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The combination of strong spin-orbit coupling and strong correlations holds tremendous potential for
interesting physical phenomena as well as applications in spintronics and quantum computation. In this context,
we here study the interplay between the Rashba spin-orbit coupling (RSOC) and the Kondo screening in
noncentrosymmetric f -electron materials. We show that the Kondo coupling of the f electrons becomes
anisotropic at high temperatures due to the RSOC. However, an isotropic Kondo effect is restored at low
temperature, which leads to a complete Kondo screening. We furthermore demonstrate that the Kondo effect
has influence on the Rashba splitting in the band structure, which becomes temperature dependent. Although the
f electrons are localized at high temperature, a helical spin polarization of the conduction band emerges due to
the scattering with the f electrons. With decreasing temperature, the Kondo screening occurs, which leads to
drastic changes in the band structure. Remarkably, these changes in the band structure depend on the helical spin
polarization. For strong RSOC, we observe that the hybridization gap of one of the helical bands is closed at low
temperature and a helical half metal is formed.
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I. INTRODUCTION

Recently, the combination of strong spin-orbit coupling
(SOC) and strong correlations has aroused great interest [1].
For light elements, SOC usually has only a weak effect on
the material properties. However, in heavy elements, such as
in f -electron materials, SOC can become large and strongly
affects the low-temperature properties [2]. Moreover, in mate-
rials with partially filled f -electron orbitals, strong electron
correlations can commonly be observed, which results in
intriguing physics such as magnetism, quantum criticality, and
unconventional superconductivity [3]. The combination of
both strong correlations and strong spin-orbit interaction can
thus lead to completely novel phenomena such as spin-orbit-
assisted Mott insulators [4], spin liquids [1], and correlated
topological insulators such as SmB6 and YbB12[5–13].

Another intriguing aspect arises when the inversion sym-
metry in these materials is broken. This results in the ap-
pearance of antisymmetric spin-orbit coupling (ASOC) [14],
such as the Rashba SOC (RSOC). ASOC leads to a spin-
momentum locking of the electrons, which makes it possible
to manipulate the magnetization or the spin direction of the
electrons by applying electric fields, which might be used in
spintronics devices such as a spin transistor and spin-orbit
qubits [14]. ASOC also plays an important role in the mag-
netoelectric effect [15], the switching of the spin texture [16],
and topologically nontrivial band structure which results in
the quantum spin Hall effect [17]. Therefore, the combination
of ASOC and strong correlations can be expected to yield
fascinating phenomena [18]. Noncentrosymmetric f -electron
materials, which include strong correlations and might include
strong RSOC, are thus good candidates for studying this com-
bination. Examples of these materials are CePt3Si, CeRhSi3,
and CeIrSi3[19–21].

Besides these noncentrosymmetric f -electron materials,
recently, f -electron superlattices were proposed as a new

platform for utilizing the combination of strong RSOC and
strong correlations [22–26]. In these f -electron superlattices,
the inversion symmetry is broken around the interface be-
tween different materials. Experiments have demonstrated
that the strength of the RSOC depends on the structure of
the superlattice, i.e., how many atomic layers of one material
are used [22]. Thus, the strength of the RSOC seems to
be controllable, which might give a platform to study the
interplay between strong correlations and strong RSOC in a
controlled fashion.

To understand the phenomena seen in these superlattices
and noncentrosymmetric f -electron materials, it is necessary
to understand the nature of the quantum state arising from
the interplay between strong Coulomb interaction and RSOC.
The Coulomb interaction in f -electron materials leads to the
Kondo effect [3,27]. At high temperature, the f electrons
form localized magnetic moments, which are screened by the
conduction electrons at the Kondo temperature. Due to this
screening, f electrons become itinerant and participate in the
Fermi surface, forming a so-called heavy-fermion state. On
the other hand, the RSOC induces an anisotropic spin splitting
into the band structure, which can be expected to hinder the
formation of magnetic moments, thus competing with the
Kondo effect. Both energy scales do not need to be small, as
the example of CePt3Si shows, for which a Kondo temperature
of TK = 80K [19] and spin-orbit interaction of 50–200 meV
[28] have been determined.

Until now, theoretical works have focused on the impact
of the RSOC on the Kondo effect in quantum dots and
impurity models. Depending on the impurity model, there are
predictions that the Kondo effect is enhanced exponentially
[29], is almost unchanged [30], or is suppressed [31,32] by
the RSOC.

However, the effect of RSOC on the properties of f -
electron materials, where every atom possesses a magnetic
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moment due to a partially filled f orbital, is poorly studied.
The Kondo effect occurs in these materials not as a screening
of an isolated magnetic moment embedded into a conduction
band but coherently in all magnetic moments.

In this work, we study the interplay between the RSOC and
the Kondo effect in the half-filled periodic Anderson model.
In the first part, we analyze the impact of the RSOC on the
Kondo effect by using perturbation theory and the dynami-
cal mean-field theory (DMFT) combined with the numerical
renormalization group (NRG) [33–35]. By looking at two
sides of the same problem, we can understand how f electrons
are screened by the Kondo effect in noncentrosymmetric
materials. In the second part, we use DMFT to analyze the
impact of the Kondo effect on the Rashba splitting in the band
structure. Remarkably, we find that the hybridization strength
between c and f electrons depends on the helical polarization
of the band, which has a strong impact on the temperature
dependence of the band structure.

The rest of this paper is organized as follows: In Sec. II,
we introduce the model Hamiltonian that we use in this paper.
In Sec. III, we derive an effective Hamiltonian (Kondo lattice
model) by second-order perturbation theory and calculate the
Kondo temperature by poor-man’s scaling. Then, by using
DMFT combined with NRG, we calculate the temperature-
dependent magnetic moment of the f electrons from which
we can numerically deduce the Kondo screening and Kondo
temperature. Finally, in Sec. IV we analyze the temperature-
dependent band structure by studying the spectral functions
and the conductivity for both helical spin polarizations.

II. MODEL AND METHODS

Because atoms with partially filled f -electron orbitals are
generally large, the SOC can be expected to be strong in these
materials. To analyze the interplay between the RSOC and the
Kondo effect, we use a periodic Anderson model in which the
SOC is generated only by the f -electron band, resulting in a
RSOC within the f -electron band and between the c and the f
electrons. An analysis of the RSOC within the c-electron band
is left for a future study. Our Hamiltonian, which is based on
a model of CePt3Si [36], reads

H =
∑

k,σ,σ′
{εkσ

0c†
kσ

ckσ ′

+ [ε f kσ
0 + α f f (σ x sin ky − σ y sin kx )]σσ ′ f †

kσ
fkσ ′

+ [V σ 0 + αc f (σ x sin ky − σ y sin kx )]σσ ′ ( f †
kσ

ckσ ′ +H.c.)}
+U

∑
i

ni↑ni↓, (1)

εk = 2tc(cos kx + cos ky) + μc, (2)

ε f k = 2t f (cos kx + cos ky) + μ f , (3)

where c(†)
kσ

and f (†)
kσ

are annihilation (creation) operators of
the conduction and the f electrons for momentum k and spin
direction σ . tc, f are the intersite hopping strengths for the c
and f electrons. For simplicity we assume a two-dimensional
square lattice. μc, f are the chemical potentials for the c and f
orbitals. V describes a local hybridization between the c and f

orbitals, α f f is the RSOC within the f electron band, and αc f

is the RSOC between the c and f electron bands. Throughout
this paper, we fix t f = −0.05tc and use tc = 1 as the unit of
the energy.

Besides analytical tools like perturbation theory, we em-
ploy DMFT combined with NRG to study this Hamiltonian.
DMFT takes local fluctuations fully into account by self-
consistently solving the mean-field equations [33]. The lattice
Hamiltonian is thereby mapped onto a quantum impurity
model. Thus, DMFT neglects nonlocal fluctuations which
become exact in infinite dimensions. To solve the quantum
impurity model, we use the NRG, which calculates low-
energy properties by iteratively discarding high-energy states.
It has been shown that NRG is a very reliable tool at low
temperature [34,35].

III. EFFECT OF THE RASHBA COUPLING
ON THE KONDO EFFECT

First, we study the effect of the RSOC on the Kondo
screening. For this purpose, we use two different techniques,
namely, perturbation theory and DMFT. By using different
techniques, we can analyze different aspects of the impact
of the RSOC on the Kondo screening. While perturbation
theory is correct only in the limit of very strong interactions
(weak hybridization), it includes the momentum dependence
of the RSOC. On the other hand, DMFT is a reasonable
approximation for any interaction strength and can describe
the crossover from localized to itinerant f electrons, but it
neglects the momentum dependence of the self-energy.

A. Kondo screening analyzed by perturbation theory

By using perturbation theory and poor-man’s scaling, we
can analyze the impact of the RSOC on the Kondo screening
as long as the f electrons can be regarded as localized. We first
derive an effective Kondo lattice model (KLM) by treating
the c- f hybridization in second-order perturbation theory for
U � t,V, α where the ground state is half filled. We therefore
fix the chemical potential of the f electrons as μ f = −U/2
and derive the Kondo coupling for αc f �= 0 and α f f = 0. We
focus here on this situation because αc f dominantly influences
the Kondo effect. The effect of α f f and further details of the
derivation are given in Appendix A.

The effective Hamiltonian becomes

HKLM =
∑

k

εkc†
kσ

ckσ

+
∑

i

∑
p={x,y,z}

∑
kk′

expi(k−k′ )·ri J p
kk′ S

p
i c†

k′σ
pck, (4)

Jx
kk′ = 2[V 2 − α2

c f (sin kx sin k′
x − sin ky sin k′

y)]/U, (5)

Jy
kk′ = 2[V 2 − α2

c f (− sin kx sin k′
x + sin ky sin k′

y)]/U, (6)

Jz
kk′ = 2[V 2 − α2

c f (sin ky sin k′
y + sin kx sin k′

x )]/U . (7)

Contrary to the ordinary Kondo lattice model, the coupling
between the localized spins and the c electrons is strongly
momentum dependent. Moreover, the coupling is anisotropic,
i.e., Jx �= Jy �= Jz. Such a Kondo coupling can lead to a
Kondo singlet with internal angular momentum, e.g., d-wave
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symmetry [37], which means that the Kondo singlet becomes
nonlocal [38].

As a first start to analyze the impact of the RSOC on the
Kondo effect, we here constrain our results to the conventional
Kondo singlet and nonmagnetic heavy Fermion phase with
s-wave symmetry, where we can assume that the scattering
close to the Fermi surface of the unperturbed system with
q = k′ − k � 0 is dominant. We obtain the simplified Kondo
lattice model,

HKLM �
∑

k

εkc†
kσ

ckσ +
∑

i,k,q�0

[J0Si · (c†
k+qσck)

− JRSz
i c†

k+qσ
zck], (8)

J0 = 2V 2

U
, (9)

JR = 1

4π2

∑
k

2α2
c f (sin2 kx + sin2 ky)

U
= 2α2

c f

U
, (10)

where JR is the spin-exchange interaction generated by the
RSOC. The main difference from the ordinary Kondo lattice
model is an anisotropic exchange interaction arising from JR.

We can now use poor-man’s scaling to integrate out high-
energy states and derive the Kondo temperature [39]. The
renormalization group (RG) equations for the coupling pa-
rameters Jz and J‖ are

dJz

dE
= −n(εF )J2

‖
E

, (11)

dJ‖
dE

= −n(εF )JzJ‖
E

, (12)

which satisfy

J2
‖ − J2

z = JR(−JR + 2J ) = a2(const). (13)

From Eqs. (11), (12), and (13), we derive two independent
RG equations,

dJz

dE
= −n(εF )

(
J2

z + a2
)

E
, (14)

dJ‖
dE

= −
n(εF )J‖

√
J2
‖ − a2

E
. (15)

From these two RG equations we can find the energy scales
T z and T ‖ for Jz(‖), which are given as

T z
K = tc exp{− arctan [a/(J0 − JR)]/[n(εF )a]}, (16)

T ‖
K = tc exp{−[arcsin (a/J0)]/[n(εF )a]} (17)

= T z
K (18)

� exp{−1/[n(εF )J0]} exp[−a2/(6J3)]. (19)

These results are consistent with the ordinary Kondo temper-
ature for αc f = α f f = 0.

By using perturbation theory, we see that the RSOC leads
to anisotropically coupled local moments [see Eq. (8)], as
shown by the Schrieffer-Wolff transformation [29]. However,
the screening occurs in such a way that at the Kondo tempera-
ture an isotropic singlet is formed; in the scaling theory, both
coupling parameters diverge at the same Kondo temperature.

FIG. 1. Renormalization flow of Jz and J ||. The dashed line
corresponds to the centrosymmetric case, with J0 = 2V 2/U = 0.05.
The parameters in the noncentrosymmetric case are J0 = 2V 2/U =
0.05, JR = 2α2

c f /U = 0.02.

We show in Fig. 1 the flow of the coupling parameters Jz

and J‖, which diverge at the Kondo temperature. We see
that although the coupling parameters are different at the
beginning of the scaling, D/E = 1, this difference vanishes
during the scaling. Thus, an SU(2) symmetric Kondo singlet
is formed at the Kondo temperature. The Kondo temperatures
for different JR as calculated by scaling theory are shown
in Fig. 2. We see that the anisotropy suppresses the Kondo
temperature depending on JR(∝ α2

c f /U ).

B. Kondo screening analyzed by DMFT

Up to now, we have studied the impact of the RSOC on
the Kondo effect by scaling theory for an effective anisotropic
Kondo model. The calculations have shown a suppression
of the Kondo temperature due to the RSOC. However, this
method gives only limited information about the strongly
correlated quantum state in the periodic f -electron model in
Eq. (1). We now analyze the impact of the RSOC on the
Kondo screening in noncentrosymmetric f -electron systems

FIG. 2. Kondo temperature TK calculated by scaling theory in the
anisotropic Kondo model for αc f �= 0, α f f = 0.
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FIG. 3. Local magnetic moment T χ f calculated by DMFT for
αc f �= 0, α f f = 0, and tc = 1.0, t f = −0.05, V = 0.4, U = 2.0,
μc = 0, μ f = −1.0.

by using DMFT. Although DMFT takes the lattice structure
into account and also includes local correlations exactly,
we note that DMFT neglects the SU(2) symmetry breaking
generated by the RSOC. When calculating the local Green’s
function, which is the main ingredient for the self-consistent
DMFT calculation, the momentum integration results in an
artificial restoration of the SU(2) symmetry of the interaction.
Instead of an anisotropic coupling between the c and f
electrons, the coupling becomes isotropic due to the DMFT
approximation. Thus, DMFT calculations need to be scruti-
nized particularly at high temperatures, where the coupling
between the c and f electrons is anisotropic. A more accurate
analysis at high temperatures using cluster DMFT, which can
take the SU(2) symmetry breaking into account, is left for a
future study.

In Fig. 3, we show the local contribution of the f electrons
to the magnetic susceptibility T χ z

f (T ) calculated by using
DMFT/NRG. The magnetic susceptibility is determined by
calculating the magnetic polarization of the f electrons in a
system with an applied small magnetic field. This quantity
shows a drastic change due to the occurring Kondo screening.
T χ z

f changes from 0.25 at high temperatures, indicating a free
spin 1/2, to zero at low temperatures, indicating completely
screened f electrons.

We observe that the screening of the magnetic moments
starts at a higher temperature when the RSOC becomes finite,
αc f �= 0. The RSOC αc f acts as an additional hybridization
between the f and c electrons. However, although the Kondo
screening starts at higher temperatures, we observe that the
magnetic moment T χ f is enhanced at low temperatures com-
pared to αc f = 0. The temperature at which T χ z

f (T ) vanishes
is actually suppressed by the RSOC. Thus, the formation of
the Kondo singlet occurs at a lower temperature in the non-
centrosymmetric system, which agrees with scaling theory.

The crossover from localized to itinerant f electrons
can also be observed in the double occupancy of the f
electrons 〈n↑n↓〉 (see Fig. 4). When the Kondo screening
starts at high temperatures, the f electrons hybridize with
the conduction electrons and become itinerant, so that the

FIG. 4. Double occupancy of the f electrons calculated by
DMFT. The parameters are the same as in Fig. 3.

double occupancy of the f electrons increases. In the cen-
trosymmetric system, αc f = 0, the double occupancy in-
creases with decreasing temperature and saturates, which
corresponds to the completion of the Kondo screening.
For αc f �= 0, the double occupancy reaches a peak at in-
termediate temperatures and starts to decrease again with
decreasing temperature. Thus, the double occupancy satu-
rates at a lower temperature compared to the centrosymmet-
ric system. As in perturbation theory, the ground state is
reached at a lower temperature in the noncentrosymmetric
system.

We thus reach the following picture of the Kondo screening
in noncentrosymmetric systems: The screening starts at higher
temperature compared to the centrosymmetric material. At
this temperature, the coupling between the c and f electrons
is anisotropic. However, when lowering the temperature, an
SU(2) symmetric Kondo screening is restored, and a complete
Kondo singlet is formed at low temperatures. The temperature
at which the Kondo screening is completed is suppressed by
the RSOC.

In this study, we ignore spatial fluctuations due to the
DMFT approximation. We believe that while spatial fluctu-
ations are crucial when analyzing magnetic phases in two
dimensions or quantum critical behavior, they might be less
important for studying the interplay between the Rashba spin-
orbit interaction and the Kondo effect. Moreover, even though
we have studied two-dimensional systems here, our results
can be applied to three-dimensional (3D) systems because the
local density of states, which is the most important ingredient
in DMFT, does not change qualitatively between two and
three dimensions. The poor-man’s scaling, which uses the
bandwidth of c electrons and the density of states at the Fermi
surface, also does not give qualitatively different results in
three dimensions. Thus, the results using poor-man’s scaling
and DMFT should be valid even in 3D systems. This is also
in agreement with the fact that we focus in this study on
the Kondo effect instead of the magnetic phases, where the
Ruderman-Kittel-Kasuya-Yosida interaction and the Heisen-
berg coupling are important.
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FIG. 5. (a)–(f) Comparison between noninteracting and interacting band structures for different strengths of αc f . (a)–(c) Noninteracting
band structures. The colors in the noninteracting band structures in (a)–(c) correspond to the different helical spin polarizations. (d)–(f) The
interacting spectral functions at T = 0. (g)–(i) Momentum-resolved spectral functions at the Fermi energy for various temperatures. The
parameters are U = 2, tc = 1, t f = −0.05, μc = 0, μ f = −1.0,V = 0.36, α f f = 0.05.

IV. IMPACT OF THE KONDO EFFECT
ON THE RASHBA SPLITTING

After having studied the effect of the RSOC on the Kondo
effect, we now study how the Kondo screening affects the
band structure and, particularly, the Rashba splitting. In non-
interacting or weakly interacting metals including the RSOC,
the band structure does not change when the temperature
decreases. On the other hand, the Kondo effect occurring in
the f -electron material leads to a drastic change in the band

structure at the Kondo temperature; f electrons change from
localized at high temperature to itinerant at low temperature.
In Figs. 5(a)–5(f), we compare the band structure with and
without Coulomb interaction at T = 0 for different strengths
of the RSOC.

To better understand the Rashba splitting, we block di-
agonalize the noninteracting model and obtain the energy-
momentum dispersions for two different helical bands, cor-
responding to the spin polarizations. The block-diagonalized
Hamiltonians are

H = (c†
hk f †

hk)

(
εc(k) V + hαc f (k)

V + hαc f (k) ε f (k) + hα f f (k)

)(
chk

fhk

)
, (20)

αc f / f f (k) = αc f / f f

√
sin2 kx + sin2 ky, (21)

which results in the eigenvalues

Eh,±(k) = 1
2 [εc(k) + ε f (k) + hα′

f f (k)] ±
√

1
4 [εc(k) − ε f (k) − hα f f (k)]2 + [V + hαc f (k)]2, (22)
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where h = ±1 is the helical index describing the spin polar-
ization. From these eigenvalues, we can derive the hybridiza-
tion strength depending on the helical spin direction. We see
that the hybridization strength, and thus the hybridization gap,
depends on the spin polarization via V + hαc f (k).

To demonstrate this effect, we show the noninteracting
band structure for αc f /V = 0.4, αc f /V = 0.71, and αc f /V =
1.0 in Figs. 5(a)–5(c). We have colored the helical spin direc-
tion h = +1 orange and h = −1 blue. Clearly visible in these
noninteracting band structures is the arising spin splitting
due to the Rashba interaction corresponding to the difference
between the h = +1 and h = −1 bands. The dependence of
the hybridization strength on the spin polarization is particu-
larly visible in Fig. 5(a) around k = (π/2, π/2). Around this
momentum, we see that bands with helical polarization h =
−1 (blue lines) open a small hybridization gap, while h = +1
bands (orange lines) open a large hybridization gap. For strong
RSOC [αc f > V/

√
2 � 0.71V shown in Figs. 5(b) and 5(c)],

the gap in the h = −1 band is closed. Exactly for αc f = V/
√

2
and α f f = 0, we find the gap closing at k = (π/2, π/2).
For finite α f f > 0, the gap closing occurs for large enough
αc f , slightly shifted from (π/2, π/2) in the Brillouin
zone.

In the interacting system [Figs. 5(d)–5(f)], we see that the
band structure is renormalized and smeared out away from the
Fermi energy. Thus, even at T = 0, the helical bands away
from the Fermi energy do not form well-defined quasiparti-
cles. The gap closing, described for the noninteracting system,
does also occur in the interacting system, as can be seen in
Figs. 5(e) and 5(f).

As explained above, in the interacting system, the band
structure depends on the temperature. In Figs. 5(g)–5(i), we
show the momentum-resolved spectral functions at the Fermi
energy, ω = 0, for different temperatures. At high temper-
atures above the Kondo temperature, the f electrons are
localized and thus absent from the Fermi surface. We see
that, independent of the strength of the Rashba interaction,
the Fermi surface consists of a single unsplit band at T =
0.4. This band corresponds to the c-electron band. Lowering
the temperature to T = 0.004 to T = 0.001, the f electrons
start to become itinerant; the Fermi surface begins to change.
Particularly for strong RSOC, we see that a ringlike band
structure develops at the Fermi surface, which is a mani-
festation of the Rashba splitting in the band structure. At
temperatures below the Kondo temperature, the f electrons
are itinerant and hybridize via the RSOC with the c electrons.
Because of the hybridization between c and f electrons, a
gap opens for small RSOC, αc f /V = 0.4, and the system
becomes insulating; the Fermi surface vanishes in Fig. 5(g)
at T = 0.0003. For large RSOC, αc f > V/

√
2, the gap closes

in the h = −1 band. Thus, a spin-polarized Fermi surface
due to the h = −1 band is observed at low temperatures for
αc f > V/

√
2 [see Figs. 5(h) and 5(i) at T = 0.0003].

To obtain some more information about the temperature-
dependent Rashba splitting, we show spectral functions of the
h = +1 and h = −1 bands at momentum k = (π/2, π/2) for
different temperatures in Fig. 6 (α f f = 0) and Fig. 7 (α f f =
0.05). We show spectral functions for αc f /V = 0 [Figs. 6(a)
and 7(a)], αc f /V = 0.4 [Figs. 6(b) and 7(b)], and αc f /V =
0.71 [Figs. 6(c) and 7(c)] and note again that the system

FIG. 6. Spectral functions for the h = +1 band (black lines)
and the h = −1 band (red line) at k = (π/2, π/2) for αc f /V = 0
(left panels), αc f /V = 0.4 (middle panels), and αc f /V = 0.71 (right
panels). Other parameters are U = 2, tc = 1, t f = −0.05, μc = 0,
μ f = −1.0, V = −0.36, α f f = 0.

changes for αc f /V = 0.71 from an insulator to a metal at low
temperature.

The top panels in Figs. 6 and 7 show the spectral functions
at high temperature. The f electrons are absent from the
Fermi energy at this temperature due to the strong Coulomb
repulsion. As a consequence, we find only the peaks of the
conduction electrons for both helical spin directions, located
at the Fermi energy for k = (π/2, π/2). Because there is no
direct RSOC in the conduction electron band, these peaks are
unsplit; the peak of the h = +1 band lies at the same energy
as the peak of the h = −1 band. However, the height and
the width of the peaks in the h = +1 and h = −1 bands are
different if αc f �= 0. This phenomenon arises due to the self-
energy of the f electrons. The self-energy of the f electrons,
which exhibits a strong peak in the imaginary part at high
temperatures, shifts the spectral weight of the f electrons
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FIG. 7. Spectral functions for the h = +1 band (black lines) and
the h = −1 band (red line) at k = (π/2, π/2) for α f f = 0.05. The
rest of the parameters are the same as in Fig. 6.

away from the Fermi energy. Thus, f electrons are localized.
The c electrons have a peak at the Fermi energy at high
temperature because they cannot form singlets with the f
electrons. Nevertheless, c electrons can undergo scattering
processes with the f electrons, which depend on the strength
of hybridization. This process gives c electrons an effective
finite lifetime which broadens the c-electron peak at the Fermi
energy. In this system, the strength of hybridization depends
on h = ±1, and therefore, the height and the width of the
c-electron peak depend on the helical spin polarization. This
is a remarkable effect, as it leads to an asymmetry between
the h = +1 and h = −1 bands at high temperature, possibly
even room temperature, in the conduction electron band. Such
an asymmetry might be used for spintronic devices as it can
induce an electromagnetic effect [2].

This asymmetry between helical bands not only leads to
different high-temperature spectral functions but also has a
distinctive effect when decreasing the temperature. While

for αc f = 0 the spectral functions are degenerate for all
temperatures, the temperature dependence of the correlation
effects in the spectral functions depends on the helical spin
polarization for finite RSOC, αc f > 0. For αc f /V > 0, the
h = +1 band, which has a large hybridization strength and
thus involves strong scattering from the f electrons, changes
to a triple-peak structure at T = 0.07. The spectral weight
is transferred away from the Fermi energy. On the other
hand, the h = −1 band remains nearly unchanged. Only when
lowering the temperature to T = 0.008 are correlation effects
visible in both helical bands for αc f /V = 0.4. While the f
electrons become itinerant, the f and c electrons hybridize,
and thus, the spectral weight at the Fermi energy is reduced.
For αc f /V = 0.4, the spectral weight at the Fermi energy
completely vanishes at T = 0.0002. On the other hand, for
αc f /V = 0.71 the effective hybridization V + hαc f vanishes
for the h = −1 band at k = (π/2, π/2). As a result, the peak
at the Fermi energy at high temperature is very narrow for
this band. Furthermore, when decreasing the temperature, this
peak in the h = −1 band does not show any correlation effects
and persists to T = 0.

Including the RSOC directly in the f -electron band (α f f >

0), shown in Fig. 7, we observe that the above-described
physics persists. An additional feature is that the spectral
weight is asymmetrically transferred away from the Fermi
energy. For momentum k = (π/2, π/2), the spectral weight
of the h = +1 band is transferred to negative energies, while
the h = −1 band is transferred to positive energies. The
above-described difference of the effective hybridization and
the possible gap closing not only is visible in the spectral func-
tions but also has a distinct impact on transport properties. We
thus calculate the conductivity depending on the helical spin
polarization using DMFT/NRG. This helical conductivity is
calculated via the Kubo formula,

σ h
xx = C

∫
dω

∂ f (ω)

∂ω

∑
k

∂Hh

∂kx
Ah(k, ω)

∂Hh

∂kx
Ah(k, ω), (23)

Hh = 1√
2

(
εc(k) Vh

Vh ε f (k) + μ f + 	 + hα f f (k)

)
, (24)

where Ah is the spectral function of the helical band with h =
±1 and f (ω) is the Fermi function at temperature T . Vh is the
effective hybridization, V + hαc f (k). In this study, we neglect
vertex corrections, which vanish in DMFT. We note, however,
that vertex corrections usually do not change the conductivity
qualitatively [40].

Figure 8 shows the temperature dependence of the con-
ductivity on the helical spin polarization for different αc f

and α f f = 0. We have not observed a noteworthy differ-
ence in the conductivity when including α f f = 0.05. The
conductivity for αc f = 0 (purple lines) does not depend on
the helical polarization. Increasing the RSOC, we see that
the conductivity of the h = −1 band is increased, while the
conductivity of the h = +1 band is decreased. Even at high
temperatures, the conductivity of each helical band is different
because the strength of the scattering between c electrons and
localized f electrons depends on the helical spin direction.
Because of these different scattering strengths, the peak at
high temperatures in the h = −1 band shown in Fig. 6 is
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FIG. 8. Conductivity for the h = −1 band (top panel) and the
h = +1 band (bottom panel). The parameters are U = 2, tc = 1, t f =
−0.05, μc = 0, μ f = −1.0, V = −0.36, α f f = 0.

higher than in the h = +1 band. Thus, the conductivity for the
h = −1 band is larger even at high temperatures. For αc f /V <

0.71, the system forms an insulator at T = 0, which is con-
firmed by the vanishing conductivity at low temperatures. On
the other hand, for αc f /V = 0.71, the gap closes, and we
see that the conductivity of the h = −1 band diverges for
T → 0. Increasing αc f further, we observe that the conduc-
tivity slightly decreases. Although the system has a Fermi
surface for αc f /V > 0.71, the band structure changes. While
exactly at αc f /V = 1/

√
2 the bands touch the Fermi energy

with a quadratic dispersion, for larger RSOC the dispersion
changes to linear [see Figs. 5(e) and 5(f)]. This change in the
band structure around the Fermi energy results in a decrease
in the conductivity. While the system is a normal metal at high
temperature, we see that for αc f /V > 1/

√
2 it forms a helical

half metal below the Kondo temperature, where the electrical
current is completely carried by the electron band with helical
h = −1 spin polarization.

V. CONCLUSION

In summary, we have comprehensively studied the inter-
play between the RSOC and the Kondo effect in noncen-
trosymmetric f -electron materials, particularly investigating
a Rashba-like hybridization, which can be expected to occur

in these materials. As we have written before, our results using
poor-man’s scaling and DMFT should also be valid in 3D
systems.

We have shown that the Kondo coupling becomes spin
anisotropic due to the presence of the RSOC. However,
scaling theory shows that when lowering the temperature
towards the Kondo temperature, an SU(2) symmetric Kondo
singlet is formed. Generally, we see that the RSOC suppresses
the Kondo temperature in noncentrosymmetric f -electron sys-
tems. We think that this suppression of the Kondo temperature
can be experimentally observed by comparing different f -
electron superlattices in which the strength of the RSOC
depends on the lattice structure. We note that besides the
Kondo coupling, the Heisenberg coupling is present between
the localized spins of the f electrons due to a finite t f .
However, because in our study t f is much smaller than V , the
effective Heisenberg interaction is negligible.

Furthermore, we have demonstrated that the Kondo effect
also has an impact on the Rashba splitting observed in the
band structure. While in noninteracting systems, the band
structure does not change when decreasing the temperature,
in noncentrosymmetric f -electron materials, the f electrons
change from localized at high temperatures to itinerant at low
temperatures. Due to the localization of the f electrons at
high temperatures, the c electrons form a Fermi surface at high
temperatures corresponding to their band structure without
hybridization. Remarkably, the width and the height of the
c-electron peaks at the Fermi surface depend on the helical
spin polarization because the effective hybridization between
the c and the f electrons depends on the spin polarization.
These different hybridization strengths can also be observed
in the changes occurring due to the Kondo effect when low-
ering the temperature. Finally, we have shown that for strong
RSOC, the effective hybridization of the h = −1 helical polar-
ization disappears at certain points in the Brillouin zone and
the Kondo insulator changes into a helical half-metal where
only the helical h = −1 band is present at the Fermi energy.
In such a helical half metal, both charge and spin currents can
flow simultaneously.
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APPENDIX A: DERIVING THE KONDO LATTICE MODEL

We derive the Kondo lattice Hamiltonian from the periodic
Anderson model, Eq. (1) in the main text, setting μ f = −U/2
and assuming U � V, αc f , α f f , t f . These parameters result in
a half-filled lattice. Thus, a single f electron occupies every
site, which we denote as |1〉. We treat V, αc f as a perturbation
which mixes the ground state |1〉 with excited states |i〉 or
|ī〉, where |i〉 (|ī〉) corresponds to the state in which the f
orbital at site i is filled with two (no) electrons. Then the ef-
fective interaction term derived by second-order perturbation
theory is
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Hmix=
∑

k

(c†
kα

fkβ + H.c.)[V δαβ + αc f (σ x sin ky − σ y sin kx )αβ], (A1)

Hint
eff =

∑
i

[
〈1|Hmix|i〉

〈
i | 1

E11 − H | i

〉
〈i|Hmix|1〉 + 〈1|Hmix

∣∣ī〉〈ī | 1

E11 − H | ī

〉〈
ī
∣∣Hmix|1〉

]

=
∑

i

∑
k,k′

[
c†

k′,α ( fk′,δ )i
1

E11 − Hii
( f †

k,γ
)ick,β + ( f †

k,γ
)ick,β

1

E11 − Hīī
c†

k′,α ( fk′,δ )i

]

× [
V 2δαδδγβ + V αc f

{(
sin kyδαδσ

x
γ β + sin k′

yσ
x
αδδγβ

) + (
sin kxδαδσ

y
γ β + sin k′

xσ
y
αδδγβ

)}
+ α2

c f

(
sin kx sin k′

xσ
y
αδσ

y
γ β + sin ky sin k′

yσ
x
αδσ

x
γ β + sin kx sin k′

yσ
x
αδσ

y
γ β + sin ky sin k′

xσ
y
αδσ

x
γ β

)]
, (A2)

where we use the following notations: E11 = 〈1|H |1〉, Hii = 〈i|H |i〉, and Hīī = 〈ī|H |ī〉. Here ( fk)i is the local component
of the f electron at site i, i.e., ( fk)i = 1√

N
fi expik·ri . If we furthermore assume a dominant scattering at the Fermi energy with

q = k − k′ = 0, then

c†
kα

( fkδ )i
1

E11 − Hii
( f †

kγ
)ickβ + ( f †

kγ
)ickβ

1

E11 − Hīī
c†

kα
( fkδ )i (A3)

=
∑
h=±

[
c†

kα
A†

δh( fkh)i
1

−U
2 − hα(k)

( f †
kh)iAhγ ckβ + ( f †

kh)iAhγ ckβ

1

−U
2 + hα(k)

c†
kα

A†
δh( fkh)i

]
(A4)

�
∑
h=±

2

U
[c†

kα
ckβ ( f †

kh)i( fkh)i]A
†
δhAhγ (A5)

×
[{

1 + 2α(k)

U
+

(
2α(k)

U

)2
}

+
{

1 − 2α(k)

U
+

(
2α(k)

U

)2
}]

= 4

U
[c†

kα
ckβ ( f †

kγ
)i( fkδ )i]

{
1 + 2

(
2α(k)

U

)2
}

= 4

NU
(c†

kα
ckβ f †

iγ fiδ )

{
1 + 2

(
2α(k)

U

)2
}

, (A6)

A = 1√
2

(
1 eiθk

−e−iθk 1

)
, (A7)

tan θk = sin kx

sin ky
, (A8)

α(k) = α f f

√
sin2 kx + sin2 ky, (A9)

where h = ±1 denotes the helical index of the spin polarization. Because we look only at scattering around the unperturbed Fermi
surface, we can use εc(k) = ε f (k) = 0. We derive Eq. (A5) from Eq. (A4) using second-order perturbation in α f f . Furthermore,
we can rewrite the hybridization in Eq. (A2) as

V 2δαδδγβ + V αc f
{
sin ky

(
δαδσ

x
γ β + σ x

αδδγβ

) + sin kx
(
δαδσ

y
γ β + σ

y
αδδγβ

)} + α2
c f

(
sin2 kxσ

y
αδσ

y
γ β + sin2 kyσ

x
αδσ

x
γ β

)
= V 2

2
(σαβ · σγ δ + δαβδγ δ ) + V αc f

{
sin ky

(
σ x

αβδγ δ + δαβσ x
γ δ

) + sin kx
(
σ

y
αβδγ δ + δαβσ

y
γ δ

)}

+ α2
c f

2

{(
σ

y
αβσ

y
γ δ − σ x

αβσ x
γ δ

)
(sin2 kx − sin2 ky) + (

δαβδγ δ − σ z
αβσ z

γ δ

)
(sin2 kx + sin2 ky)

}
(A10)

by using

δαδδγβ = 1
2 (δαβδγ δ + σαβ · σγ δ ), (A11)

σ x
αδδγβ = σ x

αμδμδδγβ = 1
2σ x

αμ(δμβδγ δ + σμβ · σγ δ )

= 1
2

[
σ x

αβδγ δ + δαβσ x
γ δ + i(σαβ × σγ δ )x

]
. (A12)

In Eq. (A10), terms including V αc f do not correspond to a spin-spin coupling between the c and f electrons and can thus be
neglected in the Kondo coupling. Using Eqs. (A2), (A6), and (A10), we can write the effective coupling between the f electron
spins and the c electrons as

Hint
eff =

∑
i

∑
kk′

1

N
expiq·ri Jμν

kq Sμ
i c†

k+qσ
νck, (A13)
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Jμν

k0 =
⎛
⎝J0 + Jx

R(k) 0 0
0 J0 + Jy

R(k) 0
0 0 J0 − Jz

R(k)

⎞
⎠, (A14)

JR(k) = 2α2
c f

U

[
1 + 8

(
α f f (k)

U

)2
]⎛
⎝− sin2 ky + sin2 kx

sin2 kx − sin2 ky

sin2 kx + sin2 ky

⎞
⎠. (A15)

APPENDIX B: THE POOR-MAN’S SCALING

For dominant scattering with q = 0, the effective Hamil-
tonian is described by Eqs. (8), (9), and (10). The interac-
tion between localized f electrons and c electrons can be
written as

Hint = ν

= 1

N

∑
k,|q|<�

c†
k+qσ1

ckσ2

[
J ′

q

2
(σ−S+ + σ+S−)+Jz

qσ
zSz

]
σ1σ2

� 1

N

∑
k,|q|<�

c†
k+qσ1

ckσ2

[
J ′

0

2
(σ−S++σ+S−)+Jz

0σ
zSz

]
σ1σ2

,

(B1)

where we approximate J (q) � J (0). Then we can calculate
the change in the interaction strengths when the bandwidth of
the c electrons shrinks from Ec to Ec − �E ,

dν = 1

N2

|ε1|<Ec−�E∑
k1σ1

|ε2|<Ec−�E∑
k2σ2

Ec−�E<|ε|<Ec∑
kσ

×
{

c†
k2σ2

ckσ c†
kσ

ck1σ1

1

ω − Ec + ε1

×
(

J ′
q2

2
[S+σ−

σ2σ
+ S−σ+

σ2σ
] + Jz

q2
Szσ z

σ2σ

)

×
(

J ′−q1

2
[S+σ−

σσ1
+ S−σ+

σσ1
] + Jz

q1
Szσ z

σσ1

)

+ c†
kσ

ck2σ2 c†
k1σ1

ckσ

1

ω − (Ec + ε1)

×
(

J ′−q2

2
[S+σ−

σσ2
+ S−σ+

σσ2
] + Jz

q2
Szσ z

σσ2

)

×
(

J ′
q1

2
[S+σ−

σ1σ
+ S−σ+

σ1σ
] + Jz

q1
Szσ z

σ1σ

)}
, (B2)

where q1(2) means k1(2) − k. In Eq. (B2), the spin-exchange
interaction term is

dνSEI � 1

N

∑
k,|q|<�

c†
k+qσ1

ckσ2

[
− 1

ω − Ec + ε1

×
{

J ′
0Jz

0

4
(σ−

σ1σ2
S+ + σ+

σ1σ2
S−) + J ′2

0

2
σ z

σ1σ2
Sz

}

− 1

ω − Ec − ε2

{
J ′

0Jz
0

4
(σ−

σ1σ2
S+ + σ+

σ1σ2
S−)

+ J ′2
0

2
σ z

σ1σ2
Sz

}]
. (B3)

Assuming again a dominant scattering around the Fermi sur-
face, we can set ω = ε1 = ε2 = 0. We can now derive the
renormalization group equations, corresponding to Eqs. (11)
and (12) in the main text. The details of the derivation of
Eq. (B2) are written in the textbook by Hewson [41].
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