field theory, we calculate the dynamic spin structure factor at low temperatures
0 < T � J for the spin-1/2 antiferromagnetic Heisenberg kagome model, within the gapped Z2 spin liquid
phase Ansatz. We find that the spectral gap rapidly fills with temperature, with robust low-energy spectral
weight developing by a temperature of �/3, where the spin gap is 2� (i.e., � is the spinon gap), before
any appreciable rise in spinon density or change in zero-temperature mean-field parameters. This is due to
deconfinement of spinons which leads to terms suppressed only by exp(−�/T ). At still higher temperatures,
the spinon density increases rapidly leading to a breakdown of the Schwinger-boson mean-field approach. We
suggest that if the impurity-free spectral functions can be obtained through neutron scattering experiments on
kagome herbertsmithites, temperature dependence of the subgap weight can provide distinct signatures of a Z2

quantum spin liquid.
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I. INTRODUCTION

The Mermin-Wagner theorem [1] asserts that in two-
dimensional lattices with short-range interactions there can
be no spontaneous breaking of continuous symmetries at
finite temperatures T > 0, although such spontaneous sym-
metry breaking is allowed at T = 0. However, in certain such
lattices, geometric frustration [2–11] due to the interplay
of lattice geometry and antiferromagnetic coupling leads to
quantum fluctuations strong enough to preserve continuous
symmetries even at T = 0. A quantum spin liquid [8–12]
(QSL) is such a phase of matter, where localized magnetic
moments are highly correlated but their fluctuations are never-
theless still very pronounced even at T = 0, leading to a high
density of low-lying energy eigenstates, and the ground state
can then host fractionalized excitations and topological order.

The ground state of the paradigmatic spin-1/2 antiferro-
magnetic Heisenberg kagome model (AFKM) is a promising
candidate for a QSL [13,14], while experiments [15–22] on
the kagome-lattice compound herbertsmithite indicate that it
may indeed comprise such a QSL ground state. A big debate,
both experimentally and theoretically, is the existence of a
spin gap in the system. NMR measurements of Fu et al. [23]
indicate a nonzero spin gap, whereas inelastic neutron scat-
tering (INS) measurements of Han et al. suggest a continuum
of fractionalized spinon excitations [24] with an absence of
any sharp onset with frequency [25,26], although it is to be
mentioned that INS continua do not necessarily come from
fractionalized excitations only. A large number of low-lying
excitations can also give a broad frequency response in INS.
It is also worth noting here that herbertsmithite is known to
be more complex than the nearest-neighbor AFKM primar-
ily due to Dzyaloshinskii-Moriya interactions and impurities
[27–36], and that recent measurements on variants of the

herbertsmithite materials show evidence for gapless excita-
tions [37,38]. On the theoretical side, density matrix renor-
malization group (DMRG) simulations offer strong evidence
for a robustly gapped Z2 QSL [39–42], while many recent
computational studies have argued for a gapless, possibly U(1)
Dirac QSL state [43–46].

The two-dimensional (2D) Z2 QSL is known not to need
to go through a transition as the temperature is increased,
because the involved topological defects are pointlike objects
known as visons, which are always created with finite density
at nonzero temperatures [9,47]. This means that the 2D Z2

QSL may be smoothly connected to a trivial paramagnet, i.e.,
there is only a crossover at finite temperatures. Starting from
the ground state with gapped spinon and vison excitations
as is the case in a gapped Z2 QSL, as the temperature is
subsequently cranked up, these excitations become thermally
populated. As soon as there is a density of thermally ex-
cited visons, the different topological ground-state sectors can
no longer be distinguished. However, even though strictly
speaking the topological order of the 2D gapped Z2 QSL
is destroyed at any finite temperature [48,49], remnants of
the QSL phase must survive in the form of local physical
observables, which cannot be immediately destroyed at T > 0
in the absence of a zero-temperature phase transition.

The dynamic spin structure factor (DSF) offers a useful
way of relating theoretical results to INS measurements that
can shed light on the properties of the AFKM, and has been
numerically computed in this model at zero and finite tem-
peratures using exact diagonalization methods in small sys-
tems [50–52], and at zero temperature, using the Abrikosov
fermion mean-field theory [34] and SBMFT [25,36,53]. Such
finite-temperature measurements can allow for a better char-
acterization of the ground-state properties of the AFKM in
light of the aforementioned discussion of how QSL behavior
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at finite temperature is related to the zero-temperature physics.
Recently, Ref. [54] has computed the finite-temperature DSF
of the AFKM at finite temperatures using the numerical linked
cluster expansion (NLCE) method, but the latter is only valid
for T � J/4. Previously, the finite-temperature static structure
factor was computed using a high-temperature expansion [55].

In this paper, we compute the finite-temperature DSF of the
AFKM in the framework of Schwinger-boson mean-field the-
ory [13,56–59] (SBMFT). Low-temperature thermodynamic
properties have previously been computed in SBMFT, such as
in the case of the triangular-lattice [60,61] and square-lattice
[57,62] Heisenberg antiferromagnets. Our work is fundamen-
tally different though, as the latter studies investigate systems
that are ordered, and hence gapless in an SBMFT sense, at
zero temperature, which leads to subtleties in the SBMFT
treatment since at finite temperature a gap suddenly emerges
due to being in a disordered phase. On the other hand, AFKM
is still gapped and in a disordered phase at T = 0, and thus
we do not face such issues. The work presented here follows
zero-temperature DSF calculations [53] in SBMFT of various
ground states of the AFKM based on two prototypical Ansätze
[13,63] of the projective symmetry group [58,64] (PSG). We
are not aware of any previous such calculation at very low but
nonzero temperatures.

In the framework of SBMFT, bond mean fields are used
to characterize the QSL, where a given PSG Ansatz sets
the properties of the mean fields. These local observables
are expected to not vanish immediately at finite temperature
due to the crossover from a QSL ground state to a trivial
paramagnet. Thus, as long as the spinon density is low enough
such that interactions can be neglected, SBMFT can provide
a suitable method to qualitatively study AFKM properties at
low temperatures.

A. Summary of results

Our most surprising and striking result is that the spectral-
weight in the spin gap (∼2�, where � is the spinon gap)
in the DSF fills up rapidly with temperature. Well below the
spin-gap energy and even before the SBMFT parameters have
changed significantly from their T = 0 values or there is any
significant rise in spinon density, the low-frequency spectral
weight starts to get populated. This is due to deconfinement
of spinons in a Z2 QSL, which leads to terms suppressed
by a factor of only exp(−�/T ) rather than exp(−2�/T ),
the suppression factor in case of confined spinons. Only
at still higher temperatures (T > 0.1J), the spinon density
starts rising rapidly leading to a breakdown of the SBMFT
treatment. This result applies to both the different mean-field
Ansätze that we consider. We also note some interesting
changes in spectral weight with frequency and wave vector
in the Brillouin zone.

A quantitative comparison of our results with experiments
is not appropriate as experimental systems have many ad-
ditional interactions and also because the SBMFT is not
expected to be quantitatively accurate for the spin-half model.
However, the fact that the spin gap is rapidly populated at
low temperatures, with an activation energy different from
the T = 0 spin gap, in itself constitutes a signature of de-
confinement. This is a robust result and can, in principle, be

looked for in experiments. However, this is not possible for
current experiments in Ref. [24] where impurities need to be
subtracted [14] and the very existence of a spin gap is unclear.
But, we can still attempt a qualitative comparison. As we show
below for one of the Ansätze, we can qualitatively capture
their DSF measurement at low temperature T ∼ J/100 and
low frequency ω ∼ J/10. However, our DSF is not constant
over frequency as theirs is, but we argue that this can be repro-
duced in SBMFT by allowing for spinon-vison interactions as
is done in Ref. [25]. In the latter, the DSF is structureless and
flattens at intermediate energies upon including the spinon-
vison interactions, albeit there remains an onset around
ω ∼ J/10. Our results, in which the onset completely vanishes
at low temperatures, strongly indicate that such a study at fi-
nite temperature incorporating spinon-vison interactions may
lead to a much more complete agreement with the measure-
ments of Ref. [24], and we leave this open for future work.

B. Structure of the paper

The rest of the paper is organized as follows. In Sec. II,
after introducing the AFKM, we provide a brief review of
SBMFT, derive the mean field-decoupled AFKM Hamilto-
nian, and discuss the self-consistency conditions on the re-
spective bond mean fields and local constraint. In Sec. III,
we derive the finite-temperature DSF. Section IV provides
the numerical results of the finite-temperature DSF for two
prominent PSG Ansätze, followed by a discussion of all the
results. We conclude and provide outlook for follow-up work
in Sec. V. The paper contains four Appendices supplementing
the material presented in the main text with further details and
results. Furthermore, we set Planck’s reduced constant h̄ and
Boltzmann’s constant kB to unity throughout the entire paper.

II. MODEL AND METHODS

The antiferromagnetic Heisenberg Hamiltonian on the
kagome lattice is given by

Ĥ = J
∑
〈i, j〉

Ŝi · Ŝ j, (1)

where Ŝi is the spin operator on site i, and J > 0 is the
antiferromagnetic spin coupling constant. We now express the
spin operators in terms of Schwinger bosons:

Ŝi = 1
2 b̂†

i,ασ̂αβ b̂i,β , (2)

where b̂i,β and b̂†
i,α are bosonic annihilation and creation

operators satisfying the canonical commutation relations
[b̂i,α, b̂ j,β ] = 0 and [b̂i,α, b̂†

j,β ] = δi, jδα,β . All throughout the
paper, we assume summation over Greek indices, with which
we denote the spin degrees of freedom. As such, (1) can now
be rewritten as

Ĥ = J

4

∑
〈i, j〉

(2δα,μδβ,γ − δα,βδγ ,μ)b̂†
i,α b̂†

j,γ b̂i,β b̂ j,μ

+ λ
∑

i

(b̂†
i,α b̂i,α − 2S ), (3)

where λ is a Lagrange multiplier that constrains, on average,
the number of bosons to 2S per site, where S is the spin
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length [62]. Note that this is necessary since the Hilbert space
of the Schwinger bosons is infinite while that of the spin
operators is not. The Lagrange multiplier is a way to make the
mapping from spins to Schwinger bosons faithful. Mapping
spins to Schwinger bosons has been extensively used in the
study of antiferromagnets [13,56,57,62] and has recently also
been used in Keldysh quantum field theoretical treatments of
out-of-equilibrium strongly correlated spin systems [65,66].

Strictly speaking, the Schwinger-boson number constraint,

b̂†
i,↑b̂i,↑ + b̂†

i,↓b̂i,↓ = 2S, (4)

should be enforced by a site-dependent Lagrange multiplier
in (3) to enforce exactly 2S bosons per site, but this is
numerically very expensive, which is why the site-dependence
of λ is dropped to enforce this constraint only on average. It
is also important to realize that the constraint (4), in relating
a boson number to a spin length, means that S can now be
treated as a continuous parameter that interpolates between
the extreme quantum limit of S = 0 and the classical limit
of S → ∞. In the SBMFT treatment of AFKM, choosing
the spin length S = 1/2 can lead to magnetically ordered
phases [13]. It is therefore quite common to go to lower
values of S in order to ensure falling in the QSL phase of
this model. For this purpose and for continuity with previ-
ous work [53], in this paper, we choose S = 0.2, though
we stress that other values of S < 1/2 can only quantita-
tively, but not qualitatively, change the main conclusions of
this work.

A. Schwinger-boson mean-field theory

Let us consider the SU(2)-symmetric singlet pairing and
hopping bond operators

Âi j = 1
2εαβ b̂i,α b̂ j,β , (5)

B̂i j = 1
2 b̂†

i,α b̂ j,α, (6)

respectively, with εαβ the SU(2) Levi-Civita tensor, which
allows us to rewrite (3) in the form

Ĥ = J
∑
〈i, j〉

(B̂†
i jB̂i j − Â†

i jÂi j ) + λ
∑

i

(b̂†
i,α b̂i,α − 2S ). (7)

A mean-field decoupling of (7) yields

ĤMF = J
∑
〈i, j〉

(〈B̂i j〉B̂†
i j − 〈Âi j〉Â†

i j + H.c.)

+ J
∑
〈i, j〉

(〈Âi j〉〈Â†
i j〉 − 〈B̂i j〉〈B̂†

i j〉)

+ λ
∑

i

(b̂†
i,α b̂i,α − 2S ). (8)

The fields 〈Âi j〉 and 〈B̂i j〉 are in general complex-valued
parameters that shall be self-consistently computed at a given
temperature T (see Sec. II C). Even though most SBMFT
studies usually use only the pairing field 〈Âi j〉, additionally
including the hopping field 〈B̂i j〉 has been proven[67,68]
to offer a better description of the excitation spectrum in
frustrated systems. Figure 1 shows the kagome lattice, where
a unit cell contains three sites, and thus, six bonds. SBMFT

FIG. 1. The Ansätze q = 0 and
√

3 × √
3 have three-site unit

cells (demarcated in dashed blue lines), on the kagome lattice, with
each containing six bonds, where each bond has a singlet pairing and
hopping mean field. For the q = 0 Ansatz, all pairing and hopping
mean fields equal A and B, respectively. For the

√
3 × √

3 Ansatz,
bonds with a dashed (solid) arrow have pairing mean field ±A and
hopping mean field B.

involves setting all the auxiliary fields in (8) to static and
uniform saddle-point (self-consistent) parameters. Here, we
consider the two prototypical symmetric Ansätze [13,63,69]
q = 0 and

√
3 × √

3, which are characterized by

〈Âi j〉 = Aeiθ , 〈B̂i j〉 = B, (9)

where, consulting Fig. 1, θ = 0 (φ) on dashed (solid) bonds,
with φ = 0 for the q = 0 Ansatz and φ = π for the

√
3 × √

3
Ansatz, and the mean fields are such that A > 0 and B < 0. A,
B, and λ will be calculated self-consistently for each Ansatz,
and their value will depend, in addition to the Ansatz itself,
on the temperature T at which our system is. Enforcing self-
consistency is discussed in Sec. II C.

We now employ the Fourier transformation

b̂i,α = b̂s
m,α = 1√

N

B.z.∑
k

b̂s
k,αeik·(Rm+s), (10)

where N is the number of unit cells, the site position is ri =
Rm + s, Rm is the position of the unit cell m housing the site,
s denotes the position of the site within the unit cell, and B.z.
stands for the first Brillouin zone. Plugging (10) into (8), we
derive

ĤMF =
B.z.∑

k

̂
†
kDk̂k + 6NJ (A2 − B2) − 3Nλ(1 + 2S ),

(11)

where we have introduced the SU(2) spinor

̂k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b̂u
k,↑

b̂v
k,↑

b̂w
k,↑

b̂u†
−k,↓

b̂v†
−k,↓

b̂w†
−k,↓

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (12)
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with

Dk = J

(
BRk ei φ

2 APk,φ

e−i φ

2 APᵀ
k,φ

BRk

)
+ λ16, (13)

Rk =

⎛
⎜⎝

0 cos k1 cos k3

cos k1 0 cos k2

cos k3 cos k2 0

⎞
⎟⎠, (14)

Pk,φ =

⎛
⎜⎝

0 − cos
(
k1 − φ

2

)
cos

(
k3 + φ

2

)
cos

(
k1 + φ

2

)
0 − cos

(
k2 − φ

2

)
− cos

(
k3 − φ

2

)
cos

(
k2 + φ

2

)
0

⎞
⎟⎠,

(15)

where 1d , with d ∈ N, is the d × d identity matrix and
φ = 0 or π if the Ansatz is q = 0 or

√
3 × √

3, respec-
tively. Moreover, our notation entails denoting k j = k · e j ,
j ∈ {1, 2, 3}, with the real-space vectors e1 = a(1/2,

√
3/2),

e2 = a(1/2,−√
3/2), and e3 = a(−1, 0), and a is the intersite

spacing, which, without any loss of generality, we set to unity
throughout the paper.

B. Bogoliubov transformation

We now diagonalize (11) by employing the Bogoliubov
transformation

̂k = Mk�̂k, (16)

with

Mk =
(

Uk Xk
Vk Yk

)
, (17)

and the Bogoliubov spinor

�̂k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ̂ u
k,↑

γ̂ v
k,↑

γ̂ w
k,↑

γ̂
u†
−k,↓

γ̂
v†
−k,↓

γ̂
w†
−k,↓

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (18)

where the Bogoliubov operators satisfy the canonical com-
mutation relations [γ̂k,α, γ̂q,β] = 0 and [γ̂k,α, γ̂

†
q,β] = δk,qδα,β .

The Bogoliubov transformation (16) diagionalizes (11) if and
only if

M†
kτ 3Mk = τ 3, (19)

M†
kDkMk = Ek =

(
Ek,↑ 03

03 E−k,↓

)
, (20)

where

τ 3 =
(
13 03

03 −13

)
, (21)

03 is the 3 × 3 zero matrix, and

Eq,α =
⎛
⎝εu

q,α 0 0
0 εv

q,α 0
0 0 εw

q,α

⎞
⎠, (22)

are the Bogoliubov bosonic eigenenergies at momentum k and
spin polarization α. We recall here that due to time-reversal
invariance and SU(2) symmetry one has εs

k,↑ = εs
−k,↓ and

εs
k,↑ = εs

k,↓, respectively, with s ∈ {u, v,w}. Even though Mk
can in principle be calculated analytically for both Ansätze
q = 0 and

√
3 × √

3, it contains very lengthy expressions.
Nevertheless, it can be very efficiently and cheaply numer-
ically computed using standard matrix-diagonalization func-
tions in MATLAB or MATHEMATICA, for example. Care has to
be taken though so as to ensure that (19) is satisfied. Thus,
with the Bogoliubov transformation, one can rewrite (11) in
the diagonal form

ĤMF =
B.z.∑

k

�̂
†
kEk�̂k + 6NJ (A2 − B2) − 3Nλ(1 + 2S ).

(23)

As such, with regards to the time-dependent Bogoliubov
operators, we use the Heisenberg equation to derive

γ̂ r
k,α (t ) = e−iεr

k,αt γ̂ r
k,α. (24)

This relation will be useful in the derivation of the DSF in
Sec. III.

C. Self-consistent mean-field parameters

On a unit cell m, the necessary and sufficient conditions for
self-consistency for both bond mean fields and the Lagrange
multiplier are

A = 1

12N
εαβ

u.c.∑
m

〈
b̂u

m,α b̂v
m,β + b̂v

m,α b̂w
m,β + b̂w

m,α b̂u
m,β

+ e−iφ(
b̂u

m,α b̂v
m̃,β + b̂v

m,α b̂w
m̃,β + b̂w

m,α b̂u
m̃,β

)〉
, (25)

B = 1

12N

u.c.∑
m

〈
b̂u†

m,α b̂v
m,α + b̂v†

m,α b̂w
m,α + b̂w†

m,α b̂u
m,α

+ b̂u†
m,α b̂v

m̃,α + b̂v†
m,α b̂w

m̃,α + b̂w†
m,α b̂u

m̃,α

〉
, (26)

2S = 1

3N

u.c.∑
m

〈
b̂u†

m,α b̂u
m,α + b̂v†

m,α b̂v
m,α + b̂w†

m,α b̂w
m,α

〉
, (27)

which are then solved numerically at a given temperature T
using fixed-point iteration or some other efficient method.
All throughout we assume that a spinon condensate does not
form, and this can always be justified so long as we do not
get complex spinon eigenvalues. We note that this method is
an alternative to the one based on free-energy extremization
[13,53,63] that has traditionally been used, but it gives the
same results and is more efficient based on our experience.

We present in Fig. 2 the self-consistent field values for
spin length S = 0.2 and at temperatures up to T = 0.23J . We
see that both bond mean fields A and B smoothly decrease
in magnitude until T ≈ J/5 where they nonanalytically go
to zero. This is a result of SBMFT being inadequate for
the description of the paramagnetic phase at temperatures
so high that nearest-neighbor correlations are destroyed [57].
Moreover, it is clear that the bond fields going to zero cannot
be an indication of a continuous phase transition for two main
reasons: (i) the 2D gapped Z2 spin liquid does not undergo
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FIG. 2. Self-consistent bond mean fields and local constraint pa-
rameter as a function of temperature for the symmetric Ansätze q = 0
and

√
3 × √

3. The apparent nonanalyticity at T ≈ J/5 indicates the
unreliability of SBMFT at too high temperatures. In reality, one
expects the bond parameters A and B to smoothly and asymptotically
go to zero as is the case in a crossover.

such a transition, but rather a crossover, to a trivial param-
agnet at finite temperature; and (ii) the bond fields A and B
are not local order parameters in the Landau sense. Despite
this nonanalyticity being an artifact of SBMFT at too high
temperatures [56,57,61], it is known that at low temperatures
where the mean fields are nonzero SBMFT gives qualitatively
reliable results [56,57,60–62]. In fact, Fig. 3 shows the spinon
gap � and spinon density

nspinon = 1

3N

bands∑
r

B.z.∑
k

1

eεr
k,α

/T − 1
, (28)

where it can be seen that for the low temperatures we consider
(T � J/10) nspinon is small enough such that interactions can
be neglected, thus rendering SBMFT results valid. However,
for higher temperatures, Fig. 3 shows that the spinon density
can no longer be considered small enough for interactions
to be neglected, which means that SBMFT is not to be
considered a faithful description of the underlying physics.
More drastically, once the bond fields are completely dimin-
ished at T ≈ J/5, which is the case for a high-temperature
trivial paramagnet,[56,57] the qualitative validity of SBMFT
completely fails. Indeed, when A = B = 0, the Hamiltonian
(11) is diagonal with only λ along the diagonal of Dk.
Hence, a Bogoliubov transformation is not needed, and the
“spinon” density is just 2S then. Therefore, here, it no longer
makes sense to speak of spinons, because in this limit the

FIG. 3. The gap (top) and spinon density (bottom) as a function
of temperature for the symmetric Ansätze q = 0 and

√
3 × √

3
as calculated in SBMFT. The spinon density is small such that
interactions can be neglected for low temperatures making SBMFT
adequate for the low-temperature description of the AFKM.

excitations in SBMFT correspond to simply adding or re-
moving a boson on a lattice site, but these excitations are
unphysical and have no correspondence in the physical Hilbert
space of the original spin model. There are ways of extending
the theory to more reliably handle such high temperatures
[61], though for low temperatures, SBMFT gives qualitatively
sound results that are often offset by a trivial factor [56,62].
As we are interested only in low-temperature DSF calcula-
tions, such extensions to SBMFT are outside the scope of
our paper.

III. SPIN STRUCTURE FACTORS

We now derive the finite-temperature DSF for the AFKM
in the framework of SBMFT. The DSF is the Fourier trans-
form of the space-time spin-spin correlations and is formally
given by

S(k, ω) = 1

3N

∑
l, j

e−ik·(rl −r j )
∫ ∞

−∞
dt eiωt 〈Ŝl (t ) · Ŝ j〉. (29)

Recalling that we have ε
j
p,↑ = ε

j
p,↓ due to SU(2) symmetry,

and employing (24) and the relations

〈
γ̂

r†
k,αγ̂ s

q,β

〉 = 1

eβεr
k,α − 1

δk,qδr,sδα,β, (30)〈
γ̂ r

k,αγ̂ s
q,β

〉 = 0, (31)
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we derive

S(k, ω) = 1

12N

B.z.∑
q

bands∑
r,s,m,n

[
δ
(
ω + εm

q,↑ + εn
−k−q,↑

)
(
eεm

q,↑/T − 1
)(

eεn
−k−q,↑/T − 1

)A r,s,m,n
k,q + eεn

k+q,↑/T δ
(
ω + εm

q,↑ − εn
k+q,↑

)
(
eεm

q,↑/T − 1
)(

eεn
k+q,↑/T − 1

) Br,s,m,n
k,q

+eεm
−q,↑/T δ

(
ω − εm

−q,↑ + εn
−k−q,↑

)
(
eβεm

−q,↑/T − 1
)(

eεn
−k−q,↑/T − 1

) C r,s,m,n
k,q + eεm

−q,↑/T eεn
k+q,↑/T δ

(
ω − εm

−q,↑ − εn
k+q,↑

)
(
eεm

−q,↑/T − 1
)(

eεn
k+q,↑/T − 1

) D r,s,m,n
k,q

]
, (32)

where the terms in script font are defined in Appendix A, and
they comprise sums of products of the momentum-dependent
Bogoliubov matrices of (17).

The finite-temperature DSF can be understood by thinking
of an INS experiment, where the incoming neutron exchanges
with the system a net momentum k and a net energy ω. As in
the zero-temperature case, an incoming neutron can transfer a
net momentum k and a net energy ω � 0 if and only if there
are two spinons whose eigenenergies sum to ω at momenta
that sum to k. At finite temperature, on the other hand, the
spinons are thermally excited, and thus they can also transfer
net energy (in such a case ω < 0) to the neutron. Moreover,
the net energy exchange at finite temperature can either be
sums or differences, giving rise to the first three terms in (32),
in addition to the fourth, which is the only remaining term at
zero temperature. Indeed, in the limit T → 0, (32) reduces to
the zero-temperature DSF derived in Ref. [53].

What is particularly interesting about (32) is that terms
that only appear at finite temperature are not all exponentially
suppressed by the spin gap 2�. In fact, two terms are exponen-
tially suppressed only by the spinon gap �, and thus it would
be interesting to see if these terms will lead to substantial
contributions at low temperature. Of course, this will actually
also depend on the numerical values of the factors Br,s,m,n

k,q
and C r,s,m,n

k,q , and can provide clear signature of deconfinement
of spinons.

IV. RESULTS AND DISCUSSION

Numerically calculating (32) in the presence of Dirac-delta
functions is problematic due to the zero support these func-
tions have. As such, we approximate the Dirac-delta functions
in (32) by Lorentzians with width 10−3, and subsequently use
the VEGAS [70] Monte Carlo integration routine to numeri-
cally evaluate the finite-temperature DSF, which has proven
to be a viable scheme in previous works [25,53]. In all our
numerical calculations, the spin length is set to S = 0.2, and
we use the self-consistent parameters shown in Fig. 2. The
choice of S = 0.2 is to ensure that we are in the quantum spin
liquid phase [13] and additionally serves to provide continuity
with previous work [53].

We begin with the finite-temperature DSF results shown
in Fig. 4 for the q = 0 Ansatz along the �-M-K-� high-
symmetry lines at low temperatures T � 0.1J . Even though
at zero temperature there is no spectral weight at all below
the spin gap in the DSF, we see that even at very small tem-
perature T = 0.01J , there is already non-negligible spectral
weight filling up the spin gap continuously down to negative
frequencies. This spectral weight arises from the first three
terms in (32), which completely vanish at T = 0J . Physically

in an INS setup, this means that due to thermal excitations,
processes exist where the incoming neutron and an excited
spinon impart (absorb) energy on (from) a second spinon,
which gives rise to weight in the DSF at positive (negative)
frequencies that are smaller than the spin gap in magnitude.
Also, this can alternatively mean that two excited spinons
impart energy on the incoming neutron, which contributes
weight only at negative frequencies ω � −2� in the DSF.
Even though it seems that below the spin gap the DSF is
homogeneous over momentum at T = 0.01J , Fig. 5 shows
that at this temperature at fixed frequency ω = 0.1J , the DSF
has a rich structure with minimum at the � point (kx, ky) =
(0, 0) and maximum at the M point (kx, ky) = (0, 2π/

√
3),

and with the K point (kx, ky) = (2π/3, 2π/
√

3) being of an
intermediate spectral weight. This is remarkably similar to the
INS measurement of Han et al. at T ∼ J/100 and ω ∼ J/10
in Fig. 1(c) of Ref. [24]. However, unlike their result, we do
not find that the DSF is constant as a function of frequency.
In fact, around the spin gap, the DSF is about three orders of
magnitude larger than at ω = 0.1J .

As the temperature is increased to T = 0.02J , the spectral
weight around ω = 0.1J is already larger by almost a factor of
three from what it is at T = 0.01J as can be seen in Figs. 4 and
5. Interestingly, the DSF at ω = 0.1J in Fig. 5 shows a notable
change at T = 0.02J compared to T = 0.01J , whereas the
maximum at the M point in the latter now shows a hexagram
structure of lower spectral intensity. A similar hexagram struc-
ture of yet lower intensity also appears at the � point.

At T = 0.05J , the spectral weight around ω = 0.1J is
over two orders of magnitude larger than at T = 0.01J at
the same frequency, whereby the signal in the DSF around
zero frequency shown in Fig. 4 compares in weight to that
above the spin gap in certain regions. Interestingly, we see
that at ω = 0J the weight concentrates at the � and M points
even though the highest-intensity point over the whole DSF
is at the K point at roughly ω = 0.5532J . Note that at zero
temperature, there is no weight at all at the � point, and this is
due to the fact that the ground state has a total spin of zero.
At finite temperature, there are thermal excitations and the
system does not have zero total spin. The DSF at ω = 0.1J
for this temperature is also given in Fig. 5, where its structure
is similar to that at T = 0.02J .

As the temperature is increased to T = 0.1J , � becomes
the highest-intensity point in the DSF, and the M point at
zero frequency overtakes in intensity the K point at ω =
0.5532J . Moreover, it can be seen that the DSF seems to be
splitting into three distinct separate regions, one at positive
frequency, a second at negative frequency, and a third region
around ω = 0J . From (32), it is easy to determine which terms
contribute to each region. The first term in (32) is responsible
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FIG. 4. The dynamic spin structure factor for the q = 0 Ansatz along the �-M-K-� high-symmetry lines at finite temperatures T/J = 0.01,
0.02, 0.05, and 0.1. Even though at T = 0J the DSF displays no spectral weight at all below the spin gap [53], at T = 0.01J it already shows
nonnegligible weight below the spin gap continuously down to negative frequencies, while already at T = 0.02J the DSF below the spin gap
shows nontrivial weight.

for the DSF weight at negative frequencies, and this becomes
more prominent with higher temperature, as the spinons are
more thermally excited and hence it is more likely that two
spinons impart their energy on the incoming neutron. The
second and third terms of (32) correspond to processes where
a neutron and an excited spinon impart (absorb) energy on
(from) a second spinon, leading to the extended region around
zero frequency in the DSF. This contribution also grows with
temperature. The DSF at ω = 0.1J shown in Fig. 5 is also
significantly different from that shown at lower temperatures.
We remark that at this temperature, the spin density is still
small enough such that interactions may be neglected and
SBMFT therefore remains valid, but as the lower panel of
Fig. 3 clarifies, here we are in a regime where the spinon
density is increasing rapidly, and thus SBMFT cannot be
fully trusted at any higher temperatures. Indeed, this three-
region structure of the DSF becomes even more prominent
at higher temperatures. A discussion thereof is provided in
Appendix B.

Note that all the structures in Fig. 5 exhibit a sixfold
rotation symmetry around the � point due to the symmetric
nonchiral nature of the q = 0 Ansatz where time-reversal
symmetry is preserved. In the case of chiral Ansätze such
as cuboc1 [69], the DSF displays time-reversal symmetry
breaking through a reduction of the sixfold rotation symmetry
around the � point to a threefold one, whereas the static spin
structure factor (SSF) is always invariant under k → −k [53].
For the latter, see Appendix C for examples.

In addition to our results for the q = 0 Ansatz, we also
calculate in Fig. 6 the DSF for the

√
3 × √

3 Ansatz along the

�-M-K-� high-symmetry lines. The same behavior manifests
itself as in the case of the q = 0 Ansatz. As temperature
is increased, the spin gap of the DSF is rapidly filled with
spectral weight even when the temperature is much lower that
the spin gap itself. We also present the DSF for the

√
3 × √

3
Ansatz at fixed frequency ω = 0.1J in Fig. 7, where we see
that, just as in the case of the q = 0 Ansatz, the structure of the
DSF is very rich even at very low T , and it changes noticeably
as the temperature is increased. Also as in the case of the
q = 0 Ansatz, at T = 0.1J a three-region structure emerges
in the DSF seen in Fig. 6. This facet is further discussed in
Appendix B. At zero temperature, the DSF of the

√
3 × √

3
Ansatz has its highest intensity at the M point, and yet with
increasing temperature, we see that at ω = 0J the K point has
more weight than the M point. This is similar to the case of the
q = 0 Ansatz but with the points interchanged. We remark that
even though it is relatively easy to tell both Ansätze apart from
their DSF at the lower temperatures, the distinction is much
less obvious at higher temperatures. Indeed, in Appendix B,
the DSF is basically identical for both at T = 0.19J when
SBMFT implies a phase close to a trivial paramagnet, but
the theory is unreliable at such high temperatures due to the
significant spinon density; cf. bottom panel of Fig. 3.

In Fig. 8, we show the DSF at T = 0.01J at high fre-
quency for both Ansätze. Once again, the DSF exhibits sixfold
rotation symmetry around the � point due to time-reversal
symmetry. We note that we also calculate this DSF at higher
temperatures T � 0.1J but we do not present these results
as they look almost identical to their T = 0.01J counterparts
besides a faint smoothening effect. As a further probe of the
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FIG. 5. The dynamic spin structure factor over the extended Brillouin zone at finite temperature and fixed frequency ω = 0.1J for the q = 0
Ansatz. All results exhibit a six-fold rotation symmetry around the � point due to time-reversal invariance. Interestingly, the DSF exhibits a rich
structure at T = 0.01J , where it is reminiscent of the experimental result in Fig. 1(c) in Ref. [24] at an energy roughly an order of magnitude
below J .

frequency dependence in the DSF, we plot it for each Ansatz in
Fig. 9 for the K and M points over the frequency range ω/J ∈
[−1, 1]. In accordance with our description above, we see that
the spectral weight around zero frequency is much smaller
than at the spin-gap energy for T = 0.01J , although nonneg-
ligible given our numerical accuracy and the rich structures
in Figs. 5 and 7. However, the spin gap quickly fills up with
temperature, with a significant zero-frequency peak already at
T = 0.02J for the M point in both Ansätze. By T = 0.05J , the
spectral weight around the zero-frequency region is almost of
the same order as that at the spin-gap energy. We again see the
three-region structure forming in the DSF at T = 0.1J , which
we have already discussed. Also as previously mentioned, we
see that even though for the q = 0 (

√
3 × √

3) Ansatz the
K (M) point is always the highest in spectral weight over
the entire DSF at very low temperature, as the temperature
is raised, the zero-frequency spectral weight builds more
intensely at the M (K) point. It is also worth mentioning
that the frequency-dependent nature of the DSF as shown in
Fig. 9 is in contrast to INS measurements [24] that show the
DSF to be constant as a function of ω–apart from the peak at
the � point, which most likely is due to dirt in the sample.
Nevertheless, such ω dependence can be vastly removed by

including spinon-vison interactions that lead to a structureless
DSF [25]. In fact, in Ref. [25] spinon-vison interactions do not
succeed in completely removing an onset in the DSF, where
one still remains at low frequency. Our results show that this
onset is completely removed even at quite low temperatures.
Therefore we expect that a finite-temperature extension of
Ref. [25] would bring the numerical and experimental results
for the DSF to great agreement. This is beyond the scope of
the current paper, however, and we leave it open for future
work. We summarize the finite-temperature contribution to the
DSF in Table I. Even though the contribution is very small for
T = 0.01J , we find that it is more than four percentage points
at T = 0.05J where SBMFT is expected to still be reliable.

From a different point of view, our results rely on
an SBMFT self-consistently determined spinon gap that is
known to be an overestimate of its actual physical value. In
fact, in Ref. [25] this is taken into account by setting the
gap to a value smaller than its self-consistent result. In our
case, this is something that we can also do in principle. For
example, if we are at temperature T and decrease the gap by a
factor of two, we would see the same level of spin-gap filling
happening originally at 2T ; cf. (32). This in principle would
bring our results qualitatively even closer to the measurements
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FIG. 6. Same as Fig. 4 but for the
√

3 × √
3 Ansatz.
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3 (bottom) Ansätze. Unlike at lower energies (cf. Figs. 5 and
7), the DSF changes insignificantly and is still almost the same up to
T = 0.1J .

of Ref. [24]. Similarly, our results nontrivially depend on the
value of S , which we have set to 0.2 due to continuity with
previous work and to ensure that we are deep in the quantum
regime. Indeed, if we increase S , this would actually decrease
our spinon gap [13,71], eventually closing the gap and form-
ing a condensate as long-range order emerges. Therefore our
results would be even further enhanced at larger S where a
smaller finite spinon gap arises.

TABLE I. Self-consistently calculated spin gap 2� for the q = 0
SBMFT Ansatz on the AFKM as a function of temperature, along
with the contribution percentage f to the DSF from energies ω < 2�.

T/J 0 0.01 0.02 0.05 0.1

A 0.26269 0.26269 0.26268 0.26058 0.23357
−B 0.05729 0.05729 0.05730 0.05682 0.04373
λ 0.41268 0.41268 0.41270 0.41319 0.40498
2�/J 0.26296 0.26458 0.26480 0.28851 0.40188
f(%) 0 5.79 × 10−5 4.34 × 10−2 4.32 30.57

Importantly, we note that we have checked that our results
obey the sum rule [57] (see Appendix C), and additionally
verified that the finite-temperature DSF satisfies the relation
of detailed balance (for an example, see Appendix D).

V. CONCLUSION AND OUTLOOK

In conclusion, we have analytically derived and numeri-
cally calculated in the framework of Schwinger-boson mean-
field theory the static and dynamic spin structure factor at low
temperatures of the spin-1/2 antiferromagnetic Heisenberg
kagome model for two prominent symmetric Ansätze, the q =
0 and the

√
3 × √

3. Our numerical results show that the struc-
ture factors change qualitatively with increasing temperature,
where the spin gap rapidly fills up with temperature. More-
over, this population of the spin gap in the DSF occurs already
at temperatures more than an order of magnitude smaller than
the spin gap itself, and before any significant changes in the
mean-field parameters have occured, or the spinon density has
nontrivially increased. This happens because there are terms
in the low-frequency structure factor that are suppressed at
finite temperatures by only exp(−�/T ) and is thus a clear
signature of deconfinement of spinons. This may explain in
part the results of INS experiments [24] where there is no
onset of the two-spinon continuum even at temperatures of
the order of J/100. A question that immediately presents
itself in the wake of our results is whether finite temperature
can bring full agreement between the theoretical results of
Punk et al. in Ref. [25] and the experimental measurements
of Han et al. in Ref. [24]. Indeed, our results show that
finite temperature completely removes any sharp onset in
the DSF down to negative frequencies, but the DSF is still
clearly frequency-dependent. The inclusion of spinon-vison
interactions in Ref. [25] leads to a DSF that is more or
less structureless and flattened at low energies, but that still
exhibits an onset at low frequencies. Hence, an extension
of this study to finite temperature may significantly advance
the agreement between theory and experiment. We have also
discussed that since the SBMFT self-consistent spinon gap is
actually larger than its physical value, we can use a smaller
value in our numerical simulations such that the spin gap fills
up more rapidly in the DSF at a given temperature, thereby
bringing our results closer to what is observed experimentally
in Ref. [24] even without including spinon-vison interactions.

We have additionally discussed the shortcomings of
SBMFT at high temperatures, and explained how this leads to
a three-region structure in the DSF due to the system spectrum
approaching a quasielastic profile. The spinon density can be
used as a guide as to when SBMFT is reliable, because so
long as the density of spinons is very small, then interac-
tions can be effectively neglected rendering SBMFT a good
description of the system. As temperature is raised, the spin
density rapidly rises, and then SBMFT results are no longer
accurate. It would be especially interesting to extend SBMFT
in order to be able to account for high temperatures where
the nearest-neighbor correlations disappear. This would give
us a platform to compare SBMFT results to those obtained
in NLCE [54] for temperatures T � J/4, which is above
what SBMFT can reliably describe. Another interesting study
would be the behavior of chiral Ansätze at finite temperature,
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FIG. 9. The DSF for the Ansätze under consideration at the K and M points as a function of frequency. The spin gap shows rapid filling
with temperature.

where it is expected that there would be a finite-temperature
phase transition from a time-reversal symmetry broken phase
at low temperature to a time-reversal symmetric phase at high
temperature. This is the subject of an ongoing study by the
current authors.

We here emphasize that the main conclusion of our
work—namely, that at finite temperature, the subgap spectral
weight is suppressed only by exp(−�/T ) due to spinon
deconfinement—would still hold for other Ansätze than the
ones discussed in this work. Indeed, as previously mentioned,
a more accurate description of herbertsmithites would involve
DM interactions. In SBMFT, this still involves a gapped Z2

spin liquid phase [36], and thus our qualitative result will
still hold.

Finally, it is worth mentioning that this work, in using
SBMFT, inherently assumes that the AFKM spin liquid phase
is gapped. However, our results indicate that at finite temper-
ature, the debate over whether this phase is gapped or gapless
may become irrelevant. Our results show that even at low

temperatures there is nontrivial contribution to the DSF.
Therefore inelastic neutron scattering experiments would
need to be at very small temperatures and very small
energies—both very challenging limits [26]—in order to truly
ascertain whether the AFKM QSL is gapped or gapless. We
also emphasize that we are not saying that our results would
be the entire explanation for the observed spectral weight at
low energies (impurities could play a role, etc.) but our results
have to be taken into account if this is really the physics of a
gapped spin liquid.

ACKNOWLEDGMENTS

The authors are grateful to Felix Mackenroth for his help
in Gnuplot; to B. Frank, J. Lang, J. G. Rau, and S. Trebst for
fruitful discussions; and to P. A. McClarty and M. Punk for
valuable discussions and comments on our manuscript. The
work of RRPS is supported in part by US National Science
Foundation DMR Grant No. 1855111.

APPENDIX A: EXACT EXPRESSIONS FOR DSF TERMS

Due to their length, the full expressions of the terms in (32) are provided here. The term responsible for processes where two
thermally excited spinons impart energy on an incoming neutron is given by

A r,s,m,n
k,q =U ∗

rm(q)Xrn(k + q)[X ∗
sn(k + q)Usm(q) − Vsm(q)Y ∗

sn(k + q)]

+ 2U ∗
rm(q)V ∗

rn(−k − q)[Vsm(q)Usn(−k − q) + Vsn(−k − q)Usm(q)]
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FIG. 10. The dynamic spin structure factor for the q = 0 (top panels) and the
√

3 × √
3 (bottom panels) Ansätze along the �-M-K-�

high-symmetry lines at temperatures T/J = 0.15 and 0.19. The rich structure at lower temperatures is reduced to three high-intensity lines
around ω = 0 and ±2λ at these high temperatures. This is due to the system approaching a scenario where all spinon bands are degenerate
with eigenvalue λ. SBMFT results are not fully reliable here, as the spinon density is not small (cf. Fig. 3).

+ 2Yrm(−q)Xrn(k + q)[X ∗
sm(−q)Y ∗

sn(k + q) + X ∗
sn(k + q)Y ∗

sm(−q)]

+ Yrm(−q)V ∗
rn(−k − q)[Vsn(−k − q)Y ∗

sm(−q) − X ∗
sm(−q)Usn(−k − q)]. (A1)

This is the term that is most suppressed in (32) with inverse temperature. The term that accounts for an incoming neutron
imparting energy on two spinons, which is the only term that occurs at zero temperature, reads

D r,s,m,n
k,q = X ∗

rm(q)Urn(k + q)[U ∗
sn(k + q)Xsm(q) − Ysm(q)V ∗

sn(k + q)]

+ 2X ∗
rm(q)Y ∗

rn(−k − q)[Ysm(q)Xsn(−k − q) + Ysn(−k − q)Xsm(q)]

+ 2Vrm(−q)Urn(k + q)[U ∗
sm(−q)V ∗

sn(k + q) + U ∗
sn(k + q)V ∗

sm(−q)]

+ Vrm(−q)Y ∗
rn(−k − q)[Ysn(−k − q)V ∗

sm(−q) − U ∗
sm(−q)Xsn(−k − q)]. (A2)

The terms of the DSF responsible for processes where a thermally excited spinon and the incoming neutron impart energy on a
second spinon, or a thermally excited spinon imparts energy on a second spinon and the incoming neutron are

Br,s,m,n
k,q =U ∗

rm(q)Urn(k + q)[U ∗
sn(k + q)Usm(q) − Vsm(q)V ∗

sn(k + q)]

+ 2U ∗
rm(q)Y ∗

rn(−k − q)[Vsm(q)Xsn(−k − q) + Ysn(−k − q)Usm(q)]

+ 2Yrm(−q)Urn(k + q)[Y ∗
sm(−q)U ∗

sn(k + q) + V ∗
sn(k + q)X ∗

sm(−q)]

+ Yrm(−q)Y ∗
rn(−k − q)[Ysn(−k − q)Y ∗

sm(−q) − X ∗
sm(−q)Xsn(−k − q)], (A3)

C r,s,m,n
k,q = X ∗

rm(q)Xrn(k + q)[X ∗
sn(k + q)Xsm(q) − Ysm(q)Y ∗

sn(k + q)]

+ 2X ∗
rm(q)V ∗

rn(−k − q)[Xsm(q)Vsn(−k − q) + Usn(−k − q)Ysm(q)]

+ 2Vrm(−q)Xrn(k + q)[U ∗
sm(−q)Y ∗

sn(k + q) + X ∗
sn(k + q)V ∗

sm(−q)]

+ Vrm(−q)V ∗
rn(−k − q)[Vsn(−k − q)V ∗

sm(−q) − U ∗
sm(−q)Usn(−k − q)]. (A4)

The two terms (A3) and (A4) are the ones responsible for the rapid filling of the spin gap in the DSF with temperature, while
terms (A1) and (A2) contribute to the spectral weight in the DSF at ω � −2� and at ω � 2�, respectively.
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FIG. 11. SSF for the q = 0 (top) and
√

3 × √
3 (bottom) Ansätze, where we see that with temperature the structure of the SSF appears

unaltered except for a small smoothening effect.

As mentioned in the main text, at high temperatures the term (A3) dominates since the Bogoliubov matrices V and X are
negligile. This gives rise to the dominance of the region around ω = 0J at higher temperatures as seen in Fig. 10 in Appendix B
below. Nevertheless, V and X are still finite, and this leads to two thin dimmer regions at around roughly ω = ±2λ in Fig. 10. It
is to be noted that at such high temperatures where the spinon density is no longer small (cf. Fig. 3), SBMFT results cannot be
fully trusted.

APPENDIX B: DSF AT HIGHTER TEMPERATURES

As discussed in the main text, at higher temperatures
where the spin density is no longer small enough, interactions
between spinons cannot be faithfully neglected, and thus
SBMFT is no longer reliable. Here we provide SBMFT results
for the DSF at high temperatures that we do not expect to be
reliably described by SBMFT.

In Fig. 10, we show the DSF at T = 0.15J for each Ansatz,
where now the major weight of the DSF is around ω = 0J
and small momenta around k = 0, with the regions narrowing
and becoming visibly distinct compared to the DSF results
for T = 0.1J shown in Figs. 4 and 6. This indicates that the
spectrum starts to become more quasielastic with increasing
temperature. This becomes even clearer when the temperature
is raised to T = 0.19J , where now the DSF shows three
distinct thin high-intensity lines, with the weight focused
disproportionately at the � point. This can be understood by

looking at the self-consistent parameters as a function of tem-
perature in Fig. 2. At high temperatures such as T = 0.19J ,
the system has all its spinon bands almost degenerate with
eigenvalue λ, since A,B ≈ 0. This means that the Bogoliubov
matrices V, X ≈ 03, and thus only U and Y are finite. One thus
directly sees that this leads to all terms being negligible except
for the second in (32), which contains only elements of U and
Y (cf. Appendix A). This term contributes only around ω =
0J , because εm

q,↑ ≈ εn
k+q,↑ ≈ λ at this high temperature. The

other terms, though negligible, still lead to small contributions
around zero frequency and ω = ±2λ. Thus we see that with
higher temperature the spectrum is quasielastic, meaning that
spins are more or less completely noninteracting, which is the
expected result in the large-temperature limit of a paramagnet.

Another interesting point is that at temperatures T � 0.1J ,
the DSF result along the �-M-K-� high-symmetry lines looks
very distinctive from one Ansatz to the other, while at T/J =
0.15 and 0.19 one cannot easily separate the Ansätze from
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FIG. 12. S(k, ω) (top) and exp(ω/T )S(k,−ω) (bottom) for the
q = 0 Ansatz with T = 0.1J and ω = 0.5908J . Both results compare
very well as per the relation of detailed balance (D1).

their DSF. Thus the SBMFT Ansatz loses its characteristic
features at very high temperatures.

We do not go beyond T = 0.19J , because at higher temper-
atures T � 0.2J , the bond mean fields A = B = 0, and this is
an indication that SBMFT completely fails to describe such
a high-temperature disordered phase where nearest-neighbor
correlations are absent [56,57].

APPENDIX C: SSF RESULTS

The SSF, which is the integral over frequency space of the
DSF, is given by

S(k) =
∫ ∞

−∞
dω S(k, ω), (C1)

and in Fig. 11 we show it for the q = 0 and
√

3 × √
3 Ansätze

at temperatures T/J = 0.01 and 0.1. The SSF shows little
change with temperature in terms of its characteristic features,
save for a small smoothening effect, thus why we do not show
it for intermediate temperature values.

As a sanity check, we have moreover numerically verified
that our SSF results satisfy the sum rule [57]

1

N

B.z.∑
k

S(k) = 3

2
S (S + 1). (C2)

This is also supplemented by a further check, that of detailed
balance discussed in Appendix D.

APPENDIX D: DETAILED BALANCE

Detailed balance is a relation of the DSF [72] and is given
by

S(k, ω) = S(k,−ω)eω/T . (D1)

We numerically check that it is satisfied, and here we provide
an example in Fig. 12 for the q = 0 Ansatz at T = 0.1J and
ω = 0.5908J showing that (D1) is indeed satisfied.

[1] N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).
[2] A. P. Ramirez, Annu. Rev. Mater. Sci. 24, 453 (1994).
[3] F. Mila, Eur. J. Phys. 21, 499 (2000).
[4] H. Diep, Frustrated Spin Systems (World Scientific, Singapore,

2004).
[5] S. Sachdev, Nat. Phys. 4, 173 (2008).
[6] C. Lacroix, P. Mendels, and F. Mila, Introduction to Frustrated

Magnetism: Materials, Experiments, Theory, Springer Series in
Solid-State Sciences (Springer, Berlin, Heidelberg, 2011).

[7] O. A. Starykh, Rep. Prog. Phys. 78, 052502 (2015).
[8] L. Balents, Nature (London) 464, 199 (2010).
[9] L. Savary and L. Balents, Rep. Prog. Phys. 80, 016502

(2017).
[10] Y. Zhou, K. Kanoda, and T.-K. Ng, Rev. Mod. Phys. 89, 025003

(2017).
[11] M. Vojta, Rep. Prog. Phys. 81, 064501 (2018).
[12] J. Knolle and R. Moessner, Annu. Rev. Condens. Matter Phys.

10, 451 (2019).

[13] S. Sachdev, Phys. Rev. B 45, 12377 (1992).
[14] M. R. Norman, Rev. Mod. Phys. 88, 041002 (2016).
[15] M. P. Shores, E. A. Nytko, B. M. Bartlett, and D. G. Nocera, J.

Am. Chem. Soc. 127, 13462 (2005).
[16] J. S. Helton, K. Matan, M. P. Shores, E. A. Nytko, B. M.

Bartlett, Y. Yoshida, Y. Takano, A. Suslov, Y. Qiu, J.-H. Chung
et al., Phys. Rev. Lett. 98, 107204 (2007).

[17] P. Mendels, F. Bert, M. A. de Vries, A. Olariu, A. Harrison, F.
Duc, J. C. Trombe, J. S. Lord, A. Amato, and C. Baines, Phys.
Rev. Lett. 98, 077204 (2007).

[18] A. Zorko, S. Nellutla, J. van Tol, L. C. Brunel, F. Bert, F. Duc,
J.-C. Trombe, M. A. de Vries, A. Harrison, and P. Mendels,
Phys. Rev. Lett. 101, 026405 (2008).

[19] M. A. de Vries, J. R. Stewart, P. P. Deen, J. O. Piatek, G. J.
Nilsen, H. M. Rønnow, and A. Harrison, Phys. Rev. Lett. 103,
237201 (2009).

[20] B. J. Powell and R. H. McKenzie, Rep. Prog. Phys. 74, 056501
(2011).

155151-14

https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1146/annurev.ms.24.080194.002321
https://doi.org/10.1146/annurev.ms.24.080194.002321
https://doi.org/10.1146/annurev.ms.24.080194.002321
https://doi.org/10.1146/annurev.ms.24.080194.002321
https://doi.org/10.1088/0143-0807/21/6/302
https://doi.org/10.1088/0143-0807/21/6/302
https://doi.org/10.1088/0143-0807/21/6/302
https://doi.org/10.1088/0143-0807/21/6/302
https://doi.org/10.1038/nphys894
https://doi.org/10.1038/nphys894
https://doi.org/10.1038/nphys894
https://doi.org/10.1038/nphys894
https://doi.org/10.1088/0034-4885/78/5/052502
https://doi.org/10.1088/0034-4885/78/5/052502
https://doi.org/10.1088/0034-4885/78/5/052502
https://doi.org/10.1088/0034-4885/78/5/052502
https://doi.org/10.1038/nature08917
https://doi.org/10.1038/nature08917
https://doi.org/10.1038/nature08917
https://doi.org/10.1038/nature08917
https://doi.org/10.1088/0034-4885/80/1/016502
https://doi.org/10.1088/0034-4885/80/1/016502
https://doi.org/10.1088/0034-4885/80/1/016502
https://doi.org/10.1088/0034-4885/80/1/016502
https://doi.org/10.1103/RevModPhys.89.025003
https://doi.org/10.1103/RevModPhys.89.025003
https://doi.org/10.1103/RevModPhys.89.025003
https://doi.org/10.1103/RevModPhys.89.025003
https://doi.org/10.1088/1361-6633/aab6be
https://doi.org/10.1088/1361-6633/aab6be
https://doi.org/10.1088/1361-6633/aab6be
https://doi.org/10.1088/1361-6633/aab6be
https://doi.org/10.1146/annurev-conmatphys-031218-013401
https://doi.org/10.1146/annurev-conmatphys-031218-013401
https://doi.org/10.1146/annurev-conmatphys-031218-013401
https://doi.org/10.1146/annurev-conmatphys-031218-013401
https://doi.org/10.1103/PhysRevB.45.12377
https://doi.org/10.1103/PhysRevB.45.12377
https://doi.org/10.1103/PhysRevB.45.12377
https://doi.org/10.1103/PhysRevB.45.12377
https://doi.org/10.1103/RevModPhys.88.041002
https://doi.org/10.1103/RevModPhys.88.041002
https://doi.org/10.1103/RevModPhys.88.041002
https://doi.org/10.1103/RevModPhys.88.041002
https://doi.org/10.1021/ja053891p
https://doi.org/10.1021/ja053891p
https://doi.org/10.1021/ja053891p
https://doi.org/10.1021/ja053891p
https://doi.org/10.1103/PhysRevLett.98.107204
https://doi.org/10.1103/PhysRevLett.98.107204
https://doi.org/10.1103/PhysRevLett.98.107204
https://doi.org/10.1103/PhysRevLett.98.107204
https://doi.org/10.1103/PhysRevLett.98.077204
https://doi.org/10.1103/PhysRevLett.98.077204
https://doi.org/10.1103/PhysRevLett.98.077204
https://doi.org/10.1103/PhysRevLett.98.077204
https://doi.org/10.1103/PhysRevLett.101.026405
https://doi.org/10.1103/PhysRevLett.101.026405
https://doi.org/10.1103/PhysRevLett.101.026405
https://doi.org/10.1103/PhysRevLett.101.026405
https://doi.org/10.1103/PhysRevLett.103.237201
https://doi.org/10.1103/PhysRevLett.103.237201
https://doi.org/10.1103/PhysRevLett.103.237201
https://doi.org/10.1103/PhysRevLett.103.237201
https://doi.org/10.1088/0034-4885/74/5/056501
https://doi.org/10.1088/0034-4885/74/5/056501
https://doi.org/10.1088/0034-4885/74/5/056501
https://doi.org/10.1088/0034-4885/74/5/056501


RAPID FILLING OF THE SPIN GAP WITH … PHYSICAL REVIEW B 99, 155151 (2019)

[21] M. Jeong, F. Bert, P. Mendels, F. Duc, J. C. Trombe, M. A. de
Vries, and A. Harrison, Phys. Rev. Lett. 107, 237201 (2011).

[22] A. Zorko, M. Herak, M. Gomilšek, J. van Tol, M. Velázquez, P.
Khuntia, F. Bert, and P. Mendels, Phys. Rev. Lett. 118, 017202
(2017).

[23] M. Fu, T. Imai, T.-H. Han, and Y. S. Lee, Science 350, 655
(2015).

[24] T.-H. Han, J. S. Helton, S. Chu, D. G. Nocera, J. A. Rodriguez-
Rivera, C. Broholm, and Y. S. Lee, Nature (London) 492, 406
(2012).

[25] M. Punk, D. Chowdhury, and S. Sachdev, Nat. Phys. 10, 289
(2014).

[26] T.-H. Han, M. R. Norman, J.-J. Wen, J. A. Rodriguez-Rivera,
J. S. Helton, C. Broholm, and Y. S. Lee, Phys. Rev. B 94,
060409(R) (2016).

[27] I. Dzyaloshinsky, J. Phys. Chem. Solids 4, 241 (1958).
[28] T. Moriya, Phys. Rev. 120, 91 (1960).
[29] L. Shekhtman, O. Entin-Wohlman, and A. Aharony, Phys. Rev.

Lett. 69, 836 (1992).
[30] M. Elhajal, B. Canals, and C. Lacroix, Phys. Rev. B 66, 014422

(2002).
[31] M. Rigol and R. R. P. Singh, Phys. Rev. Lett. 98, 207204 (2007).
[32] L. Messio, O. Cépas, and C. Lhuillier, Phys. Rev. B 81, 064428

(2010).
[33] Y. Huh, L. Fritz, and S. Sachdev, Phys. Rev. B 81, 144432

(2010).
[34] T. Dodds, S. Bhattacharjee, and Y. B. Kim, Phys. Rev. B 88,

224413 (2013).
[35] M. Hering and J. Reuther, Phys. Rev. B 95, 054418 (2017).
[36] L. Messio, S. Bieri, C. Lhuillier, and B. Bernu, Phys. Rev. Lett.

118, 267201 (2017).
[37] M. Gomilšek, M. Klanjšek, R. Žitko, M. Pregelj, F. Bert, P.

Mendels, Y. Li, Q. M. Zhang, and A. Zorko, Phys. Rev. Lett.
119, 137205 (2017).

[38] J.-C. Orain, B. Bernu, P. Mendels, L. Clark, F. H. Aidoudi,
P. Lightfoot, R. E. Morris, and F. Bert, Phys. Rev. Lett. 118,
237203 (2017).

[39] S. Yan, D. A. Huse, and S. R. White, Science 332, 1173 (2011).
[40] H.-C. Jiang, Z. Wang, and L. Balents, Nat. Phys. 8, 902 (2012).
[41] S. Depenbrock, I. P. McCulloch, and U. Schollwöck, Phys. Rev.

Lett. 109, 067201 (2012).
[42] F. Kolley, S. Depenbrock, I. P. McCulloch, U. Schollwöck, and

V. Alba, Phys. Rev. B 91, 104418 (2015).
[43] Y. Ran, M. Hermele, P. A. Lee, and X.-G. Wen, Phys. Rev. Lett.

98, 117205 (2007).

[44] Y. Iqbal, F. Becca, S. Sorella, and D. Poilblanc, Phys. Rev. B
87, 060405(R) (2013).

[45] Y.-C. He, M. P. Zaletel, M. Oshikawa, and F. Pollmann, Phys.
Rev. X 7, 031020 (2017).

[46] H. J. Liao, Z. Y. Xie, J. Chen, Z. Y. Liu, H. D. Xie, R. Z. Huang,
B. Normand, and T. Xiang, Phys. Rev. Lett. 118, 137202 (2017).

[47] L. Savary and L. Balents, Phys. Rev. B 87, 205130 (2013).
[48] C. Castelnovo and C. Chamon, Phys. Rev. B 76, 184442 (2007).
[49] M. B. Hastings, Phys. Rev. Lett. 107, 210501 (2011).
[50] A. Laeuchli and C. Lhuillier, arXiv:0901.1065
[51] T. F. Seman, C.-C. Chen, R. R. P. Singh, and M. van Veenendaal,

arXiv:1508.01523.
[52] T. Shimokawa and H. Kawamura, J. Phys. Soc. Jpn. 85, 113702

(2016).
[53] J. C. Halimeh and M. Punk, Phys. Rev. B 94, 104413 (2016).
[54] N. E. Sherman and R. R. P. Singh, Phys. Rev. B 97, 014423

(2018).
[55] N. Elstner and A. P. Young, Phys. Rev. B 50, 6871 (1994).
[56] D. P. Arovas and A. Auerbach, Phys. Rev. B 38, 316 (1988).
[57] A. Auerbach, Schwinger Bosons Mean Field Theory (Springer,

New York, NY, 1994), pp. 187–204.
[58] F. Wang and A. Vishwanath, Phys. Rev. B 74, 174423 (2006).
[59] A. Auerbach and D. P. Arovas, Schwinger Bosons Approaches

to Quantum Antiferromagnetism (Springer, Berlin, Heidelberg),
pp. 365–377.

[60] L. O. Manuel, A. E. Trumper, and H. A. Ceccatto, Phys. Rev. B
57, 8348 (1998).

[61] A. Mezio, L. O. Manuel, R. R. P. Singh, and A. E. Trumper,
New J. Phys. 14, 123033 (2012).

[62] A. Auerbach and D. P. Arovas, Phys. Rev. Lett. 61, 617 (1988).
[63] L. Messio, C. Lhuillier, and G. Misguich, Phys. Rev. B 87,

125127 (2013).
[64] X.-G. Wen, Phys. Rev. B 65, 165113 (2002).
[65] J. C. Halimeh, M. Punk, and F. Piazza, Phys. Rev. B 98, 045111

(2018).
[66] A. Schuckert, A. Piñeiro Orioli, and J. Berges, Phys. Rev. B 98,

224304 (2018).
[67] R. Flint and P. Coleman, Phys. Rev. B 79, 014424 (2009).
[68] A. Mezio, C. N. Sposetti, L. O. Manuel, and A. E. Trumper,

Europhys. Lett. 94, 47001 (2011).
[69] L. Messio, B. Bernu, and C. Lhuillier, Phys. Rev. Lett. 108,

207204 (2012).
[70] G. P. Lepage, J. Comput. Phys. 27, 192 (1978).
[71] P. Kos and M. Punk, Phys. Rev. B 95, 024421 (2017).
[72] J. D. Nardis and M. Panfil, Sci. Post. Phys. 1, 015 (2016).

155151-15

https://doi.org/10.1103/PhysRevLett.107.237201
https://doi.org/10.1103/PhysRevLett.107.237201
https://doi.org/10.1103/PhysRevLett.107.237201
https://doi.org/10.1103/PhysRevLett.107.237201
https://doi.org/10.1103/PhysRevLett.118.017202
https://doi.org/10.1103/PhysRevLett.118.017202
https://doi.org/10.1103/PhysRevLett.118.017202
https://doi.org/10.1103/PhysRevLett.118.017202
https://doi.org/10.1126/science.aab2120
https://doi.org/10.1126/science.aab2120
https://doi.org/10.1126/science.aab2120
https://doi.org/10.1126/science.aab2120
https://doi.org/10.1038/nature11659
https://doi.org/10.1038/nature11659
https://doi.org/10.1038/nature11659
https://doi.org/10.1038/nature11659
https://doi.org/10.1038/nphys2887
https://doi.org/10.1038/nphys2887
https://doi.org/10.1038/nphys2887
https://doi.org/10.1038/nphys2887
https://doi.org/10.1103/PhysRevB.94.060409
https://doi.org/10.1103/PhysRevB.94.060409
https://doi.org/10.1103/PhysRevB.94.060409
https://doi.org/10.1103/PhysRevB.94.060409
https://doi.org/10.1016/0022-3697(58)90076-3
https://doi.org/10.1016/0022-3697(58)90076-3
https://doi.org/10.1016/0022-3697(58)90076-3
https://doi.org/10.1016/0022-3697(58)90076-3
https://doi.org/10.1103/PhysRev.120.91
https://doi.org/10.1103/PhysRev.120.91
https://doi.org/10.1103/PhysRev.120.91
https://doi.org/10.1103/PhysRev.120.91
https://doi.org/10.1103/PhysRevLett.69.836
https://doi.org/10.1103/PhysRevLett.69.836
https://doi.org/10.1103/PhysRevLett.69.836
https://doi.org/10.1103/PhysRevLett.69.836
https://doi.org/10.1103/PhysRevB.66.014422
https://doi.org/10.1103/PhysRevB.66.014422
https://doi.org/10.1103/PhysRevB.66.014422
https://doi.org/10.1103/PhysRevB.66.014422
https://doi.org/10.1103/PhysRevLett.98.207204
https://doi.org/10.1103/PhysRevLett.98.207204
https://doi.org/10.1103/PhysRevLett.98.207204
https://doi.org/10.1103/PhysRevLett.98.207204
https://doi.org/10.1103/PhysRevB.81.064428
https://doi.org/10.1103/PhysRevB.81.064428
https://doi.org/10.1103/PhysRevB.81.064428
https://doi.org/10.1103/PhysRevB.81.064428
https://doi.org/10.1103/PhysRevB.81.144432
https://doi.org/10.1103/PhysRevB.81.144432
https://doi.org/10.1103/PhysRevB.81.144432
https://doi.org/10.1103/PhysRevB.81.144432
https://doi.org/10.1103/PhysRevB.88.224413
https://doi.org/10.1103/PhysRevB.88.224413
https://doi.org/10.1103/PhysRevB.88.224413
https://doi.org/10.1103/PhysRevB.88.224413
https://doi.org/10.1103/PhysRevB.95.054418
https://doi.org/10.1103/PhysRevB.95.054418
https://doi.org/10.1103/PhysRevB.95.054418
https://doi.org/10.1103/PhysRevB.95.054418
https://doi.org/10.1103/PhysRevLett.118.267201
https://doi.org/10.1103/PhysRevLett.118.267201
https://doi.org/10.1103/PhysRevLett.118.267201
https://doi.org/10.1103/PhysRevLett.118.267201
https://doi.org/10.1103/PhysRevLett.119.137205
https://doi.org/10.1103/PhysRevLett.119.137205
https://doi.org/10.1103/PhysRevLett.119.137205
https://doi.org/10.1103/PhysRevLett.119.137205
https://doi.org/10.1103/PhysRevLett.118.237203
https://doi.org/10.1103/PhysRevLett.118.237203
https://doi.org/10.1103/PhysRevLett.118.237203
https://doi.org/10.1103/PhysRevLett.118.237203
https://doi.org/10.1126/science.1201080
https://doi.org/10.1126/science.1201080
https://doi.org/10.1126/science.1201080
https://doi.org/10.1126/science.1201080
https://doi.org/10.1038/nphys2465
https://doi.org/10.1038/nphys2465
https://doi.org/10.1038/nphys2465
https://doi.org/10.1038/nphys2465
https://doi.org/10.1103/PhysRevLett.109.067201
https://doi.org/10.1103/PhysRevLett.109.067201
https://doi.org/10.1103/PhysRevLett.109.067201
https://doi.org/10.1103/PhysRevLett.109.067201
https://doi.org/10.1103/PhysRevB.91.104418
https://doi.org/10.1103/PhysRevB.91.104418
https://doi.org/10.1103/PhysRevB.91.104418
https://doi.org/10.1103/PhysRevB.91.104418
https://doi.org/10.1103/PhysRevLett.98.117205
https://doi.org/10.1103/PhysRevLett.98.117205
https://doi.org/10.1103/PhysRevLett.98.117205
https://doi.org/10.1103/PhysRevLett.98.117205
https://doi.org/10.1103/PhysRevB.87.060405
https://doi.org/10.1103/PhysRevB.87.060405
https://doi.org/10.1103/PhysRevB.87.060405
https://doi.org/10.1103/PhysRevB.87.060405
https://doi.org/10.1103/PhysRevX.7.031020
https://doi.org/10.1103/PhysRevX.7.031020
https://doi.org/10.1103/PhysRevX.7.031020
https://doi.org/10.1103/PhysRevX.7.031020
https://doi.org/10.1103/PhysRevLett.118.137202
https://doi.org/10.1103/PhysRevLett.118.137202
https://doi.org/10.1103/PhysRevLett.118.137202
https://doi.org/10.1103/PhysRevLett.118.137202
https://doi.org/10.1103/PhysRevB.87.205130
https://doi.org/10.1103/PhysRevB.87.205130
https://doi.org/10.1103/PhysRevB.87.205130
https://doi.org/10.1103/PhysRevB.87.205130
https://doi.org/10.1103/PhysRevB.76.184442
https://doi.org/10.1103/PhysRevB.76.184442
https://doi.org/10.1103/PhysRevB.76.184442
https://doi.org/10.1103/PhysRevB.76.184442
https://doi.org/10.1103/PhysRevLett.107.210501
https://doi.org/10.1103/PhysRevLett.107.210501
https://doi.org/10.1103/PhysRevLett.107.210501
https://doi.org/10.1103/PhysRevLett.107.210501
http://arxiv.org/abs/arXiv:0901.1065
http://arxiv.org/abs/arXiv:1508.01523
https://doi.org/10.7566/JPSJ.85.113702
https://doi.org/10.7566/JPSJ.85.113702
https://doi.org/10.7566/JPSJ.85.113702
https://doi.org/10.7566/JPSJ.85.113702
https://doi.org/10.1103/PhysRevB.94.104413
https://doi.org/10.1103/PhysRevB.94.104413
https://doi.org/10.1103/PhysRevB.94.104413
https://doi.org/10.1103/PhysRevB.94.104413
https://doi.org/10.1103/PhysRevB.97.014423
https://doi.org/10.1103/PhysRevB.97.014423
https://doi.org/10.1103/PhysRevB.97.014423
https://doi.org/10.1103/PhysRevB.97.014423
https://doi.org/10.1103/PhysRevB.50.6871
https://doi.org/10.1103/PhysRevB.50.6871
https://doi.org/10.1103/PhysRevB.50.6871
https://doi.org/10.1103/PhysRevB.50.6871
https://doi.org/10.1103/PhysRevB.38.316
https://doi.org/10.1103/PhysRevB.38.316
https://doi.org/10.1103/PhysRevB.38.316
https://doi.org/10.1103/PhysRevB.38.316
https://doi.org/10.1103/PhysRevB.74.174423
https://doi.org/10.1103/PhysRevB.74.174423
https://doi.org/10.1103/PhysRevB.74.174423
https://doi.org/10.1103/PhysRevB.74.174423
https://doi.org/10.1103/PhysRevB.57.8348
https://doi.org/10.1103/PhysRevB.57.8348
https://doi.org/10.1103/PhysRevB.57.8348
https://doi.org/10.1103/PhysRevB.57.8348
https://doi.org/10.1088/1367-2630/14/12/123033
https://doi.org/10.1088/1367-2630/14/12/123033
https://doi.org/10.1088/1367-2630/14/12/123033
https://doi.org/10.1088/1367-2630/14/12/123033
https://doi.org/10.1103/PhysRevLett.61.617
https://doi.org/10.1103/PhysRevLett.61.617
https://doi.org/10.1103/PhysRevLett.61.617
https://doi.org/10.1103/PhysRevLett.61.617
https://doi.org/10.1103/PhysRevB.87.125127
https://doi.org/10.1103/PhysRevB.87.125127
https://doi.org/10.1103/PhysRevB.87.125127
https://doi.org/10.1103/PhysRevB.87.125127
https://doi.org/10.1103/PhysRevB.65.165113
https://doi.org/10.1103/PhysRevB.65.165113
https://doi.org/10.1103/PhysRevB.65.165113
https://doi.org/10.1103/PhysRevB.65.165113
https://doi.org/10.1103/PhysRevB.98.045111
https://doi.org/10.1103/PhysRevB.98.045111
https://doi.org/10.1103/PhysRevB.98.045111
https://doi.org/10.1103/PhysRevB.98.045111
https://doi.org/10.1103/PhysRevB.98.224304
https://doi.org/10.1103/PhysRevB.98.224304
https://doi.org/10.1103/PhysRevB.98.224304
https://doi.org/10.1103/PhysRevB.98.224304
https://doi.org/10.1103/PhysRevB.79.014424
https://doi.org/10.1103/PhysRevB.79.014424
https://doi.org/10.1103/PhysRevB.79.014424
https://doi.org/10.1103/PhysRevB.79.014424
https://doi.org/10.1209/0295-5075/94/47001
https://doi.org/10.1209/0295-5075/94/47001
https://doi.org/10.1209/0295-5075/94/47001
https://doi.org/10.1209/0295-5075/94/47001
https://doi.org/10.1103/PhysRevLett.108.207204
https://doi.org/10.1103/PhysRevLett.108.207204
https://doi.org/10.1103/PhysRevLett.108.207204
https://doi.org/10.1103/PhysRevLett.108.207204
https://doi.org/10.1016/0021-9991(78)90004-9
https://doi.org/10.1016/0021-9991(78)90004-9
https://doi.org/10.1016/0021-9991(78)90004-9
https://doi.org/10.1016/0021-9991(78)90004-9
https://doi.org/10.1103/PhysRevB.95.024421
https://doi.org/10.1103/PhysRevB.95.024421
https://doi.org/10.1103/PhysRevB.95.024421
https://doi.org/10.1103/PhysRevB.95.024421
https://doi.org/10.21468/SciPostPhys.1.2.015
https://doi.org/10.21468/SciPostPhys.1.2.015
https://doi.org/10.21468/SciPostPhys.1.2.015
https://doi.org/10.21468/SciPostPhys.1.2.015

