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Effect of noise on Bloch oscillations and Wannier-Stark localization
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We calculate an exact expression for the probability propagator for a noisy electric field driven tight-binding
lattice. The noise considered is a two level jump process or a telegraph process (TP) which jumps randomly
between two values ±μ. In the absence of a static field, and in the limit of zero jump rate of the noisy field,
we find that the dynamics yields Bloch oscillations with frequency μ, while with an additional static field ε we
find oscillatory motion with a superposition of frequencies (ε ± μ). On the other hand, when the jump rate is
rapid, and in the absence of a static field, the stochastic field averages to zero if the two states of the TP are
equally probable a priori. In that case we see a delocalization effect. The intimate relationship between the rapid
relaxation case and the zero field case seems to be a generic effect found in a wide variety of systems. It is
interesting to note that even for zero static field and rapid relaxation, Bloch oscillations ensue if there is a bias δp
in the probabilities of the two levels. Remarkably, the Wannier-Stark localization caused by an additional static
field is destroyed if the latter is tuned to be exactly equal and opposite to the average stochastic field μδp. This
is an example of incoherent destruction of Wannier-Stark localization.
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I. INTRODUCTION

In a variety of physical phenomena where a rapidly chang-
ing external field is involved, an equivalence with the corre-
sponding zero ac field phenomenon is found [1–6]. A useful
anecdotal analogy for this generic effect may be found in
an extended version of this paper [7]. In the specific context
of an ac electric field applied onto a one-dimensional tight-
binding lattice, the large frequency limit can be shown to
be mathematically equivalent to simply renormalizing the
hopping parameter [6,8], thus corresponding to the zero-field
case. However, for certain delicate choices of the ratio of
the amplitude and frequency, a dynamical localization [8–11]
may be engineered via a band collapse mechanism. On the
other hand, the zero frequency limit when the electric field is
time independent is characterized by the familiar Bloch oscil-
lations [12–15]. Other phenomena such as coherent destruc-
tion of Wannier-Stark (WS) localization [16,17] and super
Bloch oscillations [18–21] arise when an additional static field
is added onto an existing sinusoidal field. The former occurs
when the static field is resonantly tuned with the frequency of
the sinusoidal field while the latter for a slight detuning from
the resonance condition.

Random disorder, in the zero electric field case, is known
to localize the particle via the famous phenomenon of Ander-
son localization [22]. Since the work of Anderson, transport
in the presence of a fluctuating environment has also been
studied [23–27] both analytically and numerically. The aim
here has been to understand the diffusion of a quantum particle
in the presence of dynamic disorder. This dynamic disorder
originates from the lattice vibrations where the modes of
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phonons are randomly excited and the process is modeled
by a stochastic process [28]. In the presence of an electric
field, disorder dephases the Bloch oscillations depending on
the strength of disorder [29–31]. However, for a slowly vary-
ing disordered potential the Bloch oscillations are known to
survive [32,33]. An increased diffusion has been found to be
the effect of scattering on the motion of a charged particle with
a time-dependent field [34].

There are numerous experimental realizations of Bloch
oscillations [35–39]. To realize pure Bloch oscillations, often
a lot of effort is expended experimentally to produce clean
systems since disorder and noise are inherent in physical sys-
tems [17]. Advances in cold-atom technology have now made
it possible to in fact control noise [40–42] in order to capture
special features. Therefore on the one hand, it is important
to understand theoretically the effects of noise so that clever
experimental techniques may be devised to get rid of them.
On the other hand, it may be useful to understand them better
so that they may even be exploited, given the high degree of
control that modern technology has brought in [43]. Here we
consider the effect of a stochastic noise on top of an electric
field on the motion of the particle and focus on how the Bloch
oscillations are influenced by this type of dynamic disorder.
The particular form of the stochastic noise is the telegraphic
noise [28,44–46], where the noise consists of jumps randomly
between two levels ±μ. Telegraph noise is one of the simplest
realizations of fluctuations in the battery. When such a tele-
graphic noise term appears as fluctuations in the site energies
without any linear variation (the limit when the electric field
is zero), exact analytical results for the diffusion coefficient
have been obtained [27]. Also the effect of noise on dynamical
localization has been studied [47]. Here we consider the case
where the noise term acts as fluctuations to an electric field.
This noise can also be thought of as an aperiodic form of
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TABLE I. The table contrasts the various phenomena that arise due to ac drive and telegraph noise.

Deterministic F = c0Fdc + c1Fac

(high frequency regime)
Stochastic F = c0Fdc + c1FTP

(rapid relaxation regime)

dc (c1 = 0) Bloch oscillations (WS localization). Bloch oscillations (WS localization).

ac/TP
(c0 = 0)

Equivalent to no-field case.
Dynamical localization with proper tuning.

Equivalent to no-field case.

dc + ac/TP
(c0, c1 �= 0)

Coherent destruction of WS localization at resonance.

Super Bloch oscillations at off-resonance.

Incoherent destruction of WS localization with proper tuning of bias.

Bloch oscillations with bias-dependent renormalized frequency
(another case of equivalence to no-field case).

a square wave driving (periodic square wave driving with
proper tuning can yield dynamic localization [48,49]). Perfect
periodic drive is impossible to achieve [50,51] in realistic
experimental situations and therefore it is important to study
the effects of noisy drive [5,52–54].

The central findings (Table I) of our article are as follows.
For a stochastic electric field characterized by telegraph noise,
we find the exact expression for the probability propagator
Pm(t ), defined as the probability of a particle to remain at site
m at any time t given that it was at the origin at t = 0. The
limit of the rapidly changing stochastic field is given particular
emphasis. Denoting the bias in the probabilities of the two
levels of the field to be δp, we show that this is equivalent
to an effective dc field of μδp, yielding Bloch oscillations
with frequency μδp (although these oscillations are expo-
nentially damped in the infinite time limit). If an additional
static field is present, we recover Bloch oscillations with a
renormalized frequency in the rapid relaxation limit—this is
another instance of equivalence to zero field phenomenon.
Remarkably, by choosing the additional static field to have a
precise magnitude, a destruction of WS localization [16,17]
may be engineered. Since no frequency is involved in the
present context, and rather the noise may be a result of con-
nection to a bath, this may be termed an incoherent destruction
of WS localization. When the two levels of the stochastic
field are equiprobable (δp = 0), we recover the well-known
scenario that the rapid relaxation limit is equivalent to the
zero-field limit. A complementary numerical approach is used
to independently verify our findings.

II. MODEL HAMILTONIAN AND
PROBABILITY PROPAGATOR

The Hamiltonian for a 1D tight-binding model with a time-
dependent electric field is

H = −�

4

∞∑
n=−∞

c†
ncn+1 + c†

n+1cn + F (t )
∞∑

n=−∞
nc†

ncn, (1)

where F (t ) is the electric field. The lattice constant is kept
at unity and natural units (h̄ = e = 1) are adopted for all the
calculations. For a constant electric field, the dynamics gives
the well-known Bloch oscillations, while a periodic driving
can give rise to dynamical localization when the amplitude
and frequency are tuned appropriately. Here we consider the
case where the time-dependent electric field is described by a
two state jump process or a telegraph process.

It is useful to define the unitary operators K̂ , K̂†, and
N̂ [15], and their operations on the state |n〉 as

K̂ = exp (−iκ ) =
∞∑

n=−∞
|n〉〈n + 1|, K̂|n〉 = |n − 1〉,

K̂† = exp (iκ ) =
∞∑

n=−∞
|n + 1〉〈n|, K̂†|n〉 = |n + 1〉,

N̂ =
∞∑

−∞
n|n〉〈n|. (2)

These operators follow the commutation rules

[K̂, N̂] = K̂, [K̂†, N̂] = −K̂†, [K̂, K̂†] = 0. (3)

The eigenvectors of K̂ are the Bloch states |κ〉 with eigenval-
ues eiκ . The connection between the Wannier basis and the
Bloch basis is given by |k〉 =

√
1

2π

∑
n e−ink |n〉 and |n〉 =

1
2π

∫ π

−π
dk eink |k〉.

In terms of these new operators, the tight-binding Hamilto-
nian can be written as

Ĥ (t ) = V + + H0(t ), (4)

where V ± = −�
4 (K̂ ± K̂†) and H0(t ) = F (t )N̂ .

The time evolution of the density matrix ρ in Heisenberg
picture is given by

∂ρ

∂t
= −i[H (t ), ρ(t )]. (5)

By considering the transformation ρ̃(t ) = ei
∫ t

0 H0(t ′ )dt ′
ρ(t )

e−i
∫ t

0 H0(t ′ )dt ′
, the equation of motion for ρ̃(t ) can be

written as

∂ρ̃

∂t
= −i[Ṽ +(t ),ρ̃(t )], (6)

where Ṽ +(t ) = ei
∫ t

0 H0(t ′ )dt ′
V +e−i

∫ t
0 H0(t ′ )dt ′

. The time evolution
of ρ̃ can now be solved to

ρ̃(t ) = e−i
∫ t

0 Ṽ +(t ′ )dt ′
ρ(0)ei

∫ t
0 Ṽ +(t ′ )dt ′

, (7)

where ρ̃(0) = ρ(0) = |0〉〈0|. It turns out that [Ṽ +(t ), Ṽ +(t
′
)]

even for t �= t
′
, and therefore no complicated time ordering is

essential.
Using the Baker -Campbell-Hausdorff (BCH) formula

eXYe−X = Y + [X,Y ] + 1
2! [X, [X,Y ]] + · · · , and the com-

mutation relations [Eq. (3)], we can simplify the effective
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Hamiltonian which governs the dynamics of the density ma-
trix ρ̃(t ) as

Ṽ +(t ) = V + cos[η(t )] + iV − sin[η(t )], (8)

where η(t ) = ∫ t
0 F (t ′) dt ′. Substituting the expressions of V +

and V −, we get

Ṽ +(t ) = −�

4
(K̂†eiη(t ) + K̂e−iη(t ) ). (9)

It can be seen that the effective Hamiltonian has the time
dependence appearing as a phase term and it can be easily
diagonalized in the momentum basis. In the k representation,
Ṽ +(t ) can be expressed as

〈k|Ṽ +(t )|k′〉 = −�

4
δ(k − k′)[eik+iη(t ) + e−ik−iη(t )]. (10)

Furthermore, the transformed density matrix ρ̃(t ) can also be
written in k basis as

〈k|ρ̃(t )|k′〉 = e−i
∫ t

0 dt ′V +
k (t ′ )〈k|0〉〈0|k′〉ei

∫ t
0 dt ′V +

k′ (t ′ ), (11)

where V +
k (t ) = −�

4 [ei[k+η(t )] + e−i[k+η(t )]].
In Wannier space the probability propagator is given by

Pm(t ) = 〈m|ρ(t )|m〉 = 〈m|ρ̃(t )|m〉, (12)

where we have used the fact that H0 is diagonal in the Wannier
basis. Going into the momentum basis the expression for the
probability can be simplified to

Pm(t ) =
∫∫

dk dk′ 〈m|k〉〈k|ρ̃(t )|k′〉〈k′|m〉, (13)

which using Eq. (11) takes the simplified form as

Pm(t ) =
(

1

2π

)2 ∫ π

−π

dk
∫ π

−π

dk′e−i(k−k′ )m

× e−i
∫ t

0 dt ′[V +
k (t ′ )−V +

k′ (t ′ )]. (14)

The mean squared width of the wave packet is then expressed
in terms of the probability propagator as σ 2(t ) = 〈m2〉 =∑

m m2Pm(t ).

III. EFFECT OF RANDOM TELEGRAPH NOISE

The particular form of the field is taken as a telegraph
noise where electric field is time dependent and randomly
fluctuates between two levels ±μ. Let σ and τ be the rate of
switching from level +μ to −μ and −μ to +μ, respectively.
The probability of being at any time in state +μ is given by
p+ = τ/(τ + σ ), whereas the probability of being in state −μ

is p− = σ/(τ + σ ). It is useful to define λ = σ + τ .
A clever way to make progress is to elevate iη(t ) =

i
∫ t

0 F (t ′) dt ′ to a 2 × 2 matrix [55]

iη(t ) = itεI + itμσz + λtW, (15)

in which I is the identity matrix, σz is the Pauli z matrix, and
the relaxation matrix [44,45] is defined as

W =
[
−p− p+
p− −p+

]
= λ

[− σ
τ+σ

τ
τ+σ

σ
τ+σ

− τ
τ+σ

]
. (16)

As a consequence of this operation, the probability propagator
[Eq. (12)] is also now a 2 × 2 matrix. The first term added in

Eq. (15) is to account for the static electric field ε and the
two stochastic states are |+〉 = (1

0), |−〉 = (0
1) corresponding

to the fields +μ and −μ, respectively. Equation (15) can be
decomposed in terms of Pauli matrices as

iη(t ) = −t (γ − iε)I + tσz(γ δp + iμ) + γ t (σx + iδpσy),

(17)

where γ = λ
2 and δp = (p+ − p−). The exponential of

Eq. (17) can be written in a compact form: eiη(t ) =
e−t (γ−iε) et (h·σ), where hx = γ , hy = iγ δp, and hz = (γ δp +
iμ) and |h| =

√
γ 2 − μ2 + 2iγμδp = ν. Using the Pauli spin

identity: ei(a.σ ) = I cos |a| + i(n̂ · �σ ) sin |a|, the above expres-
sion can be written as

eiη(t ) = 1
2 e−t (γ−iε)[eνt (1 + ĥ · �σ ) + e−νt (1 + ĥ · �σ )]. (18)

Similarly, an equation for the complex conjugation can be
written with h′

x = γ , h′
y = −iγ δp, h′

z = γ δp − iμ.
After some lengthy calculations (detailed in the Appendix),

the exponential part of Eq. (14) can be written as

e−i
∫ t

0 dt ′[V +
k (t ′ )−V +

k′ (t ′ )] = i{g0(t )I + α(t )σx + iδpα(t )σy

+ [δpα(t ) + β(t )]σz}, (19)

where the complicated expressions for g0(t ), α(t ) and β(t ) are
relegated to the Appendix. Finally, we have the compact form

e−i
∫ t

0 dt ′[V +
k (t ′ )−V +

k′ (t ′ )] = eig0(t ) ei(H·σ ), (20)

where Hx = α(t ), Hy = iδpα(t ), and Hz = δpα(t ) + β(t ) and
|H| =

√
α2(t ) + β2(t ) + 2δpα(t )β(t ). Again using the Pauli

spin identity, we get

ei(H·σ ) = [I cos |H| + i(Ĥ · �σ ) sin |H|]. (21)

For the final expression of probability, we need to calculate
the restricted average P̄m(t ) = ∑

ab pa(b|Pm(t )|a) [55]. The
averages of σy and σz give iδp and δp, respectively, whereas
σx averages to unity. While Pm(t ) is a matrix, the average
P̄m(t ) is just a number. The final expression for the average
probability can be written as

P̄m(t ) =
(

1

2π

)2 ∫ π

−π

dk
∫ π

−π

dk′ e−i(k−k′ )m eig0(t )

×
[

cos |H| + i sin |H|α(t )

|H| + iδp sin |H|β(t )

|H|
]
,

(22)

which is one of our key results. It is straightforward to verify
the well-known results for the zero field (ε = 0) and static
field (ε �= 0) case where μ vanishes, hence β(t ) = 0 and
ν → γ . In the former case the probability propagator decays
in time and the mean squared width becomes unbounded in
time. Hence, an initially localized particle will delocalize. In
the latter case of static field, both the probability and the mean
squared width are bounded and exhibit the familiar Bloch
oscillations with frequency ωB = ε. Furthermore, considering
the effect of telegraph noise the zero relaxation limit where
γ = 0, ν = iμ [and hence α(t ) = 0] is straightforward. A
simplification of the probability propagator in this limit yields
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a superposition of probabilities for the two “static fields”
(ε ± μ).

The rapid relaxation condition γ 	 μ, ε is the core em-
phasis of our article, and will be imposed in the rest of
the discussion ahead. In this limit, α2(t ) 	 β2(t ) and an
expansion of |H|, α(t )

|H| , and β(t )
|H| simplifies the integrand of the

probability propagator [Eq. 22)] as

eig0 (t )

[
cos |H| + i sin |H|α(t )

|H| + iδp sin |H|β(t )

|H|
]

≈ eig0(t )+iα(t )+iδpβ(t )ei
(

β2 (t )
2α(t )

)
. (23)

We consider separately the cases where both the levels of the
stochastic field are equally probable (δp = 0) and where one
level is more probable than the other (δp �= 0).

With δp = 0, and γ 	 μ, the expression for ν can be
expanded up to O( μ2

γ
) as ν =

√
γ 2 − μ2 ≈ γ − μ2

2γ
. For the

zero static field case (ε = 0), the expressions for g0(t ), α(t ),
and β(t ) can be written as [up to O(μ/γ )]

g0(t ) ≈ η+(cos k − cos k′), α(t ) ≈ η−(cos k − cos k′),

β(t ) ≈ −μ

γ
η−(sin k − sin k′), (24)

where η±(t ) = �
4

1
2γ

[2γ t ± (1 − e−2γ t )]. Substituting the val-
ues of g0(t ), α(t ), and β(t ) and taking the long time limit,
we get

eig0(t )+iα(t )ei β2 (t )
2α(t ) ≈ ei

�efft
2 (cos k−cos k′ ), (25)

where �eff = �[1 + 1
8 ( μ

γ
)2( sin k−sin k′

cos k−cos k′ )
2
]. Hence in this limit,

the effect is identical to the case of no field. This is the
case where the electric field is so rapidly fluctuating between
±μ, that for all practical purposes the system feels no effect
at all. This effect is shown in Fig. 1, where the probability
propagator and the mean squared width of the wave packet
are plotted with time. The return probability decays in time
and the wave-packet width becomes unbounded signifying
the delocalization of an initially localized wave packet. In the
presence of the static field (ε �= 0), we have the approximation

g0(t ) + α(t ) ≈ �

2ε

[
e− μ2

2γ
t sin(k + εt ) − sin k

]
− �

2ε

[
e− μ2

2γ
t sin(k′ + εt ) − sin k′]. (26)

In the limit γ 	 μ, the ratio g2
3(t )

2g2(t ) becomes very small and

can be neglected. Also the term e− μ2

2γ
t becomes unity, unless

t is very large. So in this limit one obtains Bloch oscillations
with frequency ε for small times (Fig. 1); however the rapidly
fluctuating noise causes in the long time limit for these oscil-
lations to damp out exponentially.

Another interesting case of rapid relaxation arises when
the two levels are not equiprobable (δp �= 0). Here ν =√

γ 2 − μ2 + 2iγμδp. We can expand ν up to O( μ2

γ 2 ) as ν =
γ (1 + i( μ

γ
)δp − μ2

2γ 2 ) and γ − ν = μ2

2γ 2 − iμδp. With these
approximations and defining ξ = ε + μδp, the exponent of
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FIG. 1. The return probability of an initially localized wave
packet (δm,0) from the exact calculation and exact numerics. Here
we present data for the case of zero bias (δp = 0) in the rapid
relaxation regime (σ = τ = 100) with � = 2.0. (a) Equivalence to
zero field case in the zero static field limit ε = 0.0. The inset shows
the unbounded growth of mean squared width, analogous to the
zero-field scenario. (b) Bloch oscillations in the finite static field limit
ε = 0.4. In both the figures the numerics are performed for a system
of size L = 400 with averaging carried out over 100 realizations of
the disorder.

the first part of Eq. (23) can be simplified to

g0(t ) + α(t ) + δpβ(t ) ≈ �

2ξ

[
e− μ2

2γ
t sin(k + ξ t ) − sin k

]
− �

2ξ

[
e− μ2

2γ
t sin(k′ + ξ t ) − sin k′].

(27)

The above expression is similar to Eq. (26) with ε replaced
by ξ . Hence, Bloch oscillations with the average field and
frequency ξ appear, which in the long time limit damp out
exponentially. Also, unlike the case of δp = 0, Bloch oscil-
lations with frequency μδp arise even in the zero static field
case. Tuning the bias δp = − ε

μ
in order to precisely cancel

the effect of the static field, causes the average electric field
to become zero, as a consequence of which Bloch oscillations
are destroyed. This can be termed as incoherent destruction of
WS localization as no frequency is involved in this scenario.
This is to be contrasted with coherent destruction of WS
localization [16,17], where a resonant tuning of the drive
provides the mechanism in a system that is subjected to
a combined dc and time periodic ac field. The incoherent
destruction of localization here is to be seen as a contrast with
the equivalence to the zero ac field case seen elsewhere. All
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FIG. 2. The return probability of a wave packet initially localized
state at the center of the chain (m = 0), from exact calculation and
exact numerics. (a) Bloch oscillations with renormalized frequency
(ε + μδp) are seen in the rapid relaxation regime (σ = 50, τ = 150)
and with bias δp = 0.5 and static field ε = 0.5. (b) Incoherent de-
struction of WS localization by the stochastic field for ε = 0.1, σ =
150, τ = 50, δp = −0.5. The inset shows the unbounded growth of
mean squared width. In both the figures, the other parameters are
μ = 0.2, L = 400, � = 2.0, dt = 0.01, and the exact numerics
average over 100 realizations of disorder.

these effects are plotted in Fig. 2, where the return probability
and the mean squared width of the wave packet are given as
a function of time. The details of the numerical generation of
the telegraph noise are given in the Appendix.

IV. NUMERICAL IMPLEMENTATION
OF TELEGRAPH NOISE

The different cases considered above for the telegraphic
noise can be verified independently from an exact numerical
approach. The numerical approach involves the implemen-
tation of telegraph noise followed by the diagonalization
of the Hamiltonian at each instant of time. The probability
propagator can then be calculated by looking at the dynamics
of an initial state.

For the numerical generation of the telegraph noise we
follow Refs. [28,44,56–58]. The method works as follows:
Let σ and τ be the rate of switching from level a to b and
b to a, respectively. The probability of being at any time in
state a is given by τ/(τ + σ ), whereas the probability of being
in state b is σ/(τ + σ ). Furthermore, let wi j = (i|W | j) with
i, j = {a, b} be the matrix elements of the relaxation matrix
which gives the transition rate to jump from a state j to i. The

condition of detailed balance implies

pb(a|W |b) = pa(b|W |a), (28)

where pa and pb are the probability to remain in state a and b,
respectively. Invoking conservation of probability along with
Eq. (28), the matrix element of the relaxation matrix can be
expressed as

wab = λpa, wba = λpb, (29)

where λ = wab + wba.
The relaxation matrix can thus be written as

W = λ

[−pb pa

−pb −pa

]
. (30)

By substituting the values of pa and pb, the relaxation matrix
W can be expressed as

W = λ

[− σ
τ+σ

τ
τ+σ

σ
τ+σ

− τ
τ+σ

]
, (31)

where λ = τ + σ . The difference of the probabilities between
the two levels can be extracted as δp = τ−σ

τ+σ
.

Also the various conditional probabilities can be expressed
in terms of the elements of the relaxation matrix as fol-
lows [57,58]:

Paa = P(a, tn+1|a, tn) = σ

τ + σ
+ τ

τ + σ
exp [−(τ + σ )dt],

Pba = P(a, tn+1|b, tn) = σ

τ + σ
− σ

τ + σ
exp [−(τ + σ )dt],

Pbb = P(b, tn+1|b, tn) = τ

τ + σ
+ σ

τ + σ
exp [−(τ + σ )dt],

Pab = P(b, tn+1|a, tn) = τ

τ + σ
− τ

τ + σ
exp [−(τ + σ )dt].

(32)

Finally, the numerical simulation is done as follows. Let
the starting state be a. A random number between 0 and 1
is generated from the computer, and is compared against the
conditional probability Paa. If the conditional probability is
greater than the random number, the next state will remain
a, otherwise the next state will be changed to b. If the state
changes to b, then for the next time, a random number is again
generated and contrasted against the conditional probability
Pba. If this conditional probability is greater than the random
number, the next state is taken as a else it will remain b. If
the starting state is b, the random number is compared against
the conditional probability Pbb. Again if this conditional prob-
ability is greater than the random number, the next state will
remain b, otherwise it will be changed to a. If a flip happens to
a, then a random number is generated and compared against
the conditional probability Pab. If this conditional probability
is greater than the random number, the next state will flip to
b, else it will remain a. This process is repeated in time units
of length dt until the final time is reached. The different cases
of the telegraphic noise can then be generated by setting the
values σ and τ .

V. SUMMARY AND CONCLUSIONS

To summarize, we studied the effect of an electric field
subjected to random telegraphic noise on a nearest-neighbor
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tight-binding chain. Our first result is the derivation of an
exact general expression for the probability propagator, which
is then employed to illuminate several special cases. As
expected, in the zero relaxation case, the probability shows
oscillatory behavior, with a superposition of the frequencies
ε ± μ. The rapid relaxation scenario forms the core emphasis
of our work, and may be subdivided into two cases: one where
the rates for the two levels are the same and the other where
one level has greater lifetime than the other. In the former case,
a delocalization effect is obtained in zero static field and Bloch
oscillations in the presence of a static field. We identify this
limit as a manifestation of equivalence of a rapidly changing
field phenomenon with the corresponding zero ac field limit.
In the latter case, a finite difference in the probabilities of
the two levels renormalizes the Bloch frequency to ωB =
ε + μδp. A precise tuning of the bias δp leads to incoherent
destruction of WS localization. The exact results are also
verified by an independent numerical approach as well.
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APPENDIX: PROBABILITY CALCULATION

For a telegraph noise we have [with η(t ) = ∫ t
0 F (t ′)dt ′]

iη(t ) = −t (γ − iε).I + tσz(γ δp + iμ) + γ t (σx + iδpσy),

(A1)

where γ = λ
2 and δp = (p+ − p−). Using a Pauli spin iden-

tity: ei(a·σ ) = I cos |a| + i(n̂ · �σ ) sin |a|, the exponential of
Eq. (A1) can be written as

eiη(t ) = 1
2 e−t (γ−iε)[eνt (1 + ĥ · �σ + e−νt (1 + ĥ · �σ )]. (A2)

Also, the conjugate equation is (h′
x = γ , h′

y = −iγ δp, h′
z =

γ δp − iμ)

e−iη(t ) = 1
2 e−t (γ+iε)[eνt (1 + ĥ′ · �σ + e−νt (1 + ĥ′ · �σ )]. (A3)

Introducing z = eik and z′ = eik′
, the expression for V +

k (t ) − V +
k′ (t ) can be solved to

V +
k (t ) − V +

k′ (t ) = −�

8
e−γ t {(z − z′) eiεt [eνt (1 + ĥ · �σ ) + e−νt (1 − ĥ · �σ )]

+ (z∗ − z′∗) e−iεt [eνt (1 + ĥ′ · �σ ) + e−νt (1 − ĥ′ · �σ )]}. (A4)

Finally, we need to solve the integration

−i
∫ t

0
dt ′[V +

k (t ′) − V +
k′ (t ′)] = i�

8

{
(z − z′)

[
1 − e−(γ−ν)t+iεt

(γ − ν) − iε
+ 1 − e−(γ+ν)t+iεt

(γ + ν) − iε

]

+ (z − z′)(ĥ · �σ )

[
1 − e−(γ−ν)t+iεt

(γ − ν) − iε
− 1 − e−(γ+ν)t+iεt

(γ + ν) − iε

]
+ c.c

}
. (A5)

Using the relations

ĥ · �σ = γ

ν
σx + iγ δp

ν
σy + (γ δp + iμ)

ν
σz, ĥ′ · �σ = γ

ν∗ σx + iγ δp

ν∗ σy + (γ δp − iμ)

ν∗ σz, (A6)

the exponential of the above equation can be written as

e−i
∫ t

0 dt ′[V +
k (t ′ )−V +

k′ (t ′ )] = i[g0(t ).I + g1(t )σx + g2(t )σy + g3(t )σz], (A7)

where

g0(t ) = �

8

{
(z − z′)

[
1 − e−(γ−iε)t+νt

(γ − iε) − ν
+ 1 − e−(γ−iε)t−νt

(γ − iε) + ν

]
+ (z∗ − z′∗)

[
1 − e−(γ+iε)t+ν∗t

(γ + iε) − ν∗ + 1 − e−(γ+iε)t−ν∗t

(γ + iε) + ν∗

]}
,

g1(t ) = �γ

8

{
(z − z′)

ν

[
1 − e−(γ−iε)t+νt

(γ − iε) − ν
− 1 − e−(γ−iε)t−νt

(γ − iε) + ν

]
+ (z∗ − z′∗)

ν∗

[
1 − e−(γ+iε)t+ν∗t

(γ + iε) − ν∗ − 1 − e−(γ+iε)t−ν∗t

(γ + iε) + ν∗

]}
,

g2(t ) = i�γδp

8

{
(z − z′)

ν

[
1 − e−(γ−iε)t+νt

(γ − iε) − ν
− 1 − e−(γ−iε)t−νt

(γ − iε) + ν

]
+ (z∗ − z′∗)

ν∗

[
1 − e−(γ+iε)t+ν∗t

(γ + iε) − ν∗ − 1 − e−(γ+iε)t−ν∗t

(γ + iε) + ν∗

]}
,

g3(t ) = �γδp

8

{
(z − z′)

ν

[
1 − e−(γ−iε)t+νt

(γ − iε) − ν
− 1 − e−(γ−iε)t−νt

(γ − iε) + ν

]
+ (z∗ − z′∗)

ν∗

[
1 − e−(γ+iε)t+ν∗t

(γ + iε) − ν∗ − 1 − e−(γ+iε)t−ν∗t

(γ + iε) + ν∗

]}

+ i�μ

8

{
(z − z′)

ν

[
1 − e−(γ−iε)t+νt

(γ − iε) − ν
− 1 − e−(γ−iε)t−νt

(γ − iε) + ν

]
− (z∗ − z′∗)

ν∗

[
1 − e−(γ+iε)t+ν∗t

(γ + iε) − ν∗ − 1 − e−(γ+iε)t−ν∗t

(γ + iε) + ν∗

]}
. (A8)
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Also the expressions for g2(t ) and g3(t ) can be related to g1(t ) = α(t ) as

g2(t ) = iδpα(t ), g3(t ) = δpα(t ) + β(t ), (A9)

where β(t ) is the second part of g3(t ). The expression for |H| can be solved to

|H| =
√

α2(t ) + β2(t ) + 2δpα(t )β(t ). (A10)

Finally, substituting these into the expression for the probability propagator and taking the restricted averages [55], a simplified
expression for the probability propagator for the case of telegraph noise can be obtained.
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