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Chiral multifold fermions are quasiparticles described by higher spin generalizations of the Weyl equation
and are realized as low energy excitations near symmetry protected band crossings in certain chiral crystals.
In this work we calculate the linear optical conductivity of all chiral multifold fermions. We show that it is
enhanced with respect to that of Weyl fermions with the same Fermi velocity and features characteristic activation
frequencies for each multifold fermion class, providing an experimental fingerprint to detect them. We calculate
the conductivity for realistic chiral multifold semimetals by using lattice tight-binding Hamiltonians that match
the effective models of multifold fermions at low energies, for space groups 199 and 198. The latter includes
RhSi, for which we give quantitative predictions, and also CoSi and AlPt. Our predictions can be tested in
absorption or penetration depth measurements and are necessary to extract the recently proposed quantized
photocurrents from experiments.
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I. INTRODUCTION

One of the clearest differences between topological metals
and other metals is their electronic response to light. In TaAs,
a prototypical Weyl semimetal, the bands disperse linearly
from a protected twofold band crossing point, known as the
Weyl node [1,2]. Because of the absence of an energy scale,
the linear optical conductivity is proportional to the driving
frequency ω [1,3–13], differing from that of systems with
quadratically dispersing bands.

The absence of inversion symmetry, a common property to
most known Weyl semimetals, allows a finite nonlinear optical
current proportional to even powers of the electric field. Most
notably, second order photocurrents, that are proportional to
the intensity of the electric field, have been predicted [14–16]
and measured to be large in Weyl semimetals [17–23]. For
example, second harmonic generation, a current oscillating at
twice the frequency of the incident light, has record breaking
magnitudes in the monopnictide TaAs class of topological
semimetals [20], resonantly enhanced at low frequencies [21].
Additionally, semimetals that not only break inversion sym-
metry but also all mirror symmetries [24] are expected to
generate a large and quantized nonlinear photocurrent induced
by circularly polarized light [16].

Less is known about the optical responses of the recent
members in the family of topological metals, known as mul-
tifold semimetals [25–27]. Multifold semimetals are char-
acterized by protected band crossings of degeneracy higher
than two and generalize the concept of Weyl semimetals. The
quasiparticles at energies close to these crossing points, called
multifold fermions, are governed by Weyl-like Hamiltonians:
pseudorelativistic and linear in momentum and effective spin,
of the form H = h̄vF k · S. They exist as either three-, four-,
six-, or eightfold degeneracies, of which only the first three
can be chiral. This means that only the first three types can

have bands characterized by a topological invariant, the Chern
number, defining the multifold crossings as monopoles of
Berry flux.

Multifold fermions are the most promising candidates to
display a quantized circular photogalvanic effect [28,29]. Ex-
periments using angle resolved photoemission spectroscopy
(ARPES) in CoSi [30–32], AlPt [33], and RhSi [32], all in
space group (SG) 198, are consistent with the existence of
chiral multifold fermions at the Fermi energy in these mate-
rials [26,27,34]. Additionally, a frequency independent pho-
tovoltaic plateau was detected in RhSi [35], consistent with
the expected photogalvanic quantization [16,28,29]. However,
to faithfully extract the quantized nonlinear conductivity and
to further confirm that multifold fermions are the low energy
quasiparticles in these materials, a good knowledge of the
absorption, determined by the linear optical conductivity, is
needed [16,35] yet currently absent.

In this work we calculate the linear optical conductivity,
defined as the linear response coefficient relating the applied
electric field to the induced current, for all chiral multifold
fermions. We describe how they can be distinguished by this
observable and provide predictions for real materials. We find
that all types of chiral multifolds have an optical conductivity
larger than a Weyl semimetal with the same Fermi velocity
vF . Moreover, the frequencies at which different allowed
transitions are activated distinguish each multifold fermion.
We therefore find that the optical conductivity provides a clear
fingerprint of each chiral multifold fermion, similar to their
two-dimensional counterparts [36]. We use this knowledge to
predict the linear optical conductivity of materials in SG198
and SG 199. Specifically, we calculate the linear optical
conductivity of RhSi, which determines its reflection and
absorption and can be measured by ellipsometry.

The paper is structured as follows. In Sec. III we pro-
vide the general formulas used and their connection to
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experimental measurements, discussing first low energy mod-
els without spin-orbit coupling that we then generalize to
include spin-orbit coupling. In Sec. IV we use realistic tight-
binding models to predict the linear optical conductivity of
RhSi, as well as for materials in SG199. Finally, in Sec. V we
summarize and discuss our results. An explicit calculation of
the imaginary part of the optical conductivity using Kramers-
Kronig relations, the sum rules associated to the longitudinal
conductivity, and additional details of our calculation are
provided in the appendices.

II. OPTICAL CONDUCTIVITY

The conductivity σμν of a material is the linear response
coefficient between an electric field applied in the ν direction
and the current density induced in the μ direction. If the
applied electric field has a wavelength larger than the lattice
constant, the momentum q transferred by the photon to the
electron is negligible and the electron conserves its momen-
tum k in the process. We refer to the conductivity in this
limit q → 0 as optical conductivity σμν (ω), which depends on
the electric field’s frequency ω. When ω is sufficiently large
to overcome Pauli blocking, an incident photon excites one
electron from an occupied state to an unoccupied state. This
process, known as an interband transition contribution to the
optical conductivity, can be calculated using standard linear
response theory as the real part of [37]

σμν (ω) = ie2

ωV

∑
m �=n

〈n| jμ |m〉 〈m| jν |n〉
εn − εm + h̄ω + iδ

(nF (εn) − nF (εm)),

(1)

where e is the charge of the electron, jμ = 1
h̄∂kμ

H is the
current operator associated with the Hamiltonian H describing
the system, V is the volume of the sample, |n〉 and En are an
eigenstate of H and its corresponding eigenvalue, respectively,
εn = En − μ with μ the chemical potential, and δ is an
infinitesimal broadening. The Fermi function nF depends on
εn, μ, and the inverse temperature β = 1/kBT measured in
units of the Boltzmann constant kB.

Our goal is to calculate the interband contribution to the
optical conductivity [Eq. (1)] of all chiral multifold fermions.
Since these occur in cubic space groups, the three diagonal
elements σxx, σyy, and σzz are equal and we can focus on a
single component, σxx [38]. In the main body of this work we
will compute the real part of the interband optical conductivity
and obtain its imaginary part using standard Kramers-Kronig
relations [39] in Appendix D. There exists an additional
Fermi surface contribution to the conductivity, the intraband
Drude-like term, that scales as 1/ω when ω → 0 and will be
dominant at small frequencies. Since this contribution is not
different from any other metal we omit it in the discussion that
follows.

III. OPTICAL CONDUCTIVITY OF MULTIFOLD
FERMIONS: LOW ENERGY MODELS

A. Multifold fermions

Multifold fermions are low energy excitations that exist
close to points in momentum space where linearly dispersing

bands meet. The simplest example is the crossing of two
bands, a Weyl fermion, which is protected against the opening
of a gap so long as it is isolated in the Brillouin zone. If
more than two bands meet, the degeneracy point is not robust
against perturbations that lift the degeneracy unless additional
lattice symmetries protect it. Excitations around these pro-
tected crossings are called multifold fermions and can only
exist as three-, four-, six-, or eightfold degeneracies. Due to
their importance to nonlinear optics and recent experimental
realization we focus on chiral multifolds [25,26]: three-, four-,
and sixfold crossings. A pedagogical introduction to chiral
multifold fermions, classified by Refs. [25,26], can be found
in Ref. [29].

The low-energy degrees of freedom near chiral multifold
crossings of degeneracy larger than two can be described
by a generalization of a Weyl Hamiltonian of the form H =
h̄vF k · Sα , where Sα is a vector of three matrices that depend
on a material-specific parameter α. For particular values α =
α0, only achieved without spin-orbit coupling, the matrices
Sα take the rotationally symmetric form of a higher-spin
representation of SU(2). In such cases, the multifold fermions
have an effective spin given by Sα0 . In the next subsections
we calculate the optical conductivity for α = α0, generalizing
then to arbitrary values of α.

To calculate the optical conductivity of all chiral multifold
fermions it is helpful to note that, at linear order, some high-
degeneracy multifolds can be decomposed into two decoupled
Hamiltonians of lower degeneracy [29]. This is the case for
the sixfold fermion, which can be expressed as the direct sum
of two threefold degeneracies: The Hamiltonian describing
a sixfold can always be brought to a block diagonal form,
composed of two decoupled threefold Hamiltonians. Addi-
tionally, out of the two types of fourfold fermions that exist,
only one can be written as a Hamiltonian consisting of two
decoupled Weyl fermions of the same chirality [26,29]. We
will refer to this case as a double spin-1/2 fourfold. The
second type, which we will refer to as a spin-3/2 fourfold
fermion, cannot be expressed as the combination of lower
degeneracy multifolds. Hence, it is enough to calculate the
optical conductivity of a Weyl, a threefold, and a spin-3/2
fourfold fermion, since all chiral multifold fermions are built
out of these three types.

B. Optical conductivity in fully rotational symmetric models

The lowest-degeneracy multifold fermion is the twofold,
known as a Weyl fermion. The low-energy degrees of freedom
near this twofold crossing are described by the Weyl Hamil-
tonian H = h̄vF k · σ, where σ is a vector of Pauli matrices
and k is the momentum. A simple dimensional analysis of
Eq. (1) using the Weyl Hamiltonian shows that the optical
conductivity of Weyl fermions must have a linear dependence
on the frequency ω [4–6], and its explicit computation gives
as a result [7]

σW (ω) = ωe2

24π h̄vF

sinh(h̄ωβ/2)

cosh(μβ ) + cosh(h̄ωβ/2)
. (2)

In the limit of zero temperature Eq. (2) takes the form [4–7]
σW (ω) = ωe2

24π h̄vF
�(h̄ω − 2μ), where �(x) is the Heaviside

step function.
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TABLE I. Effective Hamiltonians (in units of 1/h̄vF ) and their corresponding optical conductivities for all symmetric chiral multifold
fermions. The optical conductivity of the effective models for the twofold, threefold, and spin-3/2 fourfold fermions, discussed in Sec. III A,
are defined piecewise for each region delimited by their characteristic frequencies. The effective Hamiltonian of the double spin-1/2 fourfold
is a direct sum of two Weyl Hamiltonians, and its optical conductivity is twice that of the Weyl fermion. Similarly, the effective Hamiltonian
of the sixfold fermion is the direct sum of two threefold Hamiltonians, and its optical conductivity is two times that of the threefold fermion.

Symmetric Hamiltonian σ
(

e2

h̄vF

)
Twofold (spin-1/2) k · σ σ2 f = ω

24π
for h̄ω > 2μ

Threefold (spin-1) k · S1 σ3 f = ω

6π
for h̄ω > μ

Fourfold (spin-3/2) k · S3/2 σ4 f =
{

ω

8π
for 2

3 μ < h̄ω < 2μ

ω

6π
for h̄ω > 2μ

Fourfold (2 × spin-1/2)

(
k · σ 0

0 k · σ

)
σ

2× 1
2

4 f = 2 × σ2 f

Sixfold (2 × spin-1)

(
k · S1 0

0 k · S1

)
σ6 f = 2 × σ3 f

The double spin-1/2 fourfold fermion consists of two
decoupled copies of the Weyl Hamiltonian, and thus its
optical conductivity is twice the optical conductivity of
the Weyl fermion given by Eq. (2), similar to Ref. [40].
We express it as σ

2×1/2
4 f (ω) = 2σW (ω) [see Table I and

Fig. 1(c)]. If the Weyl bands are tilted, the characteris-
tic frequency h̄ωW = 2μ at which the optical conductivity
changes from being zero to being linear in ω depends on
the magnitude of the tilt, but its linear dependence remains
unaltered [9].
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FIG. 1. Band structures of the rotationally symmetric multifold
fermions considered in Sec. III A in the high-symmetry direction
k111 = k(1, 1, 1)/

√
3. (a) Threefold fermion (spin-1), (b) spin-3/2

fourfold fermion, (c) double spin-1/2 fourfold fermion, and (d) six-
fold fermion (double spin-1). The labels indicate the effective spin
quantum number s of each band. The vertical arrows indicate the
only allowed interband transitions, those that satisfy �s = s − s′ =
±1, with characteristic frequencies h̄ω = 2μ/3 (purple), h̄ω = μ

(green), and h̄ω = 2μ (orange). The dotted lines in the double spin-
1/2 and double spin-1 fermions indicate two degenerate copies of the
spin-1/2 and spin-1 fermions, respectively, with the corresponding
transitions indicated by dotted vertical arrows.

We continue by considering the most general low energy
Hamiltonian for a threefold fermion

H3 f (k, φ) = h̄vF

⎛
⎝ 0 eiφkx e−iφky

e−iφkx 0 eiφkz

eiφky e−iφkz 0

⎞
⎠, (3)

where vF is the Fermi velocity and φ is a material-dependent
parameter [26,29]. In the absence of spin-orbit coupling the
value of φ is constrained to be φ0 = π/2 mod (π/3) [25].
In this case the Hamiltonian takes the form Hφ0

3 f (k) ≡
H3 f (k, φ0) = h̄vF k · S1, where S1 is a vector of three spin-
1 matrices which form a representation of SU(2) (see
Appendix A). The threefold fermions described by Hφ0

3 f have
full rotational invariance and effective spin S = 1, and we
refer to them as symmetric threefold fermions.

The band energies for the spin-1 symmetric threefold
fermion are Es = sh̄vF |k| [see Fig. 1(a)], where s = −1, 0, 1
corresponds to the three possible values of the effective spin
of the fermion. Because of this effective quantum number,
a photon can excite an electron from a filled band s to an
unoccupied band s′ only if the selection rule �s = s′ − s =
±1 is satisfied, as depicted in Fig. 1(a).

By inserting the analytic energies and the eigenfunctions
of Hφ0

3 f [see Appendix A, Eq. (A2)] in Eq. (1) we obtain the
optical conductivity

σ
φ0
3 f (ω,μ, β ) = ωe2

6π h̄vF

sinh(h̄ωβ )

cosh(h̄ωβ ) + cosh(μβ )
, (4)

where the superindex φ0 refers to the symmetric case. Taking
the T → 0 (β → ∞) limit, the optical conductivity simplifies
to

σ
φ0
3 f (ω,μ, β ) = ωe2

6π h̄vF
�(h̄ω − μ). (5)

From Eq. (5), the optical conductivity of the threefold fermion
is linear with ω as for the Weyl fermion, yet four times
larger given the same Fermi velocity vF (see Table I). Also,
the characteristic frequency at which the optical conductivity
starts to grow linearly with the frequency is h̄ω3 f = μ, which
is different from the characteristic frequency of the Weyl
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fermion h̄ωW = 2μ. At ω = ω3 f the only allowed interband
transition is activated [green arrow in Fig. 1(a)], connecting
a filled and an empty band with �s = s′ − s = ±1. Since the
low-energy Hamiltonian describing the sixfold fermion can be
brought to a block-diagonal form with two copies of the three-
fold Hamiltonian in the diagonal, its optical conductivity is
twice that of the threefold fermion [see Table I and Fig. 1(d)].

We now carry out a similar analysis to obtain the optical
conductivity for the symmetric fourfold fermion. A fourfold
degeneracy is found only with spin-orbit coupling in tetra-
hedral [27,28] or octahedral [26] subgroups [29]. A general
fourfold fermion in the octahedral group has the Hamiltonian

H4 f (k, a, b)

=

⎛
⎜⎜⎜⎝

akz 0 − a+3b
4 k+

√
3(a−b)

4 k−
0 bkz

√
3(a−b)

4 k− − 3a+b
4 k+

− a+3b
4 k−

√
3(a−b)

4 k+ −akz 0√
3(a−b)

4 k+ − 3a+b
4 k− 0 −bkz

⎞
⎟⎟⎟⎠,

(6)
where k± = kx ± iky, and a, b are two material-dependent
parameters expressed in units of h̄vF , whose ratio we define
as χ = arctan(b/a). For tetrahedral groups, an extra linear
term is allowed that we discuss in Appendix C. A fourfold
fermion recovers the full rotational symmetry when χ =
χ0 = arctan(−3) (b = −3a) or χ = χ0 = arctan(−1/3) (b =
−a/3), for which the Hamiltonian takes the form Hχ0

4 f (k) ≡
H4 f (k, χ0) = h̄vF k · S3/2, where S3/2 are three matrices that
form a spin-3/2 representation of SU(2) (see Appendix A).

In this case, the energies are given by Es = 2sh̄vF |k|, with
s = − 3

2 ,− 1
2 , 1

2 , 3
2 corresponding to the effective spin of the

multifold fermion [see Fig. 1(b)]. Similar to the threefold case,
the selection rules only allow transitions between a band s and
a band s′ such that �s = s′ − s = ±1.

Inserting the energies and the eigenfunctions, which can
be obtained analytically, in the expression for the optical
conductivity in Eq. (1) we obtain

σ
χ0
4 f (ω,μ, β ) = ωe2

8π h̄vF

[
sinh(h̄ωβ/2)

cosh(h̄ωβ/2) + cosh((μ − h̄ω)β )

+ 4

3

sinh(h̄ωβ/2)

cosh(h̄ωβ/2) + cosh(μβ )

]
. (7)

Taking the zero temperature limit T → 0 Eq. (7) is simplified
considerably to

σ
χ0
4 f (ω,μ) = ωe2

8π h̄vF

[
1

3
�(h̄ω − 2μ) + �(h̄ω − 2

3
μ)

]
.

(8)

As in the threefold case, the conductivity is linearly depen-
dent on the frequency ω of the photon. In this case we find
two characteristic frequencies due to the more complex band
structure, h̄ω4 f ,1 = 2μ/3 and h̄ω4 f ,2 = 2μ [see Fig. 1(b)],
defining two separated regions in the optical conductivity
with different linear dependence on ω. When ω4 f ,1 < ω one
transition with �s = ±1 from the intermediate-upper band
to the upper band is allowed, until it vanishes at ω = ω4 f ,2.
When ω > ω4 f ,2 a transition between the two intermediate
bands is activated [lower orange arrow in Fig. 1(b)].
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FIG. 2. Comparison between the optical conductivities of the
symmetric multifold fermions for which all cases in Table I are built.
A single threefold or fourfold fermion has a larger conductivity than
a Weyl fermion, normalized per node and by their Fermi velocity.
Depending on the type of multifold the activation frequency can
occur at h̄ω = 2μ/3, μ or 2μ.

In Fig. 2 we compare the optical conductivities of the
twofold (Weyl) fermion and the symmetric threefold and
fourfold fermions discussed in this section. For 2μ/3 < h̄ω <

2μ the optical conductivity of the spin-3/2 fourfold is larger
than that of the Weyl for a given vF , but smaller than that
of the threefold, while in the region h̄ω > 2μ the optical
conductivity of the threefold and the fourfold are equal. The
characteristic frequencies that activate the interband transi-
tions identify each symmetric multifold fermion, and they
do not depend on dimensionality [36]. Similarly, the ratio
between the symmetric multifold optical conductivities shown
in Fig. 2 is the same [41] as for two-dimensional multifold
systems [36].

The abruptness of the jump in the optical conductivity
at the characteristic frequencies depends on the temperature.
Thermally activated carriers will populate states above the
Fermi level and empty states below it, smoothing the step
function in Eq. (5) (see Appendix B, Fig. 8). Additionally,
the presence of disorder introduces a finite scattering time
τ resulting in a finite δ = 1/τ in Eq. (1). In the simplest
approximation, where τ is a constant, the step function will
be broadened [42], similar to the finite temperature case
discussed in Appendix B.

C. Optical conductivity in nonsymmetric low energy models

In real materials, φ and χ are pinned to the symmetric
values φ0 and χ0 only if spin-orbit coupling is absent. Includ-
ing spin-orbit coupling for a particular multifold splits it into
multifolds at the same high-symmetry point but with different
degeneracy. For example, in space group 198 a threefold at �

splits into one fourfold fermion and one Weyl fermion. This is
general: Multifolds without spin-orbit coupling are spinless
and have φ = φ0 or χ = χ0, while spinful multifolds may
have any value of these parameters and occur in different high
symmetry points compared to the spinless case.
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FIG. 3. Nonsymmetric threefold fermion. (a) Band structure for φ = π/6 − π/15 and the corresponding transitions allowed with their
characteristic frequencies [the exact expressions for these are given in Appendix A, Eq. (A3)]. (b) Optical conductivity for the nonsymmetric
threefold fermion depicted in (a). The characteristic frequencies are represented by vertical lines with colors corresponding to the transitions
depicted in (a). The frequencies ω3 and ω4 do not affect the optical conductivity since they correspond to transitions with �s �= ±1, which are
forbidden for the symmetric case. (c) Optical conductivities of nonsymmetric threefold fermions for different values of the material dependent
parameter φ.

In particular, for a generic threefold fermion occurring in
the presence of spin orbit coupling the material-dependent
parameter is no longer restricted to φ = φ0 and can take values
in the range π/3 < φ < 2π/3 mod π/3 [26]. A change in
φ will tilt the bands, breaking the full rotational symmetry.
In this case, the selection rules of the symmetric model no
longer apply and more excitations are allowed, as depicted
in Fig. 3(a), since the effective spin is no longer a good
quantum number. The characteristic frequencies ωi(φ) asso-
ciated to each transition depicted in Fig. 3(a) can be obtained
analytically [29], and we reproduce them for completeness in
Appendix A.

The activation of new transitions at each ωi results in a
change in the linear dependence on ω of the optical con-
ductivity, as depicted in Fig. 3(b). Some transitions have a
large effect on the slope, while others barely affect it. This is
consistent with other optical effects in multifold fermions [29]
and is rooted in the fact that the matrix elements for transitions
with �s �= ±1 are typically smaller than those with �s = 1.
In Fig. 3(c) we plot the optical conductivity for different
values of φ. Changing this parameter shifts the characteris-
tic frequencies according to their analytic expression ωi(φ),
given in Eq. (A3). As apparent in Fig. 3(c), the slope of the

optical conductivity also depends on φ, yet we find no closed
analytic form.

Combining all the results, we find that it is possible to
identify a generic threefold fermion in an optical experiment,
provided φ and vF are known (for example either from first
principles calculations or photoemission data). We find a simi-
lar behavior in the fourfold case. For an arbitrary value of χ �=
χ0 we lose full rotational symmetry and the spin-3/2 picture
breaks down, allowing for new electronic excitations in the
system [see Fig. 4(a)]. The characteristic frequencies for these
excitations can be obtained analytically [29] [see Eq. (A5)],
and produce a change in the linear dependence on ω of the
optical conductivity, as we see in Figs. 4(b) and 4(c). The
characteristic frequencies at which the optical conductivity
changes and the linear dependence on ω are different for each
multifold, which allows us to identify them by their optical
conductivity for both symmetric and nonsymmetric cases.

D. Imaginary part of the optical conductivity and sum rules

Before discussing realistic tight-binding models we note
that so far we have calculated only the absorptive (real)
part of the optical conductivity. Using the Kramers-Kronig
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FIG. 4. Nonsymmetric fourfold fermion. (a) Band structure for χ = −0.36 (a = 3.2, b = −1.2) and the corresponding transitions allowed
with their characteristic frequencies [the exact expressions for these are given in Appendix A, Eq. (A5)]. (b) Optical conductivity for the
nonsymmetric fourfold fermion depicted in (a). The characteristic frequencies are represented by vertical lines with colors corresponding to
the transitions depicted in (a). The frequencies that do not affect the optical conductivity correspond to transitions with �s �= ±1, which are
forbidden for the symmetric case. (c) Optical conductivities of nonsymmetric fourfold fermions for different values of the material dependent
parameter χ = −0.36 (a = 3.2, b = −1.2) and χ = −0.09 (a = 3.4, b = −0.3).
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transformations [39] we have obtained the dispersive (imag-
inary) of the optical conductivity in Appendix D, where we
derive a general expression applicable to all symmetric and
nonsymmetric cases, and we compute it explicitly for the
symmetric cases.

For completeness, in Appendix E we compute the con-
ductivity sum rule. The sum rule relates the integral over all
frequencies of the real part of the optical conductivity, 〈σ 〉,
to the total number of particles. Since low energy linearly
dispersing bands, such as those of Weyl or multifold fermions,
are unbounded, the f-sum rule explicitly depends on the cutoff
scale �, similar to what is known for graphene [43,44].
Leaving the closed form and details to Appendix E, we simply
mention that for symmetric multifolds the sum rule of the
interband part of the conductivity takes the form 〈σ 〉 ∝ (�2 −
cμ2) where c is a factor that depends on the type of multifold.
Specifically c = 1 and c = 4/3 for the symmetric threefold
and fourfold cases, respectively.

IV. OPTICAL CONDUCTIVITY OF MULTIFOLD
FERMIONS: REALISTIC MODELS

The fingerprints of chiral multifold fermions in the optical
conductivity allow us to identify them also in real materials.
To make material-specific predictions we use tight-binding
models with parameters that reproduce first-principles band
structures of space groups SG199 and SG198 [28,29,34] that
realize all types of chiral multifold fermions.

The tight-binding models that we use capture specific
properties of the material, such as the energy scales, the band
connectivity and multifold crossings, and the orbital embed-
ding. The latter describes the spatial position (or embedding)
of the orbitals in real space. A change in the orbital embedding
acts as a momentum-dependent unitary transformation of the

tight-binding Hamiltonian: It does not modify the band struc-
ture of the material but modifies its eigenfunctions. It is thus
necessary to take it into account to give accurate predictions of
observables, in particular the optical conductivity. The details
of this transformation depend on the space group, and we
present the explicit form of the Hamiltonians with orbital
embedding for SG199 and SG198 in Appendix F.

A. Space group 199

The first realistic tight-binding model that we consider
describes a material in SG199 without spin-orbit coupling,
which captures the adequate band connectivity and chirality.
Since no material has been found in this space group with
only multifold fermions near the Fermi level [26] we present
the results for this model in units of the characteristic hopping
scale t > 0 and the lattice constant a. If we parametrize the
orbital embedding by a scalar u, a generic value in the range
−1/2 < u < 1/2 sets the model to be in SG199. Choosing
u = 1/4 increases the symmetry from tetrahedral to octahe-
dral, provided the hoppings do not break this symmetry, de-
scribing a material in SG214. These requirements are satisfied
by our tight-binding model and thus it can interpolate between
SG199 and 214 depending on the value of u. The explicit
expression for the tight-binding model and its embedding can
be found in Appendix F.

In Fig. 5(a) we show a representative band structure of a
material in SG199. It features protected threefold nodes at
the � point at energy μ�/t = −1 and at the H = (−π, π, π )
point with μH/t = 1. It also hosts two Weyl nodes at the
P = (π/2, π/2, π/2) point, at energies μW1/t = −1.732 and
μW2/t = 1.732.

To focus on the optical conductivity of the threefold
fermion in SG199, we can place the chemical potential
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FIG. 5. Tight-binding model for a material in SG199. (a) Band structure of the tight-binding model used in Sec. IV A obtained from
Refs. [28,29]. (b) Optical conductivity of the tight-binding model calculated with a chemical potential μ/t = −0.93 (solid green line),
separating by 0.07 the threefold node at the � point and the Fermi level (left inset). In solid orange the optical conductivity calculated for
the tight-binding model with μ/t = −1.7, separating by 0.032 the lower Weyl node at the P point and the Fermi level (right inset). We present
the optical conductivity of the effective models described in IV A for the � point (dashed green) obtained with Eq. (4) and for the P point
(dashed orange) obtained with Eq. (2). In the frequency range 0 < h̄ω/t < 0.2 the optical conductivity is well described by the linear effective
model, i.e., the solid and dashed lines fall on top of each other. The orbital embedding does not affect the results at these energy scales. These
results are obtained with 1/β = 5 × 10−4t .
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slightly above the threefold node at the � point, at μ/t =
−0.93. We present the conductivity for this case in Fig. 5(b).
It has a linear dependence on the frequency ω and exhibits
a change in the slope at h̄ω�/t = 0.07. This result matches
exactly the analytic results obtained for a threefold fermion in
Eq. (4) in two ways. First the activation frequency h̄ω3 f /t =
μ/t = 0.07 exactly matches the distance from the node to the
Fermi surface. Second, the numerical slope coincides with
the slope determined by the effective Fermi velocity that we
obtain by projecting the tight-binding Hamiltonian on the
three eigenstates corresponding to the � point. This projection
can be brought to the form of the threefold model in Eq. (3)
with a unitary transformation [25], with an effective Fermi
velocity vF = at/(2h̄), where a is the lattice constant and t is
the hopping parameter in the tight-binding model.

If we instead place the chemical potential at μ/t = −1.7,
near the lower Weyl node at energy μW 2 around P, we can
focus on the optical conductivity of this Weyl node. We can
see in Fig. 5(c) that it has a linear dependence on the frequency
ω and a change in the slope at h̄ωP/t = 0.064. This energy
scale matches that of a Weyl fermion (see Table I) with an ac-
tivation frequency of h̄ωW /t = 2μ/t = 0.064, corresponding
to twice the distance from the node to the Fermi surface. The
slope matches that of Eq. (2) using the effective Hamiltonian
around the P point. We obtain this model by projecting the
Hamiltonian on the corresponding eigenstates near the Weyl
node and bringing it to a Weyl Hamiltonian form H = h̄vF k ·
σ with a unitary transformation, where vF = at/(2

√
3h̄) [25].

B. Space group 198: RhSi

The next model that we consider describes a material
in SG198. A variety of materials in this space group have
been theoretically predicted to be chiral multifold semimet-

als [26–28,34] and these expectations have been confirmed by
angle resolved photoemission in RhSi [32], CoSi [30,31], and
AlPt [33]. In this section we calculate the optical conductivity
of RhSi as a representative material in SG198. In order to
do so, we use the model originally presented in Ref. [28] for
RhSi, whose hopping parameters are fitted to first-principles
band calculations. We upgrade this model as in Ref. [29]: We
take into account the orbital embedding by conjugating the
tight-binding Hamiltonian with a unitary matrix parametrized
by x, with x = 0.3959 for RhSi. Further details of this model
can be found in Appendix F.

In Fig. 6(a) we present the band structure of RhSi without
spin-orbit coupling, where we chose the zero of energies to
coincide with the predicted Fermi level of RhSi. It exhibits a
protected threefold crossing at the � point at μ3 f = −0.07 eV
and a protected fourfold crossing (double spin-1/2) at the R =
(π, π, π ) point at μ4 f = −0.48 eV.

Before studying the realistic optical conductivity of RhSi
it is instructive to place the chemical potential close to the
threefold at � (μ = 0.065 eV) to compare it with the optical
conductivity of the linear low energy model. In Fig. 6(b)
we present the results obtained numerically choosing the
orbital embedding for RhSi (x = 0.3959), the results without
orbital embedding (x = 0), and the analytic results for the
effective model obtained following the projection procedure
described for SG199 in the previous section. As for SG199
the projection around � results in the effective Hamiltonian
Eq. (3) with vF = at/(2h̄), where a = 4.6 Å for RhSi and
with t = 0.76 eV chosen to match the multifold low energy
bands [28]. Figure 6(b) shows that the numerical results
match the optical conductivity of the effective model for
ω � 12 meV; they grow linearly with ω and have a step
at ω� = 5 meV, which is the energy separation from the

Γ X M Γ R X
−1

0

1

2

E
/e

V

0 10 20 30 40
h̄ω/meV

0

20

40

60

σ
x
x
(Ω

−1
cm

−1
)

Effective model Γ

x =0.3959

x =0.0

(a) (b)

−9

−8

−7

−6

−5

10
−2

E
/e

V

M ← Γ  → R

FIG. 6. (a) Band structure of the tight-binding model of RhSi used in Sec. IV B obtained from Refs. [28,29]. (b) Optical conductivity
corresponding to excitations near the � point calculated for 1/β = 0.5 meV (T = 5.8 K), including the spin degeneracy and μ = 65 meV.
The latter sets an energy difference of 5 meV between the threefold node at the � point and the Fermi level (inset). The results without taking
into account the orbital embedding (dashed orange line) and with the orbital embedding for RhSi (dashed blue line) are close in the range
of frequencies plotted, 0 < ω < 40 meV. The numerical results obtained for the tight-binding model (dashed lines) are similar to the optical
conductivity of the effective model at � (green line) discussed in Sec. IV B for ω � 12 meV, and exhibit a jump at ω = 5 meV, a characteristic
of the threefold fermion. For higher frequencies the linear effective model fails to capture the curvature of the bands where higher-order terms
become important, causing the optical conductivity to deviate from that of the tight-binding model.
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FIG. 7. Optical conductivity of RhSi obtained using the tight-
binding model of SG198 described in Refs. [28,29] including the
spin degeneracy, with μ = 0 eV and 1/β = 0.5 meV (T = 5.8 K).
The contribution of the � point (blue line) is activated by excitations
between the intermediate band (left inset, blue line) to the upper
band (left inset, green line) and exhibits a jump near ω = 74 meV,
which is larger than |μ3 f | = 70 meV, set by the concavity of the
intermediate band. The contribution due to excitations near the R
point (orange line) is magnified by a factor 10 for comparison. This
contribution is activated by transitions between the intermediate-
upper (green) and upper band (red), depicted in the right inset. The
characteristic frequencies, represented by vertical arrows in the right
inset, correspond to the maximum value of σR at ω = 96 meV and its
vanishing at frequency h̄ω = 154 meV.

node to the Fermi surface. For ω � 12 meV the quadratic
corrections become important, and the optical conductivity
calculated with the tight-binding model departs from the lin-
ear dependence obtained for the effective model. At the same
scale, the results obtained for x = 0 and x = 0.3959 do not
match exactly, which indicates that the higher-order correc-
tions are sensitive to the orbital embedding unlike the linear
approximation.

We now consider the actual values of the chemical poten-
tial and the orbital embedding that describe RhSi, which are
μ = 0 and x = 0.3959, respectively. We recall that μ = 0,
as set by ab initio calculations [28], lies 0.07 eV above the
threefold fermion at �, and 0.48 eV above the fourfold node
at the R point.

For these material parameters, and in the 0 < h̄ω <

200 meV frequency range, the interband optical conductivity
has contributions from transitions close to the � and R points
that we present separately in Fig. 7. The contribution to the
conductivity near the � point exhibits a jump at a frequency
h̄ω� = μ3 f = 74 meV, which is slightly larger than the cor-
responding characteristic frequency of a threefold fermion
h̄ω3 f = 70 meV (see Table I). This is due to the curvature
of the intermediate band, which results in a higher activation
frequency for the allowed transition near the � point (see left
inset in Fig. 7).

Near the R point, the only transitions that contribute below
h̄ω < 2μ4 f ∼ 1 eV are the interband transitions from the
intermediate-upper band (green) to the upper band (red), that

we depict in Fig. 7, right inset. Their contribution to the con-
ductivity is two orders of magnitude smaller compared to that
associated to the � point (see Fig. 7). This small magnitude
is to be expected once we recall that at low energies, near the
node at R, these two bands correspond to two decoupled Weyl
fermions [see Fig. 6(a)], and the transitions between them are
forbidden. As we increase the energy, the matrix elements
grow as the bands separate. Since the separation is small,
the matrix elements are small. The two extremal energies,
depicted by the arrows in the right inset of Fig. 7, correspond
to the frequencies h̄ω = 96 meV and h̄ω = 154 meV, which
match the scales where the R point conductivity reaches its
maximum and vanishes, respectively (see Fig. 7). In summary,
the interband optical conductivity of RhSi in the frequency
range h̄ω < 200 meV is determined by that of the threefold
fermion at the � point, since the contribution of the fourfold
at the R point is two orders of magnitude lower.

V. CONCLUSIONS

In this work we have shown that, per node, multi-
fold semimetals have larger optical conductivity than Weyl
semimetals. They also feature characteristic activation fre-
quencies that are specific to each class of multifold degen-
eracy. These activation frequencies, as well as the slope of
the conductivity as a function of frequency, can be used
as a fingerprint to distinguish each chiral multifold cross-
ing. We have considered multifold fermions in rotation-
ally symmetric and nonsymmetric cases and realistic Hamil-
tonians in space groups 199 and 198. RhSi, CoSi, and
AlPt [30–33] belong to the latter space group and thus our
predictions can be readily tested in experiment. Our results
complement known results for other topological semimetallic
systems [9,40,45,46].

Partially motivated by recent optical experiments [35] we
have focused our material discussion on RhSi. In this material,
without spin-orbit coupling, the interband optical conductivity
is dominated by the electronic excitations of the threefold
band crossing at the � point, activated for frequencies above
74 meV. The interband contribution of the R point is negligible
compared to that of the � point.

In experiments, the intraband Fermi surface contribution
can mask some characteristics of the contribution of � at
low frequencies. In the presence of weak disorder the Drude
peak is broadened by a scale set by the inverse scattering
time 1/τ , estimated to be τ ∼ ps (h̄/τ ∼ 10 meV) for typical
topological semimetals. Nevertheless, the Drude-like intra-
band contribution can be fitted with a Lorentzian distribution
and subtracted in the experimental data analysis, revealing the
characteristic features of the multifold fermions. Additionally,
the tight-binding model we have used can underestimate the
importance of the trivial pocket at M at the Fermi level for
some materials in SG198, such as AlPt but most likely not
RhSi. Therefore we expect that for sufficiently clean samples
of RhSi at low temperatures the Drude peak can be narrow
enough to observe all the features described in this work.

When considering realistic tight-binding models, we have
not included spin-orbit coupling. In SG 198, for example,
spin-orbit coupling splits the threefold fermion at the �

point into a spin-3/2 fourfold fermion and a Weyl fermion.
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The fourfold at R splits into a sixfold fermion and a Weyl
fermion. The splitting scale is determined by the spin-orbit
coupling energy scale. However, this splitting is too small
(∼meV) to be observed in ARPES measurements in CoSi,
RhSi, and AlPt [30–33], and in recent optical conductivity
data in RhSi [35]. These observations justify our approxi-
mation and motivate future optical experiments with meV
resolution.

From Fig. 7 we predict that RhSi has an optical conduc-
tivity at h̄ω = 0.1 eV of σ ∼ 120 �−1 cm−1 determined by
the threefold fermion at �. Unfortunately, a dedicated optical
conductivity experiment for any of the above multifold mate-
rials is still lacking. However, Ref. [35] recently reported that
in the range 0.5 eV � h̄ω � 0.8 eV the conductivity of RhSi
falls in the interval 350 �−1 cm−1 � σ � 500 �−1 cm−1. To
compare with these measurements we have calculated the
optical conductivity in this range of frequencies and at h̄ω =
0.5 eV we find σ ∼ 650 �−1 cm−1. At such high energies,
there are several factors that can lead to this discrepancy.
These include inaccuracies of the estimated value of the
embedding x or the tight-binding hopping parameters, as well
as active transitions in other pockets such as those at M.
At low energies, tight-binding models become more accu-
rate and the effect of the orbital embedding is less relevant.
Therefore, we expect that experiments carried out at lower
frequencies would agree better with the expectations of our
calculations.

Our predictions are of special relevance to interpret the
recent optical measurements of nonlinear circular photocur-
rents in RhSi [35] and in particular to determine the topo-
logical monopole node charge from this measurement. This
is because in practice, a good knowledge of the linear op-
tical conductivity is important to interpret nonlinear optical
experiments [21,35]. First, the absorption of the material
determines the total nonlinear current that can be measured
through the glass coefficient, which is the ratio between
nonlinear current density and the absorption. Second, dis-
sipative nonlinear effects depend on the optical scattering
time τ . The linear optical conductivity can be used to es-
timate the magnitude of τ , for example by quantifying a
finite conductivity in the Pauli blocked region [47]. This
estimate can then be used to assess the accuracy of the
expected quantization of injection currents in mirror-free
semimetals [16,29,35].

Our results show that the optical conductivity distinguishes
the type of chiral multifold fermions in real materials and that
it can be larger, per node, than a single Weyl fermion. We
expect that our analysis of realistic models helps to interpret
upcoming optical experiments in different multifold candidate
materials, especially those in SG198, such as RhSi, CoSi, and
AlPt.

ACKNOWLEDGMENTS

The authors are indebted to B. Bradlyn, F. Flicker, S.
Fratini, T. Morimoto, and M. Vergniory for related collabo-
rations and valuable comments. We thank M. Orlita for crit-
ical reading of the paper. We acknowledge support from the
European Union’s Horizon 2020 research and innovation pro-

gramme under the Marie-Sklodowska-Curie Grant agreement
No. 754303 (M.A.S.M.) and 653846 (A.G.G) and the GreQuE
Cofund programme (M.A.S.M). A.G.G. is also supported by
the ANR under the Grant No. ANR-18-CE30-0001-01.

APPENDIX A: EIGENFUNCTIONS AND
CHARACTERISTIC FREQUENCIES FOR THE

SYMMETRIC THREEFOLD AND FOURFOLD FERMIONS

1. Threefold fermion

For φ = φ0 = π/2 we can write the Hamiltonian for a
threefold fermion [see Eq. (3)] as Hφ0

3 f (k) = h̄vF k · S1, where
S1 = (S1,x, S1,y, S1,z ) are the spin-1 matrices

S1,x =
⎛
⎝ 0 i 0

−i 0 0
0 0 0

⎞
⎠,

S1,y =
⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠, (A1)

S1,z =
⎛
⎝0 0 0

0 0 i
0 −i 0

⎞
⎠,

with commutation relations [S1,i, S1, j] = −iεi jkS1,k . The
eigenstates of the threefold low energy model in Eq. (3) were
previously obtained analytically for any value of φ (see for
instance Refs. [26,29]),

ψs = 1√(
3E2

s − k2
)(

E2
s − k2

z

)
⎛
⎝ E2

s − k2
z

Eskxe−iφ + kykze2iφ

Eskyeiφ + kxkze−2iφ

⎞
⎠,

(A2)

where Es = sh̄vF |k| is the energy associated to each eigen-
function. We reproduce also the characteristic frequencies for
the model in Eq. (3) that determine the changes in the linear
dependence of the optical conductivity, obtained previously in
Ref. [29],

h̄ω1

μ
=

√
3 cos(φ + π/6)

cos(φ)
,

h̄ω2

μ
=

√
3 cos(φ + π/6)

cos(φ − 2π/3)
,

h̄ω3

μ
=

√
3 cos(−φ + π/2)

cos(−φ + π/3)
,

h̄ω4

μ
=

√
3 cos(φ − π/6)

cos(φ)
,

h̄ω5

μ
=

√
3 cos(−φ + π/6)

cos(−φ + π/3)
,

h̄ω6

μ
=

√
3 sin φ

cos(φ − 2π/3)
.

(A3)

2. Fourfold fermion

For a = 3, b = −1 [χ = χ0 = arctan(−1/3)] we can write
the Hamiltonian describing the fourfold fermion in Eq. (6) as
Hχ0

4 f (k) = h̄vF k · S3/2, where S3/2 = (S3/2,x, S3/2,y, S3/2,z ) are
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three spin-3/2 matrices

S3/2,x =

⎛
⎜⎜⎝

0 0 0
√

3
0 0

√
3 −2

0
√

3 0 0√
3 −2 0 0

⎞
⎟⎟⎠,

S3/2,y =

⎛
⎜⎜⎝

0 0 0 −i
√

3
0 0 −i

√
3 −2i

0 i
√

3 0 0
i
√

3 2i 0 0

⎞
⎟⎟⎠, (A4)

S3/2,y =

⎛
⎜⎝

3 0 0 0
0 −1 0 0
0 0 −3 0
0 0 0 1

⎞
⎟⎠,

with commutation relations [S3/2,i, S3/2, j] = 2iεi jkS3/2,k . For
any value of χ , the characteristic frequencies where the
linear conductivity of the fourfold fermion changes slope were
obtained in Ref. [29]. Defining the momentum high symme-
try directions k100 = k(1, 0, 0) and k111 = k(1, 1, 1)/

√
3, the

fourfold optical conductivity is determined by the following
activation frequencies:

h̄ω1

μ
= E1(k111) − E2(k111)

E1(k111)
,

h̄ω2

μ
= E1(k100) − E2(k100)

E1(k100)
,

h̄ω3

μ
= E1(k100) − E2(k100)

E2(k100)
,

h̄ω4

μ
= E1(k111) − E2(k111)

E2(k111)
,

h̄ω5

μ
= E1(k100) − E3(k100)

E1(k100)
,

h̄ω6

μ
= E1(k111) − E3(k111)

E1(k111)
,

h̄ω7

μ
= E1(k111) − E4(k111)

E1(k111)
,

h̄ω8

μ
= E2(k111) − E4(k111)

E2(k111)
,

h̄ω9

μ
= E2(k100) − E4(k100)

E2(k100)
. (A5)

APPENDIX B: TEMPERATURE AND SMOOTHING OF
THE STEP FUNCTION

In Sec. III we have derived analytic expressions for the
optical conductivity of the symmetric threefold and symmetric
fourfold fermions, Eqs. (4) and (7), respectively, for any tem-
perature T = 1/(kBβ ). In Fig. 8 we plot the optical conduc-
tivities for the twofold, symmetric threefold, and symmetric
fourfold fermions at zero temperature and at a finite (unreal-
istic) temperature 1/β = 10−1μ to illustrate the smoothing of
the step functions at the characteristic frequencies. In units of
μ the broadening, set by μβ, is larger for the step function at
2μ than at μ or 2/3μ, which is clearly visible in Fig. 8. The
smoothing due to a finite temperature is visible as well in our
calculations for realistic models in Sec. IV.

APPENDIX C: TETRAHEDRAL FOURFOLD

The tetrahedral spin-3/2 fermions in space groups 195–
198 arise upon breaking the fourfold rotational symmetry
in space groups 207–214. At linear order, the Hamiltonian
admits an extra term compared to the octahedral fourfold in
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0.00
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FIG. 8. Optical conductivity of symmetric models with finite
temperature. The solid lines correspond to that of Fig. 2 and
the dashed lines (with the same color coding) are calculated with the
exact analytic expressions Eqs. (2), (4), and (7) for finite temperature
with 1/β = 10−1μ.

space groups 195–198 and takes the form

H4 f ,T = H4 f + h̄vT

⎛
⎜⎜⎜⎜⎝

0 kz −√
3kx iky

kz
2kz√

3
iky

kx−2iky√
3

−√
3kx −iky 0 −kz

−iky
kx+2iky√

3
−kz − 2kz√

3

⎞
⎟⎟⎟⎟⎠,

(C1)

where H4 f is the octahedral fourfold Hamiltonian given in
Eq. (6). The parameter vT is proportional to the strength of
the fourfold rotational symmetry breaking.

By changing vT we introduce a tilt in the bands [see
Fig. 9(a)], breaking the full rotational symmetry and leading to
a different optical conductivity compared to Eq. (7). The opti-
cal conductivity obtained for the tetrahedral fourfold fermion
is shown in Fig. 9(b).

APPENDIX D: IMAGINARY PART OF THE OPTICAL
CONDUCTIVITY σ� FROM KRAMERS-KRONIG

RELATIONS

The optical conductivity is a complex quantity with real
and imaginary parts σ = σ� + iσ
 which are related by the
Kramers-Kronig relations [39]. In Sec. III we have calculated
the absorptive (real) part of the optical conductivity. Using
the Kramers-Kronig relations we can obtain the dispersive
(imaginary) part of the optical conductivity. The Kramers-
Kronig relations are commonly written as

σ�(ω) = 1

π
P

∫ ∞

−∞
dx

σ
(x)

x − ω
, (D1)

σ
(ω) = − 1

π
P

∫ ∞

−∞
dx

σ�(x)

x − ω
, (D2)

where P denotes the Cauchy principal value. To calculate
it we follow the procedure in Ref. [39] and subtract the
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FIG. 9. Optical conductivity of a tetrahedral fourfold fermion. (a) Band structure and (b) optical conductivity corresponding to the
tetrahedral fourfold fermion with two different values of the ratio vT /vF [see Eq. (C1)].

singularity at ω

σ�(ω) + iσ
(ω) = 1

iπ

∫ ∞

−∞
dx

(
σ (x) − σ (ω)

x − ω

)(
x + ω

x + ω

)
.

(D3)

Using now that the real part is even and the imaginary part is
odd in frequencies we obtain

σ�(ω) = 2

π

∫ ∞

0
dx

xσ
(x) − ωσ
(ω)

x2 − ω2
, (D4)

σ
(ω) = −2ω

π

∫ ∞

0
dx

σ�(x) − σ�(ω)

x2 − ω2
. (D5)

Since the low-energy models that we used in Sec. III
to calculate the real part of the optical conductivity have
unbounded linearly dispersing bands, we regularize the upper
limit in the integrals in Eqs. (D4) and (D5) using a cutoff
energy �. As discussed in the main text, the real part of
the optical conductivity of all chiral multifold fermions is
a piecewise function of the form σ�(ω) = ∑N−1

i=0 σi(ω) =∑N−1
i=0 Siω�(ωi+1 − ωi ). The subindex i is associated to each

characteristic frequency ωi where the slope of the optical
conductivity changes (see Appendix A), where ω0 = 0 and
ωN = �/h̄ is the cutoff frequency, and N is the number of
different frequency regions. In particular, N = 7 and N = 10
for threefold and fourfold fermions as dictated by Eqs. (A3)
and (A5), respectively. Using this partition for the optical
conductivity we can rewrite now Eq. (D5) as

σ
(ω,�) = − 2ω

π

[ N−1∑
i=0

∫ ωi+1

ωi

σi(x)

x2 − ω2
dx

−
∫ ∞

0

σ�(ω)

x2 − ω2
dx

]
(D6)

= − 1

π

[
σ�(ω) log

∣∣∣∣� + h̄ω

� − h̄ω

∣∣∣∣
+ω

N−1∑
i=0

Si log

∣∣∣∣ω2
i+1 − ω2

ω2
i − ω2

∣∣∣∣
]
. (D7)

This expression can be evaluated analytically for the cases
of the twofold (Weyl), the symmetric threefold, and the sym-
metric fourfold fermions (see Fig. 10) presented in Table I in
Eq. (D7). For the Weyl fermion we obtain

σ
,W (ω) = − ωe2

24π2 h̄vF

[
log

∣∣∣∣ �2 − (h̄ω)2

4μ2 − (h̄ω)2

∣∣∣∣
+ �(h̄ω − 2μ) log

∣∣∣∣� + h̄ω

� − h̄ω

∣∣∣∣
]
. (D8)

We take the result obtained for the symmetric threefold in
Eq. (5), and we obtain the corresponding imaginary part

σ
φ0

,3 f (ω) = − ωe2

6π2h̄vF

[
log

∣∣∣∣�2 − (h̄ω)2

μ2 − (h̄ω)2

∣∣∣∣
+ �(h̄ω − μ) log

∣∣∣∣� + h̄ω

� − h̄ω

∣∣∣∣
]
. (D9)

0 2/3 1 2

h̄ω/μ

−0.3

−0.2

−0.1

0.0

σ
�,

x
x
(e

2
/(

h̄
v F

))

Weyl

Threefold

Fourfold

FIG. 10. Imaginary part of the optical conductivity for a Weyl
fermion (orange), a symmetric threefold fermion (blue), and a sym-
metric fourfold fermion (green) as dictated by Eqs. (D8), (D9), (D10)
with � = 100μ.
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For the symmetric fourfold fermion

σ
χ0

,4 f (ω) = − ωe2

24π2 h̄vF

[
4 log

∣∣∣∣ �2 − (h̄ω)2

4μ2 − (h̄ω)2

∣∣∣∣
+ 3 log

∣∣∣∣36μ2 − 9(h̄ω)2

4μ2 − 9(h̄ω)2

∣∣∣∣
+

(
3�

(
h̄ω − 2μ

3

)

+ �(h̄ω − 2μ)

)
log

∣∣∣∣� + h̄ω

� − h̄ω

∣∣∣∣
]
. (D10)

For the nonsymmetric multifold fermions, the characteris-
tic frequencies can be calculated analytically for each φ, χ

using Eqs. (A3) and (A5). The slopes for each piece Si can be
calculated numerically and introduced in Eq. (D7).

APPENDIX E: SUM RULES

Optical sum rules relate the real part of the optical con-
ductivity with the total number of particles in the system and
are obtained as the integral of the optical conductivity to all
frequencies,

〈σ 〉 = h̄2
∫ ∞

0
dωσ�(ω). (E1)

As for the Kramers-Kronig relations, the unbounded linear
dispersion of the effective low energy models requires us
to insert a cutoff frequency �/h̄ in Eq. (E1) to regularize
the integral. As discussed in the previous section, we will
use that the optical conductivity of these models is of the
form σ�(ω) = ∑N−1

i=0 σi = ∑N−1
i=0 Siω�(ωi+1 − ωi ) for both

symmetric and nonsymmetric cases. Introducing this general
form in Eq. (E1) as well as the cutoff � we obtain a general
expression for the sum rule for all multifold fermions:

h̄2
∫ �/h̄

0
dωσ�(ω) = h̄2

N−1∑
i=0

∫ �/h̄

0
dωSiω�(ωi+1 − ωi )

= h̄2

2

N−1∑
i=0

Si
(
ω2

i+1 − ω2
i

)
. (E2)

To obtain analytic results for the symmetric cases (see
Sec. III A) we can insert the optical conductivities in Table I
in Eq. (E2). In the twofold (Weyl) case we obtain

〈σ 〉2 f = e2

48π h̄vF
(�2 − 4μ2). (E3)

For the symmetric threefold fermion we obtain that

〈σ 〉3 f = e2

12π h̄vF
(�2 − μ2). (E4)

In the symmetric fourfold case the optical sum rule is

〈σ 〉4 f = e2

12π h̄vF

(
�2 − 4

3
μ2

)
. (E5)

For the nonsymmetric cases the frequencies at which the
linear dependence of the optical conductivity on ω changes
are given by Eqs. (A3) and (A5) for the threefold and fourfold

fermions, respectively. In this case, the linear dependence Si

in each section ωi < ω < ωi+1 can be computed numerically
and substituted in Eq. (E2) to obtain the corresponding sum
rule.

Finally, note that the Drude peak will contribute to the
sum rule as well. Extending the results of Ref. [43] to three
dimensions, we expect its contribution to be proportional
to μ2.

APPENDIX F: TIGHT-BINDING MODELS AND
ORBITAL EMBEDDING

In Sec. IV we have calculated the optical conductivity of
materials described by tight-binding models in space groups
199 and 198. The tight-binding model for SG198 and a
detailed discussion on its construction without orbital embed-
ding can be found in Ref. [28]. The inclusion of the orbital
embedding for SG198, together with the construction of the
tight-binding model for SG199, is discussed in Ref. [29].
For convenience we revisit here how to include the orbital
embedding for the models we used in the main text.

Materials in space group 199 have body-centered cubic
structures with Bravais lattice vectors

R1 = a

2
(−x̂ + ŷ + ẑ),

R2 = a

2
(x̂ − ŷ + ẑ), (F1)

R3 = a

2
(x̂ + ŷ − ẑ).

To construct the tight-binding model considering the symme-
tries of SG199 we place spinless s orbitals in the positions qi,
given by

q1 = (u, u, u),

q2 =
(

1

2
− u,

1

2
, 0

)
,

q3 =
(

0,
1

2
− u,

1

2

)
, (F2)

q4 =
(

1

2
, 0,

1

2
− u

)
,

where |u| < 1/2, and qi is expressed in reduced coordinates,
i.e., in units of Ri. Then, we can write the tight-binding
Hamiltonian used in Sec. IV A for a material in SG199 as
H199(u, k) = V †(u, k)H0(k)V (u, k), where

H0(k) =

⎛
⎜⎜⎝

0 1 1 1
1 0 e−ik·R3 eik·R2

1 eik·R3 0 e−ik·R1

1 e−ik·R2 eik·R1 0

⎞
⎟⎟⎠, (F3)

and

V (u, k) =

⎛
⎜⎜⎝

eik·q1 0 0 0
0 eik·q2 0 0
0 0 eik·q3 0
0 0 0 eik·q4

⎞
⎟⎟⎠. (F4)

For SG198 the tight-binding Hamiltonian presented in
Ref. [28] was modified in Ref. [29] to take into account the
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orbital embedding. In the original tight-binding Hamiltonian [28] H(k) the atoms are located in the positions

qA = (0, 0, 0), qB =
(

1

2
,

1

2
, 0

)
, qC =

(
1

2
, 0,

1

2

)
, qD =

(
0,

1

2
,

1

2

)
, (F5)

given in reduced coordinates. To take into account the orbital embedding, the new atomic positions

qA = (x, x, x), qB = (
1
2 + x, 1

2 − x,−x
)
, qC = (

1
2 − x,−x, 1

2 + x
)
, qD = (−x, 1

2 + x, 1
2 − x

)
, (F6)

were introduced in Ref. [29] with x = 0.3959 for RhSi, according to their ab initio calculations. In Sec. IV B we have calculated
the optical conductivity of RhSi using the tight-binding Hamiltonian H198(x, k) = Ux(k)†H(k)Ux(k) with

Ux(k) = exp

⎡
⎢⎣

⎛
⎜⎝

ix(k1 + k2 + k3) 0 0 0
0 ix(k1 − k2 − k3) 0 0
0 0 ix(k3 − k2 − k1) 0
0 0 0 ix(k2 − k1 − k3)

⎞
⎟⎠

⎤
⎥⎦, (F7)

and H(k) the tight-binding Hamiltonian without spin-orbit coupling presented in Ref. [28], which reads

H(k) = v1

[
τ xμ0 cos

(
kx

2

)
cos

(
ky

2

)
+ τ xμx cos

(
ky

2

)
cos

(
kz

2

)
+ τ 0μx cos

(
kz

2

)
cos

(
kx

2

)]

+ vp

[
τ yμz cos

(
kx

2

)
sin

(
ky

2

)
+ τ yμx cos

(
ky

2

)
sin

(
kz

2

)
+ τ 0μy cos

(
kz

2

)
sin

(
kx

2

)]

+ v2

[
cos (kx ) + cos

(
ky

) + cos (kz )

]
τ 0μ0, (F8)

where τ i and μi, i = x, y, z, are the three Pauli matrices for spin-1/2, τ 0 = μ0 = 1 is the 2 × 2 identity matrix, and τ iμ j ≡
τ i ⊗ μ j is a short-hand notation for the Kronecker product. For RhSi the values of the tight-binding parameters are v1 = 0.55,
v2 = 0.16, and vp = −0.76, obtained in Ref. [28] by fitting the bands of the tight-binding Hamiltonian in Eq. (F8) to their
first-principles calculations.
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