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Ab initio derivation of an effective Hamiltonian for the La2CuO4/La1.55Sr0.45CuO4 heterostructure
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We formulate a method of deriving an effective low-energy Hamiltonian for nonperiodic systems such as
interfaces for strongly correlated electron systems by extending a conventional multiscale ab initio scheme
for correlated electrons (MACE). We apply the formalism to copper-oxide high Tc superconductors in an
example of the interface between overdoped La2−xSrxCuO4 and Mott insulating La2CuO4 recently realized
experimentally and derive the two-band effective Hamiltonian (Eg Hamiltonian) from the Cu 3dx2−y2 -like and
3d3r2−z2 -like orbitals near the Fermi level. We show that the parameters of the Eg Hamiltonian derived for
the La2CuO4/La1.55Sr0.45CuO4 superlattice differ considerably from those for the bulk La2CuO4, particularly
significant in the partially screened Coulomb parameters and the level offset between the dx2−y2 and dz2 orbitals,
�E . In addition, we investigate the effect of the lattice relaxation on the Eg Hamiltonian by carefully comparing
the parameters derived before and after the structure optimization. We find that the CuO6 octahedra distort after
the relaxation as a consequence of the Madelung potential difference between the La2CuO4 and La1.55Sr0.45CuO4

sides, by which the layer dependence of the hopping and Coulomb parameters becomes more gradual than the
unrelaxed case. Furthermore, the structure relaxation dramatically changes the �E value and the occupation
number at the interface. This study not only evidences the importance of the ionic relaxation around interfaces
but also provides a set of layer-dependent parameters of the Eg Hamiltonian, which is expected to provide further
insight into the interfacial superconductivity when solved with low-energy solvers.
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I. INTRODUCTION

Interface is at the frontier of condensed matter research and
properties and functions not attainable in bulk crystals are the
subjects of recent extensive studies. Among all, superconduc-
tivity is one of the hottest topics, where interface atomic layers
often show properties superior to the bulk in terms of the
critical temperature and its stability. Examples are interfaces
of copper-oxide superconductors [1–4] and the iron-based
superconductors such as FeSe grown on the substrate such as
SrTiO3 [5–7].

Among all, recent experimental realization of the pinning
of the critical temperature for the interface between overdoped
La2−xSrxCuO4 and Mott insulating La2CuO4 [3] has inspired
several theoretical studies [8]. Experimentally, Tc is pinned
at 40 K, which is the highest critical temperature of the
bulk even when the doping concentration is varied in a wide
range of 0.2 < x < 0.5 in the overdoped side La2−xSrxCuO4,
indicating stable self-optimization of the superconductivity by
the interface structure.

However, mechanisms of such fascinating phenomena at
interfaces are difficult to identify experimentally in general,
because interfaces give only a tiny (negligible) contribu-
tion to thermodynamic quantities. In addition, the surface
sensitive probes such as photoemission and scanning tun-
nel microscope spectroscopies are not suitable in contrast
to surfaces. Therefore, even the lattice constant is hardly
determined.

Given this situation, the role of first-principles studies,
which can predict lattice parameters and atomic positions,
becomes more important. Furthermore, in the case of inter-
faces in strongly correlated electron systems, we need to take
into account the effect of electron correlations properly. To
study the correlation effect from first principles, derivation
of a low-energy effective Hamiltonian describing the degrees
of freedom near the Fermi level is useful [9,10]. However,
the lack of the periodicity makes calculations challenging
and so far there exist only a few applications to interface
systems [11].

To derive effective low-energy Hamiltonians for interfaces
in strongly correlated electron systems from first principles,
we need to extend the formalism developed for the bulk
systems. In the formalism for the bulk periodic systems,
the low-energy effective Hamiltonians are derived without
any adjustable parameters based on the multiscale ab initio
scheme for correlated electrons (MACE) [9], where overall
electronic structure is first obtained from density functional
theory (DFT) calculation and the high-energy degrees of
freedom is eliminated by taking its partial trace summation,
which leaves the low-energy degrees of freedom near the
Fermi level as the low-energy effective Hamiltonian. This
partial trace summation can be taken perturbatively in a well
controlled manner because we exclude the low-energy and
gapless excitations generated within the low-energy degrees
of freedom, which will be treated afterwards by solving the
effective Hamiltonian beyond DFT. The perturbative scheme

2469-9950/2019/99(15)/155148(12) 155148-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.99.155148&domain=pdf&date_stamp=2019-04-24
https://doi.org/10.1103/PhysRevB.99.155148


TADANO, NOMURA, AND IMADA PHYSICAL REVIEW B 99, 155148 (2019)

is justified because we treat the fictitious gapped system
as if it is an insulator by excluding the gapless excitation
and it is well known that the vertex correction is small in
the insulator. This partial-trace summation taken following
the spirit of the renormalization group is either based on the
constrained random phase approximation (cRPA) [12] or the
constrained GW (cGW ) approximation [13,14]. The MACE
and cRPA formalism is reviewed and described in detail in
the next section.

At the moment, the formalism almost always uses experi-
mental lattice structures and parameters of materials, although
the lattice relaxation and optimization can be implemented
simultaneously without relying on the experimental values if
they are not available or one wishes to design new materials.
For the interface, even for the experimentally available sys-
tems, the lattice parameters are in many cases not available.
Therefore, for the interface calculation, we first need to relax
and optimize the lattice structure and predict the precise lattice
parameters.

In this paper we propose a formalism by extending MACE
to develop a scheme suitable for nonperiodic systems such as
interfaces first by implementing the lattice relaxation near the
interface. This procedure is next combined with the conven-
tional MACE treatment. To show its performance, we take an
example of the interface between overdoped La2−xSrxCuO4

and Mott insulating La2CuO4. To gain insight beyond the
previous work [8], we examine the effect of lattice relaxation,
which was not studied before.

We derive the two-band effective Hamiltonian consisting
mainly of the antibonding band formed from Cu 3dx2−y2 and O
2pσ orbitals and the Cu 3d3z2−r2 (3dz2 ) band for La compounds
by extending the bulk studies [15,16]. The reason why we do
not employ the one-band Hamiltonian is that the above two
bands are severely hybridized in the case of La2CuO4 [17].

The structure of the paper is the following: In Sec. II we
present the method. In Secs. III and IV we show the results of
lattice relaxation and derived two-band Hamiltonian parame-
ters for bulk and interface systems, respectively. Sections V
and VI are devoted to discussion and conclusion of the paper.

II. METHOD

We derive ab initio low-energy effective Hamiltonians for
La2CuO4 and its heterostructures by employing the cRPA
scheme [12] and the maximally localized Wannier function
(MLWF) method [18] on top of DFT calculations.

We first choose the target low-energy subspace (d sub-
space) to construct the effective Hamiltonian for d-subspace
electrons. In the case of La2CuO4, we adopt the two-band
Hamiltonian comprising the Cu 3dx2−y2 -like and 3dz2 -like
orbitals near the Fermi level. Unlike the case of HgBa2CuO4

where the one-band Hamiltonian should be a good minimum
model, the two 3d orbitals are strongly entangled in La2CuO4.
Therefore, the minimum effective Hamiltonian of La2CuO4

should include at least two orbitals. Note that, in what follows,
the “Cu 3dx2−y2 -like orbitals” are actually the antibonding
orbital of the strongly hybridizing copper 3dx2−y2 and oxygen
2pσ orbital.

The form of the effective two-orbital Hamiltonian is

H =
∑

σ

∑
RR′

∑
mn

tmRnR′aσ†
mRaσ

nR′ −
∑
σRm

μmnσ
mR

+ 1

2

∑
σρ

∑
RR′

∑
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{
UmRnR′aσ†

mRaρ†
nR′a

ρ
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+ JmRnR′
(
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ρ

mRaσ
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)}
, (1)

where aσ†
nR (aσ

nR) is a creation (annihilation) operator of an
electron with spin σ in the nth Wannier orbital located in
the unit cell at position R, tmRnR′ is the hopping parameter,
μm is the orbital-dependent on-site potential, nσ

mR = aσ†
mRaσ

mR,
and UmRnR′ and JmRnR′ are effective Coulomb and exchange
interactions, respectively. Let HKS denote the Kohn-Sham
(KS) Hamiltonian of DFT calculation and Weff be the partially
screened Coulomb interaction, the hopping and Coulomb
parameters are expressed as follows:

(1 − δmnδRR′ )tmRnR′ − δmnδRR′μm

= 〈φmR|HKS|φnR′ 〉 , (2)

UmRnR′ = 〈φmRφnR′ |Weff |φmRφnR′ 〉 , (3)

JmRnR′ = 〈φmRφnR′ |Weff |φnR′φmR〉 , (4)

with |φmR〉 = a†
mR |0〉 and δi j being the Kronecker delta.

In the calculation of the effective interaction parameters
in Eqs. (3) and (4), we exclude the screening contribution
associated with the d-d polarization processes within the
Eg manifold of the 3d electron subspace (namely, d sub-
space) and use the partially screened interactions Weff : The
d-subspace screening contribution is considered when we
analyze the low-energy Hamiltonians, therefore, we need to
exclude it in deriving UmRnR′ and JmRnR′ to avoid the double
counting of the screening [12]. Then Weff is given by

Weff = (1 − vPr )−1v, (5)

where Pr is given by Pr = P − Pd with the full polarization
P and d-subspace polarization Pd , and v is the bare Coulomb
interaction.

When the d subspace is not isolated from the high-energy
subspace (r subspace), which is usually the case in cuprates,
it is necessary to handle the entanglement to construct the d-
subspace polarization Pd [19,20]. In this study we employ the
simple approach of Ref. [20], where the matrix element of Pd

in the plane-wave basis is given as

Pd
GG′ (q, ω) =

∑
k,α,β

ρ∗
αβkq(G)ραβkq(G′)F d

αβ (k, q)

×
[

1

ω + Gαβ (k, q)
− 1

ω − Gαβ (k, q)

]
, (6)

ραβkq(G) = 〈ψαk+q|ei(q+G)·r|ψβk〉 , (7)

F d
αβ (k, q) = θ (εα,k+q − εF)θ (εF − εβ,k)

×wαk+qwβk, (8)

Gαβ (k, q) = εα,k+q − εβ,k + iδ. (9)
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Here εαk and |ψαk〉 are the KS eigenvalue and wave function
of the αth band at the momentum k, respectively, G is the
reciprocal lattice vector, εF is the Fermi level, θ (x) is the
Heaviside step function, and δ is a small negative value.
The term wαk in Eq. (8) is the weight of the target Wannier
orbital defined as

wαk =
∑

m

∣∣U (k)
αm

∣∣2
, (10)

with U (k)
αm being a unitary matrix that transforms ψαk(r) into

φmR(r) as

φmR(r) = 1√
N

∑
k

e−ik·Rψ
(w)
mk

= 1√
N

∑
k

e−ik·R ∑
α

U (k)
αm ψαk(r), (11)

where ψ
(w)
mk is the Wannier-gauge Bloch wave function.

Hence, wαk can be obtained straightforwardly from the results
of the MLWF calculation. If the KS wave function |ψαk〉
is strictly represented only within the subspace of the d
electrons, we obtain wαk = 1. Therefore, the term wαk+qwβk

in F d
αβ (k, q) becomes exactly one when both the virtual state

|ψαk+q〉 and the occupied state |ψβk〉 belong to the d sub-
space, and the d-d transition in Pr

GG′ (q, ω) = PGG′ (q, ω) −
Pd

GG′ (q, ω) is duly excluded.
Once we obtain Pd by Eq. (6), we can calculate the partially

screened Coulomb parameters in Eqs. (3) and (4) as

Um0nR = 4π

�

∑
qGG′

e−iq·Rρmq(G)ε−1
GG′ (q, ω = 0)ρ∗

nq(G′), (12)

Jm0nR = 4π

�

∑
qGG′

ρmnRq(G)ε−1
GG′ (q, ω = 0)ρ∗

mnRq(G′), (13)

where � is the crystal cell volume, ε−1(q, ω) is the inverse of
the symmetric dielectric matrix, and ρmq(G) = ρmm0q(G) with
ρmnRq(G) being defined as follows:

ρmnRq(G) = 1

N |q + G|
∑

k

e−ik·R 〈
ψ

(w)
mk+q

∣∣ei(q+G)·r∣∣ψ (w)
nk

〉
.

(14)
The symmetric dielectric matrix is defined as

εGG′ (q, ω) = δGG′ − [v(q + G)]1/2Pr
GG′ (q, ω)[v(q + G′)]1/2,

(15)
where the bare Coulomb interaction v(q) in reciprocal space
is given by v(q) = 4π/�|q|2.

III. Eg HAMILTONIAN OF BULK SYSTEMS

To clarify specific properties at the LCO/LSCO interface,
it is essential to first understand properties of the bulk systems
including the doping-level dependence of the low-energy
Hamiltonians. In this section we carefully compare the Eg

Hamiltonians of the nondoped La2CuO4 and the overdoped
La1.55Sr0.45CuO4.

FIG. 1. Crystal structure of the conventional unit cell of the
tetragonal La2CuO4. The unit cell contains two CuO2 layers. Green,
blue, and red spheres represent La, Cu, and O atoms, respectively
(created with VESTA [25]).

All of the DFT calculations in this work were performed by
using QUANTUM ESPRESSO [21], which implements the plane-
wave pseudopotential method. We employed the Pewdew-
Burke-Ernzerhof (PBE) exchange-correlation potential [22]
and the optimized norm-conserving Vanderbilt (ONCV) pseu-
dopotentials [23] from the SG15 table [24]. The kinetic-
energy cutoff was set to 100 Ry. We employed the tetragonal
structure of La2−xSrxCuO4 (space group: I4/mmm), where
the Sr doping was modeled by the virtual crystal approxima-
tion (VCA).

When constructing the low-energy Hamiltonians of the
bulk systems, we employed the conventional unit cell (see
Fig. 1) because it is more convenient than the primitive cell to
apply consistent Wannierization parameters, particularly the
frozen window, between the bulk and heterostructure systems.
In the conventional unit cell calculations, we employed the
8 × 8 × 4 k points for the Brillouin zone (BZ) integration with
the smearing width of 0.02 Ry.

A. Structural properties

First, we fully relaxed the tetragonal structure of
La2−xSrxCuO4 at different doping levels x until both the force
convergence criteria |F | < 10−6 Ry bohr−1 and the stress
convergence criteria |σ | < 0.5 kbar are satisfied. The results
are compared with the available experimental data in Table I.
According to the paper of Radaelli et al. [26], the tetragonal
phase of La2−xSrxCuO4 is stable at 0 K only when x > 0.21,
below which the orthorhombic phase becomes the most stable
at low temperatures. Nonetheless, it should be reasonable to
use the tetragonal structure for the derivation of the effective
Hamiltonian because no discontinuity in the Tc has been ob-
served at the tetragonal-to-orthorhombic phase transition [26].
The in-plane lattice constants of the orthorhombic phase are
approximately equal to

√
2atetra. Therefore, we show

√
2atetra

instead of atetra in Table I for the purpose of comparison.
It is observed in the table that our DFT results based on

the VCA reasonably well reproduce the experimental cell
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TABLE I. Comparison of calculated (calc.) and experimental
(expt.) structural parameters of La2−xSrxCuO4. hO is the distance
between a Cu atom and its apical oxygen site. The calculations
are performed for four different structures. We assign the labels for
the undoped cases (x = 0) as N1 and N2 and heavily doped cases
(x = 0.45) as D1 and D2. In N1 and D1 the lattice constants and
internal atomic coordinates are fully relaxed, whereas in N2 and
D2 the planer lattice constant is fixed to match that of the substrate
LaSrAlO4 (see the main text for detail). For the tetragonal phase, a
values in the table are

√
2atetra where atetra is the lattice constant of

the tetragonal unit cell, and b value is left blank.

Label x a (Å) b (Å) c (Å) hO (Å)

Calc. (fully relaxed)
N1 0.00 5.398 13.176 2.450

0.15 5.383 13.247 2.420
0.30 5.381 13.237 2.390

D1 0.45 5.388 13.186 2.346
Calc. (relax c with atetra = aLSAO)
N2 0.00 5.310 13.354 2.481
D2 0.45 5.310 13.377 2.393
Expt. (Ref. [26], 10 K)

0.00 5.335 5.415 13.117 2.420
0.15 5.325 5.349 13.197 2.414
0.30 5.312 13.228 2.390

parameters within 1% error as well as the trend of the doping-
level dependence, thus validating the reliability of the VCA.
In Table I we also show the optimized values of the out-
of-plane lattice constant c with a and b being fixed to those
of LaSrAlO4 (LSAO), which was used as the substrate for
growing the LCO/LSCO bilayer thin film [1]. Since the
in-plane lattice constants of LSAO is slightly smaller than
those of LCO and LSCO, the LSAO substrate induces the
compressive strain along the a and b axes, leading to a slightly
larger c value due to positive Poisson ratio.

B. Construction of MLWFs

Second, we construct the MLWFs of La2CuO4 and
La1.55Sr0.45CuO4 to see the doping level and strain depen-
dence of the hopping parameters and the Coulomb interaction.
Since the target Eg orbitals are not isolated, the resulting
MLWFs are rather sensitive to the chosen range of the energy
window. In this study we set the outer window by band index.
Here the outer window specifies the Hilbert subspace, within
which the MLWFs are constructed. We included eight valence
bands per CuO2 layer in the outer window (see Fig. 2), which
was the narrowest window setting to match the MLWF band
structures with the KS ones around the Fermi level both for
the nondoped and doped systems. Also, the frozen window
[18] was used to perfectly reproduce the original KS band of
the dx2−y2 -like orbitals at the Fermi energy. The resulting two
MLWFs are rather extended as shown in Fig. 3.

It is possible to derive more localized Wannier orbitals
by including more valence bands in the outer window. To
see the influence of the outer window range on the effective
Hamiltonian, we also show the calculated parameters when
we included 14 valence bands per CuO2 layer as in Ref. [15]
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FIG. 2. Band structure of La2−xSrxCuO4 (x = 0, 0.45) calculated
with the conventional unit cell along the high-symmetry lines of the
Brillouin zone (thin lines). The energy is shown relative to the Fermi
energy. The MLWF band structures of the Eg Hamiltonian are also
shown by green thick lines, which were constructed from the 16 KS
bands (eight bands per CuO2 layer) shown in red color.

in the Supplemental Material (SM) [27]. This condition still
excludes the bonding and nonbonding states formed by the
Cu dx2−y2 and in-plane O pσ orbitals from the energy window
but newly includes the bonding state formed by the Cu dz2

and apical-oxygen pz orbitals. Therefore, the resulting dz2 -like
MLWF becomes more localized than that of Fig. 3(a), while
the changes of the dx2−y2 orbital shape and parameters are
small (see SM [27]). As the two-band (Eg) description of
the effective Hamiltonian, we believe that the choice of the
eight-band outer window is more appropriate, because the dz2

orbital is strongly hybridized with an apical oxygen pz orbital.
This strong hybridization is ignored if we employ the 14-band
outer window.

C. cRPA calculation

In the present cRPA calculations for bulk, we considered
the particle-hole excitations within 150 bands (75 bands/f.u.)
in calculating the polarization, which corresponds to include
84 unoccupied bands (42 bands/f.u.) up to ∼21 eV above the
Fermi level. The kinetic-energy cutoff for the polarization was
set to 20 Ry, which was sufficiently large for the symmetric
dielectric matrix to reach the large |G| limit of εGG′ ≈ δGG′ .
The same computational conditions were employed for the
cRPA calculation of interfaces. The number of unoccupied
bands was selected to make the cRPA calculation of the com-
plex LCO/LSCO heterostructure feasible, but the screened
Coulomb parameters, particularly the on-site Coulomb inter-
action, will be reduced further with increasing the number
of bands. Fortunately, our setting still gives reasonably con-
verged values of U . For example, in the N1 case, we obtained
3.92 eV for the on-site Coulomb interaction of the dx2−y2

orbital. This value reduced to the almost converged result of
3.67 eV which were obtained with 500 bands. Therefore, the
presented results for U are within ∼7% error (overestimate)
from the converged values. Our U value is in reasonable
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(a) dz2 (b)dx2−y2

FIG. 3. Isosurface of the constructed MLWFs of La2CuO4 (isovalue = 0.03 a.u.). The La atoms are not shown for a visualization purpose.

agreement with those of the previous cRPA [16,28,29] and
cGW [15] studies as described in Appendix A.

The values of effective Coulomb interactions computed by
cRPA are determined by the shape (spatial spread) of MLWFs
and the strength of screening. The doping and strain affect
both of them. To see only the effect of the change in the shape
of WLWFs, we also compute the Wannier matrix elements
of the bare Coulomb interaction by replacing Weff with v in
Eqs. (3) and (4).

D. Doping and strain dependence

Figure 2 compares the calculated KS and MLWF band
structures of LCO and LSCO along the high-symmetry lines
of the BZ. Here the fully optimized structures (N1 and D1 in
Table I) are used. While the valence-band structures of the
two systems are similar, a simple rigid-band picture seems
insufficient for explaining the difference. To see the difference
more clearly, we constructed atomiclike 17 MLWFs of LCO
and LSCO from the isolated 17 valence bands consisting of
the whole Cu 3d and O 2p manifold, and compared their
on-site energy levels relative to the Fermi energy. We then
observed that upon hole doping the energy levels of O 2p
orbitals increased significantly, particularly for the apical oxy-
gen, whereas those of Cu 3d orbitals changed only slightly.
Hence, the hole doping by the chemical substitution reduces
the energy-level difference of O 2p and Cu 3d orbitals. The
observed shift of the O 2p energy levels can be attributed
to the change of the electrostatic potential induced by the
substitution, which mainly affects the O 2p orbitals of oxygen
located near the La sites (see Fig. 1).

The hole doping also affects the hopping and Coulomb
parameters as can be seen in Table II. The significant change
occurs for the partially screened on-site Coulomb parameters,
whose reduction amounts to ∼21%–31%. This reduction can
be attributed to two different factors. One is the change of
the spread of the MLWFs. Since the hole doping reduces
the energy-level difference between the O 2p and Cu 3d
orbitals as mentioned above, the 2p-3d hybridization becomes
stronger, leading to more extended Eg Wannier functions. The
change of the MLWFs resulted in the 10%–16% reduction
of the bare on-site Coulomb interactions. The other factor
is the change of the screening strength. Upon hole doping,

the energy levels of the O 2p orbitals become closer to the
Fermi energy. This enhances the screening channel in Pr

and explains further reduction in U . As for the intraorbital
hopping parameters, we see a slight increase upon doping.
As a result of the decrease of the Coulomb interaction and
the slight increase of the hopping parameters, the strength
of correlation, which can be measured by the ratio |U/t | for
dx2−y2 orbital, changes significantly. |U/t | changes from ∼8.5
(7.9) to ∼6.4 (5.8) for the fully relaxed structure (relaxed
structure with the constraint of a = aLSAO).

The level offset between the dx2−y2 and dz2 orbitals �E =
μx2−y2 − μz2 , which has been pointed out to be a key param-
eter to explain the material dependence of Tc [30–32], is also
affected by hole doping. It decreases by 0.279 and 0.344 eV
for the fully relaxed structure and the relaxed structure with
the constraint of a = aLSAO, respectively.

Next, we discuss the strain dependence. To see the effect
of the compressive stress along the ab plane induced by the
LSAO substrate, we also calculated the hopping and Coulomb
parameters with the N2 and D2 structures of Table I. As shown
in Table II, the compressive stress changes the Coulomb
parameters only slightly but significantly increases the level
offset �E by ∼0.19–0.26 eV. This tendency agrees with the
previous theoretical result [32].

We see that the doping and strain affect the parameters
in the effective Hamiltonians. However, the changes of pa-
rameters upon doping and/or strain are usually neglected in
previous studies. It is intriguing to study the superconducting
amplitude and its competition with the charge inhomogeneity
such as stripes by solving the present Hamiltonian using
highly accurate low-energy solvers.

IV. Eg HAMILTONIAN OF HETEROSTRUCTURES

To derive the Eg Hamiltonian of the LCO/LSCO inter-
face, we employ the superlattice (SL) structures schematically
shown in Fig. 4. The heterostructure was constructed by
stacking tetragonal unit cells of LCO and LSCO along the c
axis. For the LCO and LSCO structure units, we employed
the N2 and D2 conventional cells in Table II, respectively.
Since each unit cell of LCO contains seven atoms, the struc-
tural model of a (M, N ) superlattice contains 7 × (M + N )
atoms, where M and N are the numbers of unit cells in the
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TABLE II. Hopping and Coulomb parameters of the bulk Eg Hamiltonians calculated with different doping level x and structural
parameters. The indices m, n label the MLWFs; 0 and 1 correspond to dz2 and dx2−y2 , respectively. The meanings of other parameters are
the followings. �E : The on-site potential difference between the dx2−y2 and dz2 orbitals; t, t ′, t ′′: nearest, next-nearest, and second next-nearest
hopping parameters on CuO2 plane, respectively; v,U : on-site Coulomb interactions; vn,Vn: nearest-neighbor Coulomb interactions; Jv, J:
exchange interactions; |U/t |: scaled correlation strength for the dx2−y2 orbital.

N1 (x = 0) N2 (x = 0) D1 (x = 0.45) D2 (x = 0.45)
(m, n)

�E 0.778 1.034 0.499 0.690
t (0,0) −0.063 −0.059 −0.089 −0.083

(0,1) 0.170 0.169 0.204 0.200
(1,1) −0.463 −0.490 −0.478 −0.500

t ′ (0,0) −0.010 −0.009 −0.015 −0.014
(0,1) 0.000 0.000 0.000 0.000
(1,1) 0.092 0.095 0.096 0.101

t ′′ (0,0) −0.008 −0.007 −0.013 −0.011
(0,1) 0.027 0.027 0.033 0.033
(1,1) −0.074 −0.078 −0.087 −0.091

Spread of the MLWF (Å2) (0,0) 4.00 3.99 4.72 4.85
(1,1) 3.26 3.19 4.03 4.05

Bare Coulomb parameters
v (0,0) 13.85 13.83 11.84 11.66

(0,1) 12.55 12.53 10.74 10.53
(1,1) 14.89 14.90 13.42 13.30

vn (0,0) 3.33 3.37 3.27 3.28
(0,1) 3.63 3.68 3.56 3.59
(1,1) 4.10 4.17 4.10 4.16

Jv (0,1) 0.60 0.59 0.51 0.48
Partially screened Coulomb parameters
U (0,0) 3.94 3.91 3.02 2.89

(0,1) 2.63 2.60 1.93 1.80
(1,1) 3.92 3.89 3.07 2.92

Vn (0,0) 0.63 0.64 0.61 0.59
(0,1) 0.72 0.72 0.69 0.66
(1,1) 0.85 0.86 0.83 0.81

J (0,1) 0.50 0.49 0.40 0.38
|U/t | (1,1) 8.47 7.94 6.42 5.84

LCO and LSCO regions, respectively. Second, we performed
DFT calculations of the (M, N ) superlattice and optimized
the lattice constant along the c axis as well as the internal
coordinates, while the a value was fixed to aLSAO. Third,
we constructed MLWFs of all Cu Eg orbitals, corresponding
to 2 × (M + N ) total orbitals, and calculated the hopping,
bare Coulomb, and partially screened Coulomb parameters.
To see the convergence of the parameters with respect to
the number of layers, we calculated hopping parameters for
(M, N ) = (4,4), (6,6), and (8,8). The Coulomb parameters
were calculated only for (M, N ) = (4,4) and (6,6) due to the
computational limitations. In the structural optimization, we
employed the 8 × 8 × 1 k points. In the subsequent cRPA
calculations, the 8 × 8 × 2 k-point mesh was employed in
order to use the tetrahedron method for an accurate treatment
of the summation over k in Eq. (6). In the calculations of SLs,
the Brillouin zone becomes highly anisotropic. In this case, we
found that the original definition of Eq. (14) needs to be mod-
ified to perform the stable cRPA calculation as is discussed in
detail in Appendix B. Our modified ρ̃mnRq(G) gives physically

correct R dependence of the Coulomb parameters as shown
in Fig. 11.

In this study we do not study the effect of interlayer atomic
diffusion, which makes the structure of the interface slightly
obscured [2].

A. Effect of structural optimization

The formation of an LCO/LSCO interface introduces an
abrupt change of the electrostatic potential near the interface,
which is energetically unfavorable. Therefore, the internal
coordinates can deviate from the bulk values, which is likely
to influence the DFT band structures and the associated Eg

Hamiltonian.
Figure 5 shows the layer dependence of the apical oxygen

height obtained after performing the structural optimization.
Since the mirror plane symmetry of the CuO2 planes is lost
due to the interface, the hO values of the apical oxygen atoms
above and below a CuO2 plane are different from each other.
To distinguish these two, we use h±

O as defined in Fig. 4. After
the relaxation, the h+

O value, which is the distance to the apical
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FIG. 4. Schematic figure of the heterostructure of La2CuO4

(LCO) and La1.55Sr0.45CuO4 (LSCO) employed in this study. The
layer index (±1, ±2, . . . ) is assigned to inequivalent unit cells (CuO2

layers). The atomic structure at the interface is also shown on the
right-hand side.

oxygen on the LCO side, tends to increase from the bulk value,
whereas h−

O shows the opposite tendency. The difference
|h+

O − h−
O | becomes significant at the interface (layers ±1)

and sharply decreases going away from the interface. These
structural changes were commonly observed in the studied
SLs with different sizes.

All of these behaviors can be understood qualitatively from
the Madelung potential. The two CuO2 planes closest to the
interface are separated by a LaO plane in the LCO side and
by a (La,Sr)O plane in the LSCO side. Because of the charge
imbalance between the LaO and (La,Sr)O planes at the inter-
face, an electric field is generated in the direction from the
LCO to the LSCO sides, which causes the upward shift of
the oxygen and downward shift of the copper atoms in the
configuration illustrated in Fig. 6, which explains the increase
of h+

O and decrease of h−
O discussed above.

−4 −3 −2 −1 +1 +2 +3 +4

Layer index

2.375

2.400

2.425
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2.475

2.500

2.525

2.550

h
O

(Å
)

(4,4) SL, h+
O

(4,4) SL, h−
O

(6,6) SL, h+
O

(6,6) SL, h−
O

(8,8) SL, h+
O

(8,8) SL, h−
O

No struct. opt.

FIG. 5. Layer dependence of the apical oxygen height hO calcu-
lated for the three different sizes of the superlattice. The definitions
of h+

O and h−
O are given in Fig. 4. The apical oxygen heights after

the optimization are compared with those without the optimization
(cross points).

LSCO
hole doped

LCO
undoped

contracted
octahedron

stretched
octahedron

+

-

FIG. 6. Distortion of octahedra at the interface. The upward shift
(directed to the LCO side) of apical oxygens closest to the interface
is the largest and the distortions become smaller when oxygen atom
position becomes far from the interface. The copper atoms moves
downward. As a result, the octahedra in the LCO side but near the
interface is contracted, while they are stretched in the LSCO side.

This charge imbalance also induces the electron transfer
from the LCO side to the LSCO side, because the Madelung
potential from the opposite side of the interface makes
the electric potential higher (lower) in the CuO2 plane of
the LCO (LSCO) side as compared to the uniform bulk. The
electron itinerancy (interlayer electron hopping) makes its
transfer range even wider in the direction perpendicular to
the interface. It also makes a wider range of atomic-position
shift in a self-consistent fashion. Since the electric field is
strongest at the interface, the distortion is of course largest
at the interface and becomes smaller at points far from the
interface.

The inversion symmetry breaking due to the structure
relaxation induces a stretch (contraction) of the octahedron
along c axis in the LSCO (LCO) side (Fig. 6), whose effect
is discussed in detail in Sec. V. In addition, in-plane Cu and
O are not aligned in-plane any more because of antiphase
distortion between Cu and O ions. The deviation of the O-
Cu-O angle from 180◦ amounts to ∼4◦ at the interface.

The structural relaxation considerably affects the electronic
structure of the heterostructure as evidenced in Fig. 7. For
example, the orbital energies of the dx2−y2 -like orbital along
the line M-X change very sharply at the interface before
the structure optimization, in accord with the previous DFT
calculation [8]. After the optimization, the orbital-energy shift
occurs and the energy change becomes more gradual. The
shift of the energy level is noticeable in the layers ±1, particu-
larly around the point X , but it is far smaller in the other layers
(±2, ±3). This behavior is consistent with the rather strong
deformation of the O-Cu-O angle in the layers ±1 and its
rapid recovery in the layers ±2 observed in Fig. 5. Therefore,
these results indicate that the structure optimization influences
the hopping parameters mainly at the layers ±1, which is
investigated in the subsequent section.

B. Layer-dependent hopping and Coulomb parameters

Figure 8 shows the layer dependence of the level offset
�E , the occupation number nm = 〈a†

m0am0〉, the dominant part
of the hopping parameters, and the spread of the MLWFs
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FIG. 7. KS and Wannier band structures of the (6,6) SL before
(top panel) and after (bottom panel) structure optimization. For the
notations and definitions of the lines, see Fig. 2 caption.

calculated for the (4,4), (6,6), and (8,8) SLs. To see the effect
of the structure optimization, we compare the results before
(open symbols) and after (filled symbols) the optimization in
the figure.

We observe that the structural optimization affects all of
the parameters especially at the layers ±1, leading to a more
gradual layer dependence. The change of the slope is partic-
ularly significant in the layer dependence of the level offset
�E [Fig. 8(a)], hole concentration given by 3 − nz2 − nx2−y2

[Figs. 8(b) and 8(c)], and the inter-orbital hopping [Fig. 8(g)].
For example, the hole concentration at the layer +1 changes
from 0.01 to 0.13 by the structure optimization. The latter
is close to an optimal doping level x = 0.15 of the bulk
La2−xSrxCuO4 at which a maximum Tc has been observed.

The layer dependence of the on-site Coulomb parameters
calculated for the (4,4) and (6,6) SLs are shown in Fig. 9.
As in the case of bulk systems discussed in Sec. III, the
effective Coulomb interactions tend to be larger in the LCO
side, which can be attributed to the smaller Wannier spread
and the weaker screening. The structure relaxation makes
the layer dependence of interaction parameters gradual. As
a result, at the layer +1, the U value of the dx2−y2 orbital is
3.24 eV, which is about 15% smaller than the bulk LCO value.

We also calculated the layer dependence of the off-site
Coulomb Vn and exchange Jx2−y20;z20 interactions (see Fig. S1

of the SM [27]). We observe that the layer dependence of the
off-site Coulomb parameter Vn is weak; Vx2−y2 and Vz2 values
change in the range of 0.84–0.89 eV and 0.65–0.67 eV, re-
spectively. By contrast, the layer dependence of the exchange
parameter Jx2−y20;z20 is rather significant, which changes from
0.47 eV at the layer −3 to 0.39 eV at the layer +3. These
tendencies are consistent with the doping-level dependence of
Vn and J observed in the bulk systems (Table II).

Figure 10 shows the layer dependence of the scaled cor-
relation strength |U/t | calculated for the dx2−y2 orbital. Near
the LCO/LSCO interface, the |U/t | value decreases from
the bulk LCO value of 7.94 to 6.68 at the layer +1, which
amounts to a 15% reduction. Since the relative stability of the
superconducting phase over other competing phases changes
rather sensitively with the |U/t | value, considering the 15%
reduction of |U/t | would be necessary to explain the unique
properties of the superconductivity at interfaces quantitatively.

Finally, we discuss the convergence of parameters to bulk
values. We see that the calculated Coulomb parameters and
the Wannier spread of the SLs did not reach the bulk LCO and
LSCO values even at the layers farthest from the interface,
indicating rather strong sensitivity of these parameters to the
Madelung potential difference induced by the interface. This
issue is expected to be resolved by using a much larger SL,
which was not pursued in this study owing to the compu-
tational limitations. Notwithstanding, since the two different
sizes of the SL calculation show more or less the same be-
haviors, the Coulomb parameters near the interface are likely
to be already converged and therefore reliable enough for
studying the superconductivity at the LCO/LSCO interface
by low-energy solvers.

V. DISCUSSION

Near the interface, �E , transfers, hole concentrations, and
the interactions all show substantially more gradual change
with moving from the LSCO side to the LCO side than the un-
relaxed case. We here discuss that all the above characteristic
features are explained by a basic principle “the nature relaxes
to avoid discontinuous changes.” This principle is manifested
concretely in the real material in the following way.

Before the structural relaxation, the electrostatic potential
of the LaO layer changes abruptly, and it generates a rather
strong electric field at the interface. However, the shift of
the atomic position and the electronic charge redistribution
described in Sec. IV A leads to more gradual transition
of the electron concentration between the LCO and LSCO
sides. Since the negatively charged apical oxygen approaches
(moves away from) the CuO2 layer on the LCO (LSCO) side
on average as is illustrated in Fig. 6, the electronic level at
the CuO2 layer is raised (lowered) in the LCO (LSCO) side in
comparison to the unrelaxed lattice. It enhances the electron
transfer from the LCO side to the LSCO side originally caused
by the electric field at the interfacial charge imbalance (see
Sec. IV A) as is seen in Figs. 8(b) and 8(c). Since the on-site
level of the dx2−y2 -like orbital is higher than that of the dz2 -
like orbital, the electron density decreases mainly from the
dx2−y2 -like orbital in the LCO side and increases mainly in the
the dz2 -like orbital in the LSCO side as shown in Figs. 8(b)
and 8(c).
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FIG. 8. Layer dependence of (a) the level offset �E . (b) and (c) The occupation number within PBE. (d)–(g) The hopping parameters
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the filled circles are obtained after structure optimization. The horizontal dashed lines indicate the corresponding values of the bulk LCO and
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The level offset between the dx2−y2 -like and dz2 -like or-
bitals, �E , is determined mainly by the ligand field of the
six oxygen ions surrounding Cu. The contraction (stretch) of

the octahedron for the LCO (LSCO) side leads to the decrease
(increase) of the average distance to the apical O from Cu,
(h+

O + h−
O )/2, in the LCO (LSCO) side (see Fig. 5). Because
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FIG. 10. Layer dependence of scaled correlation strength |U/t |
calculated for the (4,4) (blue symbols) and (6,6) (green symbols)
SLs before (open symbols) and after (filled symbols) structure
optimization.

the on-site level of dz2 orbital is more sensitive to hO than
the dx2−y2 orbital, a larger hO value leads to a larger �E .
Therefore, �E decreases (increases) on the LCO (LSCO) side
after the structure relaxation as shown in Fig. 8(a).

The nearest-neighbor transfer tx2−y2 relatively decreases
from the unrelaxed lattice value [Fig. 8(d)] despite a slight
increase in the Wannier spread [Fig. 8(i)]. This is presumably
because the in-plane Cu and O do not align in the flat plane
any more but form a zigzag alignment after the structural
optimization.

The screened interaction of the antibonding dx2−y2 -like and
dz2 -like electrons decreases (increases) on the LCO (LSCO)
side in comparison to the unrelaxed case. The structure relax-
ation increases (decreases) the hole concentration on the LCO
(LSCO) side. As we see in Sec. III D, larger hole concentra-
tion enhances the screening. Therefore, increase (decrease) of
the hole concentration may explain the reduction (enhance-
ment) of U values on the LCO (LSCO) side. A substantial
reduction of effective Coulomb interaction ascribed to the
reconstruction of the electronic structure at the interface has
also been reported for the surfaces [33].

In total, the octahedron distortion leads to more gradual
layer dependence of all the quantities than the unrelaxed
case following the above principle. Such weakened and more
gradual layer dependence than that before lattice relaxation
seems to follow a general principle: When the spatial gradient
becomes strong, the system reacts to weaken it by screening
such strong spatial dependence in analogy to Le Chatelier’s
principle in the time dependence. Such screening effects may
also work to weaken the effect of impurities, randomness, and
interface roughness in real interface.

More gradual layer dependence of the on-site level than
that before the lattice relaxation may play a role to stabilize
the superconductivity. In bulk compounds there is strong
tendency towards the in-plane charge inhomogeneity which
suppresses superconductivity [34–36]. However, the interface
systems might be able to avoid the in-plane inhomogeneity by
making out-of-plane inhomogeneity (interlayer phase separa-
tion). In Ref. [8] it has been argued that the gradual layer de-
pendence of the on-site level is favorable to realize interlayer

phase separation and stabilize superconductivity. It is indeed
interesting to analyze the derived interface Hamiltonian to
study the stability of the superconductivity.

Finally, the sensitivity of on-site-level hopping and
Coulomb interaction parameters to the lattice distortion sug-
gests non-negligible coupling between electron and lattice
degrees of freedom. Therefore, it is also interesting to investi-
gate the role of electron-phonon couplings in the interface,
which might play a role to enhance superconductivity as
suggested in other interface systems such as FeSe on SrTiO3

substrate [37].

VI. CONCLUSION

We have derived the ab initio Eg Hamiltonian of
La2CuO4/La1.55Sr0.45CuO4 superlattices by performing
large-scale cRPA calculations based on DFT. We have shown
that the level offset between the dx2−y2 and dz2 orbitals,
�E , and the Coulomb parameters near the interface become
smaller than those of the LCO bulk values. This occurs
even without performing structure relaxation and can be
attributed to the change of the electrostatic potential induced
by substituting La with Sr, which increase the energy
level of the oxygen 2p orbitals more significantly than
that of Cu 3d orbitals. After the structural relaxation, the
layer dependence of the hopping and Coulomb parameters
becomes more gradual than the unrelaxed case, which
results from the contraction and stretch of CuO6 octahedron
in the LCO and LSCO side, respectively. The effect of
the structural relaxation is particularly noticeable in �E
and the occupation number. Since these parameters as
well as the scaled correlation strength |U/t | influence the
stability of the superconducting state, the modulation of
these parameters at the interface reported in this work should
be considered for developing robust understandings of the
unique superconducting properties observed in interfaces.
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APPENDIX A: COMPARISON OF THE PRESENT
cRPA CALCULATION FOR BULK La2CuO4

WITH PREVIOUS WORKS

In the original disentanglement method of Şaşıoğlu et al.
[20], the d-d polarization process is excluded via the weight
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of the Eg subspace wαk. Therefore, the screening process
involving the dx2−y2 -like KS orbitals crossing the Fermi en-
ergy can be avoided perfectly if the wαk values become exactly
one for these KS orbitals. For La2−xSrxCuO4, however, we
observed that the weight slightly deviates from one even near
the Fermi energy when the KS energy εαk is outside the frozen
window. For example, the weight of the dx2−y2 -like KS orbitals
at k = ( π

4 , 0, 0) was around 0.97, and the remaining weight
of 0.03 originates from the orbitals outside the Eg subspace,
which contribute to Pr . Since we want to avoid such a small
screening process from the dx2−y2 -like KS orbitals completely
as the disentanglement method of Miyake et al. [19] does,
we updated the wαk values in such a way that those close to
one (zero) becomes exactly one (zero) while keeping the total
weight

∑
α wαk unaltered. Such a treatment did not change

the results significantly but increased the partially screened
Coulomb parameters by ∼5% compared with the original
treatment, leading to better agreement with the previous result
of Ux2−y2 = 4.2 eV [38] which was obtained based on the
full potential linearized muffin tin orbital (FP-LMTO) method
and the disentanglement method of Miyake and coauthors.
The present result of Ux2−y2 ∼ 3.9 eV (3.67 eV with 500
bands) is still smaller than 4.2 eV, which can most likely be
attributed to the difference in the Wannierization parameters
and/or the pseudopotential adopted in this study. Indeed, the
bare Coulomb parameters in this study is also smaller than the
FP-LMTO based study by ∼15%.

In the previous cRPA studies of LCO, the Ux2−y2 values
of 3.65 [28,29] and 3.15 eV [16] have been reported, which
agree reasonably well with our result especially given that the
U value is rather sensitive to the detail of the Wannierization
procedure and the resulting spread of the Wannier orbital. The
result of Refs. [28,29] was obtained for the one-band Hamilto-
nian, where the Wannier function was constructed without the
frozen window near the Fermi energy. Therefore, the shape
(spread) of their dx2−y2 -like Wannier orbital is similar to ours
[Fig. 3(b)], resulting in the similar Ux2−y2 values. If the frozen
window is used when constructing the one-band Hamiltonian,
the resulting Wannier orbital should be more extended and
the Ux2−y2 value should become smaller because of the strong
hybridization between the Eg orbitals in LCO. Compared to
the results of Refs. [28,29] and ours, the Ux2−y2 value of
Ref. [16] seems somewhat smaller, whose origin is unclear
due to the missing details of the Wannierization parameters in
Ref. [16].

Recently, Hirayama et al. [15,39] has derived ab initio
effective Hamiltonians for bulk cuprates, including LCO,
obtained within the FP-LMTO and the cGW method sup-
plemented by the self-interaction correction (SIC) of the
Hartree term [13,14]. The on-site Coulomb parameters of
the Eg Hamiltonian is reported to be Ux2−y2 = 5.3–5.5 eV
in Ref. [15], which is ∼25%–30% larger than the previous
cRPA result of 4.2 eV [38]. This enhancement in U can be
attributed to the refined treatment of the Coulomb interaction
by the GW approximation, which makes the band width of
the dx2−y2 -like orbital smaller and thereby increases the bare
V value by ∼5%. More importantly, the GW calculation
increases the level offset between the dx2−y2 -like orbital and
other orbitals in the r subspace, such as the bonding state
formed by the Cu dx2−y2 and in-plane O pσ orbitals, leading

FIG. 11. Bare Coulomb interaction Vm0nR as a function of dis-
tance |R| calculated for the (4,4) SL. The center of the dx2−y2 Wannier
orbital at the layer −2 is selected as the reference point m0. The
length of the c axis of the the (4,4) SL is 53.6 Å, around which V
becomes negative when Eq. (12) is used. This issue is cured by the
modified version Eq. (B1).

to the considerably weaker screening compared with cRPA.
While the cGW -SIC scheme is theoretically more refined than
cRPA, it is computationally more demanding than cRPA and
its application to the LCO/LSCO interface was impractical.
Therefore, cRPA is used both for the bulk and heterostructure
in this work, which still gives reasonably accurate results and
does not change the conclusions of this paper which mainly
focuses on the effects of the structural optimization on the Eg

Hamiltonians of the LCO/LSCO interface.

APPENDIX B: AVERAGING METHOD FOR
COULOMB PARAMETERS

In the present cRPA calculation, we employ the 8 × 8 ×
2 k points to use the tetrahedron method for an accurate
numerical integration of Eq. (6). However, we found that the
original Eq. (12) gave unphysical negative V values around
R = (0, 0, c) as shown in Fig. 11. The negative contribution
around R = (0, 0, c) comes mostly from the component of
ρmnRq(G) around q = (0, 0, π

c ), which is far larger than the
largest positive contributions from q = ( π

4a , 0, 0) due to the
prefactor 1/|q| as well as the large anisotropy of the lattice
shape, i.e., a 
 c. If one can increase the k-mesh density
up to N × N × 2 so that π

c � 2π
Na is satisfied, the negative

v problem could be solved. However, such a calculation is
almost infeasible because N must be as large as 28 even for
the smallest (4,4) SL to satisfy the condition.

To mitigate this issue, we simply modify the original
ρmnRq(G) given in Eq. (14) as

ρ̃mnRq(G) ≈ 1

N |q + G|rep.

∑
k

e−ik·R 〈
ψ

(w)
mk+q

∣∣ei(q+G)·r∣∣ψ (w)
nk

〉
,

(B1)
where |q|rep. is a representative value of the norm around q
defined as

1

|q|rep.

=
[

1

�Sq

∫
Sq

1

|k|2 dk

]1/2

. (B2)
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Here Sq is the Wigner-Seitz cell of the lattice point q, and
�Sq is its volume. This treatment assumes that a variation of
〈ψ (w)

mk+q|ei(q+G)·r|ψ (w)
nk 〉 inside Sq+G is small, which is satisfied

when the size of Sq is reasonably small. If we use ρ̃mnRq(G),
we can obtain a correct 1/r dependence without negative
values as shown in Fig. 11.
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