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Nonlinear response in a noncentrosymmetric topological insulator
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Nonlinear phenomena are inherent in most systems in nature. Second- or higher-order harmonic generations,
three-wave mixing, and four-wave mixing are typical phenomena in nonlinear optics. To obtain a nonzero signal
for second-harmonic generation in the long-wavelength limit (q → 0), the breaking of inversion symmetry is
required. In topological materials, a hexagonal warping term that breaks the rotation symmetry of the Fermi
surface is observed by angular-resolved photoemission spectroscopy. If a gap opens (e.g., by doping with
magnetic impurities), the inversion symmetry will be broken. Here we use a nonlinear response theory based
on a generalized Kubo formula to explain the frequency up-conversion in topological materials.
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I. INTRODUCTION

The nonlinear response to an external driving electromag-
netic field E or B can be characterized by a conductivity tensor
σ̃ , which is not a constant but depends on the magnitude of E
or B. Nonlinearity is often found to be important in optical
devices, especially in the recent discovery of high-efficiency
solar energy harvesting in noncentrosymmetric crystal struc-
tures such as perovskite oxides [1–5]. In three-dimensional
(3D) topological insulator (TI) and ferroelectric materials,
Dirac cones [6–10] obeying spin-momentum locking [11,12]
with in-plane spin component perpendicular to the momentum
k were verified by spin-sensitive angular-resolved photoemis-
sion spectroscopy (ARPES). The quasiparticles (helical Dirac
fermions) observed in topological materials possess an impor-
tant feature: the Fermi contours are circular for small values
of the chemical potential μ, and they acquire a snowflake [10]
shape as μ increases. Analyzing the experiment results, Fu
[13] assigned a hexagonal warping term in the Hamiltonian
of such quasiparticles. This term has a strong signature in
the optical conductivity, spin texture, Hall conductivity, and
circular dichroism of topological insulators [14–16].

The optical conductivity was predicted to show [14] a large
near-linear increase with photon energy above the interband
threshold as compared to the usual flat background [17–19]
interband optical conductivity in graphene. The spin texture
[20] (specifically, out-of-plane spin Sz) shows a mixture of
up-and-down directions, in contrast to the normal all-up or
all-down hedgehog-type [21] distribution for massive Dirac
fermions (see, e.g., Fig. 5 of Ref. [16]). It is also possible
to introduce a gap in the topological surface quasiparticles
(massive Dirac fermions) by magnetic doping [22,23] in
Bi2Se3 [22] and recently in Crx(Bi1−ySby)2–xTe3 [23,24]. Con-
siderable particle-hole asymmetry of the surface Dirac cone
of a 3D TI is usually displayed, which can be modeled with a
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small subdominant Schrödinger quadratic-in-momentum term
in addition to the dominant Dirac Hamiltonian. While perhaps
small, the Schrödinger term has been shown to provide impor-
tant modifications [25] in the chiral nonlinear magneto-optical
conductivity (MOC), which is related to the absorption of
left and right circularly polarized light of a 3D TI. This is to
be compared with what is found in graphene [26–28] or the
related single-layer silicene [29].

In this work, we focus on the nonlinear optical con-
ductivity induced by an electric field E in contrast to the
nonlinear MOC, which is induced by a magnetic field B.
We consider three-wave mixing [30] (e.g., second-harmonic
generation) from noncentrosymmetric topological materials.
Second-harmonic generation (SHG) was first demonstrated
by projecting a laser beam through crystalline quartz [31].
Later on this effect was found in other materials (e.g., silicon
surfaces) [32] with broken inversion symmetry. Theoretically,
SHG was predicted to be nonzero in semiconductors [33], and
more recently in single-layer graphene [34,35] with oblique
incidence of radiation on the 2D electron layer. For oblique
incidence, the incident radiation has a nonzero wave-vector
component q parallel to the plane of the 2D layer. In the
long-wavelength limit (q → 0, normal incidence), the SHG
vanishes because graphene is a centrosymmetric material.
However, higher-order harmonics (e.g., third-harmonic gen-
eration) could be nonzero in graphene [36] or generally
Dirac fermion systems [37]. The nonlinear coupling of three
monochromatic waves, thus called three-wave mixing, has
been successfully used to generate optical frequency up-
conversion or down-conversion. Nonlinear optical analogs,
including SHG, have also been studied recently in various
contexts, including Josephson plasma waves [38] and cavity
quantum electrodynamics [39–42].

In the following paragraphs, we present a Green’s function
formalism for calculating the nonlinear conductivity in Sec. II.
We use a two-band hexagonal warping model that can be
found in surface states of 3D TI and ferroelectric materials.
The inversion symmetry of the Fermi surface is broken by
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magnetic doping in the hexagonal warping model. In Sec. III
we present the linear optical conductivity from the Green’s
function formalism. In Sec. IV we present our numerical
results of the nonlinear and linear conductivity for different
sets of parameters (e.g., chemical potential, gap parameter,
temperature, etc.). In Sec. V we summarize our results with
a conclusion.

II. NONLINEAR OPTICAL CONDUCTIVITY

The linear conductivity σ̃xx(ω) is related to the cur-
rent Jx(ω) = σ̃xx(ω)Ex(ω), while the nonlinear conductivity
σ̃xxx(ω,ω) is related to the current Jx(2ω) = σ̃xxx(ω,ω)E2

x (ω).
In general, the nonlinear conductivity is a tensor σ̃αβγ . How-
ever, here for simplicity we only consider the xxx component
of the tensor; the other components of the conductivity tensor
can be obtained in a similar way. The nonlinear conductivity
has been well studied in earlier references; for example, in
Ref. [43] Eq. (2-48) defines the nonlinear conductivity as a
product of momentum matrix elements, and then in Eq. (2-49)
the momentum matrix elements were connected to velocity
matrix elements.

For the linear conductivity it has been shown in Chap. 8 of
Ref. [44] that Eq. (8.53) uses a trace of momentum operators
and Green’s functions, and then in Eq. (8.55) this was con-
nected to the product of velocity matrix elements. The velocity
matrix element is connected to the position matrix element
and the shift vector [45]. For nonlinear conductivity, instead
of using velocity matrix elements [43] directly, we define
the nonlinear conductivity as a trace of velocity operators
and Green’s functions [44]; the imaginary frequency in each
Green’s function is set by using a triangle Feynman diagram,

σ̃xxx(ω,ω)

= e3

ω2

i

4π2

∫ 2π

0
dθ

∫ kcut

0
k dk T

∑
l

Tr〈vxĜ(k,iωl )

× vxĜ(k,iωl + iωn)vxĜ(k,iωl − iωn)〉iωn→ω+iδ, (1)

where vx is the velocity operator and Ĝ(k,iωl ) is the matrix
Green’s function, e is the charge of the electron, k is the
absolute value of the momentum k with direction θ and cutoff
kcut, T is the temperature with ωn = 2nπT , ωl = (2l + 1)πT
are the boson and fermion Matsubara frequencies, n and
l are integers, and Tr is a trace. To obtain the nonlinear
conductivity, which is a real frequency quantity, we needed
to make an analytic continuation from imaginary iωn to real
ω, and δ is infinitesimal. This is valid for the long-wavelength
limit q → 0;

Consider a two-band model as an example. The velocity
operators and matrix Green’s functions are 2 × 2 matrices,
and they can be expanded onto the basis of Pauli matrices
σ = (σx, σy, σz ) as vx = a0 + a · σ , and Ĝ(k, iωn) = g0 + g ·
σ . We can use the algebra (a · σ )(g · σ ) = (a · g)I2 + i(a ×
g) · σ to evaluate the trace, and the complicated results will
be contained in the function F (k, θ ) to be integrated further
in momentum space (k, θ ). We can also perform the sum
over the internal fermion Matsubara frequencies ωl , and the
result is a Fermi-Dirac distribution function defined as f (x) =
1/[exp(x/T − μ/T ) + 1]. After tedious but straightforward

algebra (details in the Appendix), we finally obtained both the
interband and intraband nonlinear optical conductivity. The
intraband optical conductivity contributes to the frequency
region of ω ≈ 0 and is given in the Appendix. In the equations
below, we present the results of the interband optical conduc-
tivity [σ̃ inter

xxx = σ̃ inter
xxx (ω,ω)],

σ̃ inter
xxx = ie3

h̄3ω2π2

∫
k dk dθ F (k, θ )

[ f (E ) − f (−E )]

E

×
[

1

h̄ω + iδ + 2E
− 1

h̄ω + iδ − 2E

+ 2

h̄ω + iδ − E
− 2

h̄ω + iδ + E

]
. (2)

Here E is the quasiparticle energy, which depends on the
momentum (kx, ky) = (k cos(θ ), k sin(θ )). Take a two-band
hexagonal warping model as an example. The Hamiltonian is
given by

H0 = vk (kxσy − kyσx ) + λ

2
(k3

+ + k3
−)σz + Mσz. (3)

This model has been used to describe the surface-state band
structure near the � point in the surface Brillouin zone of
a 3D TI and also recently in ferroelectric materials. The
Dirac fermion velocity to second order is vk = h̄vF (1 + αk2),
with vF the usual Fermi velocity and h̄vF measured to be
2.55 eV Å, and α is a constant that is fit along with m to
the measured band structure in Ref. [13]. Here m appears
in the quadratic term h̄2k2/(2m), which, for simplicity, is
dropped in the Hamiltonian H0. The inclusion of the quadratic
term provides particle-hole asymmetry; however, the wave
function is not changed [16], thus the Berry curvature and
Berry connection (defined from the wave function) are not
modified by this quadratic term. For simplicity, the quadratic
correction to the velocity α is also discarded. The magnitude
of the hexagonal warping parameter is λ = 200 eV Å3, es-
timated from the measured Fermi velocity. The same value
was used in Ref. [13]. The σx, σy, and σz are Pauli matrices
here referring to spin, while in graphene these would relate
instead to pseudospin. Finally, k± = kx ± iky, with the kx, ky

momentum along the x and y axis, respectively. M is the
strength of the gap that opens when the topological thin film
is in proximity to magnetic impurities.

The quasiparticle energy dispersion relation is given by
E =

√
v2

k k2 + [λk3 cos(3θ ) + M]2 , and the function F (k, θ )
is given by

F (k, θ ) =
{
kxv

2
k + 3λ

(
k2

x − k2
y

)[
M + λkx

(
k2

x − 3k2
y

)]}
E3

× v2
k

[
v2

k k2
y + λ2

(
4k6

x + 9k4
x k2

y − 18k2
x k4

y + 9k6
y

)
− 4λMk3

x + M2
]
. (4)

Note that if M = 0 or λ = 0, the integration
∫ 2π

0 dθ
∫ kcut

0 k dk
will be zero because the integrand is an odd function of
kx. So only when both M �= 0 and λ �= 0 do we obtain a
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nonvanishing second-harmonic generation nonlinear conduc-
tivity in the long-wavelength limit q → 0.

III. LINEAR OPTICAL CONDUCTIVITY

It is well known [16] that the linear optical conductivity is
obtained from the standard Kubo formula in terms of the ma-
trix Green’s function and velocity operators. The longitudinal
conductivity is given by

σ̃xx(ω) = e2

iω

1

4π2

∫ kcut

0
k dk dθ

× T
∑

l

Tr〈vxĜ(k,iωl )vxĜ(k,iωn + iωl )〉iωn→ω+iδ,

(5)

which works out to be

σ̃ inter
xx (ω) = ie2

4π2 h̄2ω

∫ kcut

0
k dk dθ H (k, θ )

f (E ) − f (−E )

E

×
[

1

h̄ω + iδ + 2E
− 1

h̄ω + iδ − 2E

]
, (6)

where the function H (k, θ ) is given by

H (k, θ ) = v2
k

E
{9λ2k6 cos2(2θ ) + [M + λk3 cos(3θ )]2

+ v2
k k2 sin2 θ − 6λk3 cos(2θ )

× cos θ [M + λk3 cos(3θ )]}. (7)

It is interesting to check the units of H (k, θ ) and F (k, θ ). We
find that F (k, θ ) × k and H (k, θ ) have the same unit as v2

k E .
So σ̃xxx has the same unit as σ̃xx × e/(h̄ωk). Then the product
of the nonlinear conductivity σ̃xxx and external electric field,
σ̃xxx × Ex, has the same unit as σ̃xx, as expected.

IV. NUMERICAL RESULTS

To evaluate the nonlinear optical conductivity, we need
to perform an integration in momentum space, which is re-
stricted by the Fermi-Dirac distribution function f (x). At zero
temperature, the restricted area is the Fermi surface shown
in Fig. 1. In (a), for a small chemical potential μ = 0.1 eV,
the Fermi surface is very close to but not a perfect circle
because of the small gap 2M = 20 meV. At larger chemical
potential μ = 0.4 eV, the Fermi surface deviates a bit from
a snowflake shape. In (b) a much larger gap 2M = 200 meV
is used and the Fermi surface is significantly distorted. The
inversion symmetry is broken in both (a) and (b).

In Figs. 2 and 3 we plot the numerical results of the real part
of the interband nonlinear optical conductivity σ̃ inter

xxx (ω,ω)
and linear optical conductivity σ̃ inter

xx (ω), respectively. In
Fig. 2, we find that if the chemical potential μ is smaller
than half the gap M, the onset frequency is M. Because the
chemical potential μ lies in the gap, the minimum energy for
the interband transition is 2M. The energy of absorbing two
photons is 2ω, so that the onset frequency 2ω � 2M. If the
chemical potential μ is larger than M, the onset frequency
is the chemical potential μ, because in this case 2ω � 2μ.
There is a small drop in the nonlinear optical conductivity

FIG. 1. Constant-energy contours for the dispersion curves used
to describe the surface states in a 3D TI. In (a) the gap is 2M =
20 meV, while in (b) the gap is 2M = 200 meV. The chemical
potential μ can be changed by doping the 3D TI. The four contours
shown in green correspond to different chemical potentials μ =
0.1 eV [in (b) this contour disappears], μ = 0.2 eV, μ = 0.3 eV and
μ = 0.4 eV. The kx and ky axes are in units of 0.1 Å−1. In (a),
for the contour μ = 0.1 eV, one can see the Fermi surface deviate
slightly from a perfect circle; for a higher chemical potential, the
Fermi surface is a snowflake shape. In (b) the Fermi surface becomes
significantly distorted. The hexagonal warping parameter here is
λ = 0.2 eV (nm)3.

at ω = 2μ, because this is the onset frequency for another
interband transition involving one photon absorbing. Thus
the number of photons in the process of frequency doubling
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FIG. 2. Real part of the nonlinear optical conductivity σ̃xxx (ω,ω)
vs frequency ω in eV. Three different chemical potentials are used,
with a black solid line for μ = 0.1 eV, a red dashed line for μ =
0.2 eV, and a green short-dashed line for μ = 0.3 eV. The impurity
scattering self-energy δ = 0.001 eV and the temperature T = 1 K.
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FIG. 3. Real part of the linear optical conductivity σ̃xx (ω) vs
frequency ω in eV. Three different chemical potentials are used,
with a black solid line for μ = 0.1 eV, a red dashed line for μ =
0.2 eV, and a green short-dashed line for μ = 0.3 eV. The impurity
scattering self-energy δ = 0.001 eV and the temperature T = 1 K.

decreases. For ω � 2μ, curves with different values of μ fall
on top of each other.

In Fig. 3 we find that the onset frequency of the linear
optical conductivity is 2μ, in contrast to the onset frequency
μ of the nonlinear optical conductivity. When the frequency
ω is larger than the onset frequency 2μ, the linear optical
conductivity warps up, in contrast to the nonlinear optical
conductivity, which decreases as the frequency increases.
Curves with different values of μ also fall on top of each
other for the linear optical conductivity. In Figs. 4 and 5
we show the corresponding imaginary parts of the interband
optical conductivity σ̃ inter

xxx (ω,ω) and σ̃ inter
xx (ω), respectively.
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FIG. 4. Imaginary part of the nonlinear optical conductivity
σ̃xxx (ω,ω) vs frequency ω in eV. Three different chemical potentials
are considered, with a black solid line for μ = 0.1 eV, a red dashed
line for μ = 0.2 eV, and a green short-dashed line for μ = 0.3 eV.
The impurity scattering self-energy δ = 0.001 eV and the tempera-
ture T = 1 K. The sharp drops at ω = 0.2 and 0.3 eV correspond to
the sharp jumps in the real part of the conductivity shown in Fig. 2.
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FIG. 5. Imaginary part of the linear optical conductivity σ̃xx (ω)
vs frequency ω in eV. Three different chemical potentials are used,
with a black solid line for μ = 0.1 eV, a red dashed line for μ =
0.2 eV, and a green short-dashed line for μ = 0.3 eV. The impurity
scattering self-energy δ = 0.001 eV and the temperature T = 1 K.

The absolute value of the imaginary part of the nonlinear
conductivity decreases to zero faster than that of the linear
conductivity.

V. CONCLUSION

In conclusion, we developed a method based on the trace
of the velocity operator and Green’s function to calculate
the nonlinear response functions in a noncentrosymmetric
topological insulator. Our method is equivalent to the velocity
matrix element method [43] if a two-band free-electron ap-
proximation was considered. We obtained the nonlinear con-
ductivity for frequency up-conversion in the second-harmonic
generation. In the model used here (the two-band hexagonal
warping model), the energy scale is around 200 meV in
the far-infrared region, relevant for the thermal energy. This
model describes surface states of a 3D TI. If the 3D TI
(Bi1−ySby)2Te3 (BST) is doped with magnetic impurities, a
small gap is opened in Crx(Bi1−ySby)2–xTe3 (CBST) [23,24],
thus the inversion symmetry was broken.
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APPENDIX A: DERIVATION OF THE NONLINEAR
OPTICAL CONDUCTIVITY FROM THE GREEN’S

FUNCTION TECHNIQUE

In this Appendix, we present a general formula for the
calculation of the nonlinear conductivity tensor. We also ex-
pand the imaginary frequency Green’s function into a sum of
the real frequency spectral function, which can be measured
directly from ARPES experiments. From this expansion we
derive the intraband and interband contribution to the non-
linear conductivity. We present how to perform the sum in
imaginary frequency and obtain concise results in the non-
interacting electron approximation. Consider the hexagonal
warping model as an example. The Green’s function can be
rewritten in the basis of Pauli matrices,

Ĝ(k, iωn) = 1

2

∑
s=±

(1 + sFk · σ )G0(k, s, iωn), (A1)

where

Fk = [−vkk sin θ, vkk cos θ, λk3 cos(3θ ) + M]√
v2

k k2 + [λk3 cos(3θ ) + M]2
,

and G0(k, s, iωn) = [iωn + μ − sE ]−1, where s = ±1 and the
energy spectrum is given by

E =
√

v2
k k2 + [λk3 cos(3θ ) + M]2.

The velocity operator can be obtained as (for simplicity, we
set h̄ = 1)

vx = ∂H0

∂kx
= vkσy + λ

2
(3k2

+ + 3k2
−)σz

= vkσy + 3λk2 cos(2θ )σz,

vy = ∂H0

∂ky
= −vkσx + λ

2
(3ik2

+ − 3ik2
−)σz

= −vkσx − 3λk2 sin(2θ )σz. (A2)

In general vx = a0 + a · σ , vy = b0 + b · σ , and Ĝ(k, iωn) =
g0 + g · σ . If we define A = (a0, a), B = (b0, b), G =
(g0, g), and if we use the following rules for the dot and cross
product of two vectors,

A · B = a0b0 + a · b,

A × B = a0b + b0a + i(a × b),

then the products of vxĜ(k,ω1) can be evaluated as

(a0 + a · σ )(g01 + g1 · σ ) = a0g01 + g01a · σ + a0g1 · σ + a · g1 + i(a × g1) · σ

= A · G1 + (A × G1) · σ .

The trace can be carried out in general as

Tr〈(a0 + a · σ )(g01 + g1 · σ )(a0 + a · p)(g02 + g2 · σ )(a0 + a · σ )(g03 + g3 · σ )〉
= Tr〈[A · G1 + (A × G1) · σ ][A · G2 + (A × G2) · σ ][A · G3 + (A × G3) · σ ]〉
= [(A · G1)(A · G2) + (A × G1) · (A × G2)](A · G3) + [(A · G2)(A × G1) + (A · G1)(A × G2)] · (A × G3)

+ i(A × G1) × (A × G2) · (A × G3).

The matrix Green’s function Ĝ(k, iωn) can be conveniently written in terms of a matrix spectral function Â(k, ω) with

Ĝ(k, iωn) =
∫ ∞

−∞

dω

2π

Â(k, ω)

iωn − ω
, (A3)

and then the conductivity in the long-wavelength limit becomes

σ̃xxx(ω,ω) = e3

ω2

i

4π2

∫ kcut

0
k dk dθ

∫ ∞

−∞

dω1

2π

∫ ∞

−∞

dω2

2π

∫ ∞

−∞

dω3

2π
T

∑
l

1

iωl − ω1

1

iωl + iωn − ω2

1

iωl − iωn − ω3

× Tr〈vxÂ(k,ω1)vxÂ(k,ω2)vxÂ(k,ω3)〉iωn→ω+iδ. (A4)

For two-band models, the spectral function Â(k, ω) can be expanded in the basis of Pauli matrices,

Â(k, ω) = AI (k,ω) + Ax(k,ω)σx + Ay(k,ω)σy + Az(k,ω)σz.

In the free-electron approximation (ignoring impurity scattering and electron-phonon scattering), the spectral functions are given
by

AI (k,ω) = δ(ω + μ − E ) + δ(ω + μ + E ), (A5)

Ax(k,ω) = −vkk sin θ [δ(ω + μ − E ) − δ(ω + μ + E )]√
v2

k k2 + [λk3 cos(3θ ) + M]2
, (A6)
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Ay(k,ω) = vkk cos θ [δ(ω + μ − E ) − δ(ω + μ + E )]√
v2

k k2 + [λk3 cos(3θ ) + M]2
, (A7)

Az(k,ω) = [λk3 cos(3θ ) + M][δ(ω + μ − E ) − δ(ω + μ + E )]√
v2

k k2 + [λk3 cos(3θ ) + M]2
. (A8)

The trace can be carried out as

Tr〈vxÂ(k,ω1)vxÂ(k,ω2)vxÂ(k,ω3)〉
= 8F (k, θ )[δ(ω1 + μ − E )δ(ω2 + μ + E )δ(ω3 + μ − E ) + δ(ω1 + μ + E )δ(ω2 + μ − E )δ(ω3 + μ − E )

+ δ(ω1 + μ − E )δ(ω2 + μ − E )δ(ω3 + μ + E ) − δ(ω1 + μ − E )δ(ω2 + μ + E )δ(ω3 + μ + E )

− δ(ω1 + μ + E )δ(ω2 + μ − E )δ(ω3 + μ + E ) − δ(ω1 + μ + E )δ(ω2 + μ + E )δ(ω3 + μ − E )]

+ 8Fintra(k, θ )[δ(ω1 + μ − E )δ(ω2 + μ − E )δ(ω3 + μ − E ) − δ(ω1 + μ + E )δ(ω2 + μ + E )δ(ω3 + μ + E )], (A9)

where we have defined two functions,

F (k, θ ) =
{
kxv

2
k + 3λ

(
k2

x − k2
y

)[
M + λkx

(
k2

x − 3k2
y

)]}
{
v2

k k2 + [λk3 cos(3θ ) + M]2
}3/2 v2

k

[
v2

k k2
y + λ2

(
4k6

x + 9k4
x k2

y − 18k2
x k4

y + 9k6
y

) − 4λMk3
x + M2

]
, (A10)

Fintra(k, θ ) =
{
kxv

2
k + 3λ

(
k2

x − k2
y

)[
M + λkx

(
k2

x − 3k2
y

)]}
{
v2

k k2 + [λk3 cos(3θ ) + M]2
}3/2

{
kx

[
v2

k + 3λ2
(
k4

x − 4k2
x k2

y + 3k4
y

)] + 3λM
(
k2

x − k2
y

)}2
. (A11)

These terms can be separated into interband and intraband contributions to the nonlinear conductivity.

APPENDIX B: INTRABAND NONLINEAR CONDUCTIVITY

The intraband nonlinear conductivity includes those terms proportional to δ(ω1 + μ − E )δ(ω2 + μ − E )δ(ω3 + μ − E ) and
δ(ω1 + μ + E )δ(ω2 + μ + E )δ(ω3 + μ + E ), which will contribute to the zero-frequency dc conductivity. Performing the sum
over Matsubara frequencies, we obtain

T
∑

l

1

iωl − ω1

1

iωl + iωn1 − ω2

1

iωl − iωn2 − ω3

= T
∑

l

1

iωn1 − ω2 + ω1

(
1

iωl − ω1
− 1

iωl + iωn1 − ω2

)
1

iωl − iωn2 − ω3

= T
∑

l

1

iωn1 − ω2 + ω1

[
1

−iωn2 − ω3 + ω1

(
1

iωl − ω1
− 1

iωl − iωn2 − ω3

)

− 1

−iωn1 − iωn2 − ω3 + ω2

(
1

iωl + iωn1 − ω2
− 1

iωl − iωn2 − ω3

)]

= 1

iωn1 − ω2 + ω1

[
f (ω3) − f (ω1)

iωn2 + ω3 − ω1
+ f (ω2) − f (ω3)

iωn1 + iωn2 + ω3 − ω2

]
.

And the intraband conductivity becomes

σ̃xxx(ω,ω)intra = e3

ω2

8i

4π2

∫ kcut

0
k dk dθ

∫ ∞

−∞

dω1

2π

∫ ∞

−∞

dω2

2π

∫ ∞

−∞

dω3

2π
Fintra(k, θ )

× [δ(ω1 + μ − E )δ(ω2 + μ − E )δ(ω3 + μ − E ) − δ(ω1 + μ + E )δ(ω2 + μ + E )δ(ω3 + μ + E )]

× 1

ω + iδ − ω2 + ω1

[
f (ω3) − f (ω1)

ω + iδ + ω3 − ω1
+ f (ω2) − f (ω3)

2ω + 2iδ + ω3 − ω2

]
. (B1)

The intraband conductivity can be numerically evaluated by replacing the δ function with the broadened Lorentzian function.
One can also evaluate the intraband conductivity analytically; one example was given in the Appendix of Ref. [14].
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APPENDIX C: INTERBAND NONLINEAR CONDUCTIVITY

The other terms like δ(ω1 + μ − E )δ(ω2 + μ + E )δ(ω3 + μ − E ) are included in the interband nonlinear conductivity, which
will contribute to the nonzero-frequency ac conductivity, written as

σ̃xxx(ω,ω)inter = e3

ω2

8i

4π2

∫ kcut

0
k dk dθ F (k, θ )

[
1

ω + iδ + 2E

(
f (−E ) − f (E )

2ω + 2iδ + 2E

)
+ 1

ω + iδ − 2E

(
f (E ) − f (−E )

ω + iδ + 2E

)

+ 1

ω + iδ

(
f (−E ) − f (E )

ω + iδ − 2E
+ f (E ) − f (−E )

2ω + 2iδ − 2E

)
− 1

ω + iδ + 2E

(
f (−E ) − f (E )

ω + iδ − 2E

)

− 1

ω + iδ − 2E

(
f (E ) − f (−E )

2ω + 2iδ − 2E

)
− 1

ω + iδ

(
f (E ) − f (−E )

ω + iδ + 2E
+ f (−E ) − f (E )

2ω + 2iδ + 2E

)]
,

which is further simplified as

σ̃xxx(ω,ω)inter = 2ie3

ω2π2

∫ kcut

0
k dk dθ F (k, θ )

[
2

ω + iδ − 2E

f (E ) − f (−E )

ω + iδ + 2E

− f (E ) − f (−E )

ω + iδ − 2E

1

ω + iδ − E
− f (E ) − f (−E )

ω + iδ + 2E

1

ω + iδ + E

]
.

Finally, we obtained

σ̃xxx(ω,ω)inter = ie3

ω2π2

∫ 2π

0
dθ

∫ kcut

0
k dk

[ f (E ) − f (−E )]

E

× F (k, θ )

[
1

ω + iδ + 2E
− 1

ω + iδ − 2E
+ 2

ω + iδ − E
− 2

ω + iδ + E

]
. (C1)
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