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In-plane magnetization effect on current-induced spin-orbit torque in a ferromagnet/topological
insulator bilayer with hexagonal warping

Jia-Yu Li, Rui-Qiang Wang,* Ming-Xun Deng,† and Mou Yang
Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials,

School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China

(Received 21 December 2018; revised manuscript received 18 March 2019; published 22 April 2019)

Current-induced spin polarization and the resulting spin-orbit torque (SOT) in a ferromagnet/topological
insulator (FM/TI) bilayer have been investigated by taking into account the hexagonal warping spectrum of
topological surface states. We find that the usually ignored in-plane FM magnetization plays an important role
to the spin polarization. The resulting spin polarization and spin torque significantly depend on azimuthal angle
of the magnetization, which has not been reported theoretically before in the linear dispersion TI model. These
interesting results arise from the combination effect of in-plane magnetization and warping effect by modifying
the Berry curvature and impurity scattering. Based on Matsubara-Green function approach, we derive the formula
of SOT and analyze the results analytically and numerically, including the contribution from intrabands and
interbands, and intrinsic and extrinsic contribution. More importantly, it is found that the hexagonal warping can
prominently enhance the antidamping SOT if there exists the in-plane FM magnetization, which provides a new
perspective to understand the recent giant SOT effect.
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I. INTRODUCTION

The existing technology on magnetoresistive random-
access memory through the spin transfer torque meets
the bottleneck for high current density requirement
in a ferromagnet/insulator/ferromagnet (FM/I/FM)
biheterostructure [1,2]. An alternative mechanism, based
on the electrically controlled spin-orbit torque (SOT), is
proposed to circumvent this issue, which is realized even in
the simple single heterostructure of FM/spin-orbit interaction
(SOI) materials and has been substantially investigated
recently [3–5]. When charge current passes the SOI system,
the nonequilibrium spin polarization of conducting electrons
is induced owing to the transfer of orbit-to-spin angular
momentum, and in turn this spin polarization exerts a
spin torque on the local magnetization of the adjacent
ferromagnetic layer [6,7] and even the antiferromagnetic layer
[8,9]. The SOT effect in the FM/heavy metal heterostructures
with Rashba SOI generated from the inversion symmetry
breaking [10–18] has received great attention.

Topological surface states [19,20] with spin-momentum
locking endow topological insulators (TIs) with potential
applications in spintronic devices. Compared with FM/heavy
metal heterostructure, FM/TI heterostructure can reach the
perfect spin polarization when Dirac fermions flow on the
surface of TI because of strong spin-orbit coupling. Recent
experiments in FM/TI layered structure reported larger in-
trinsic SOT field [21–25] and even a giant SOT [26–29]
which is by several orders of magnitude larger than any
other material. Ferromagnetic resonance measurements in a
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TI interfaced with FM showed an exceptionally large spin
conversion efficiency [26]. With these exciting breakthroughs
made continually in experiments, however, the underlying
microscopic origin of SOT remains under debate. A general
viewpoint is that dampinglike SOT (DL-SOT) is attributed to
the spin Hall effect (SHE) from bulk bands [2,30], and the
fieldlike SOT (FL-SOT) is from the inverse spin galvanic ef-
fect [31–33] in the interface. Nevertheless, recent experiments
[27,34] observed a giant antidampinglike torque that cannot
be ascribed to the bulk SHE but to a scattering-independent
origin in the Berry curvature of the band structure, challenging
the existing theoretical mechanisms. Also, TIs [26] were
reported to generate both the in-plane and out-of-plane SOTs
with the same order, which is unexpected from the usual
spin-momentum locking argument. Theoretically, Li et al.
[35] addressed that the contribution of interband mixing to
the SOT presents an outstanding opportunity to explain the
emergence of large antidampinglike torques that cannot be
readily attributed to the SHE.

In fact, the FM magnetization and spin polarization of
Dirac electrons in FM/TI heterostructure interplay with each
other and so the SOT will exhibit a complex dependence
on the magnetization direction due to the distortion of the
band structure. One can notice that in FM/TI heterostructure
[33,36–38], the SOT can be expressed in a general form
τ =τ f m × y + τd mzm × eE, where y =ẑ × eE, and τ f (τd )
stands for the strength of the FL-SOT (DL-SOT). Obviously,
this DL-SOT vanishes if mz = 0 while the magnetization mx

and my lying in the plane of the surface has no effect on the
polarized field δS, which is defined by τ = 2J

h̄ m × δS with
J being the magnetic exchange energy between the spin of
conducting electrons and the FM layer. Compared with the
bulk SHE-induced torque [35,39,40], where τ = τ f m × y +
τd m × [y × m], the TIs are lacking the term of mxm × ẑ,
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contributed by in-plane mx. Nevertheless, in many recent
experiments on the ferromagnetic resonance [22,26,41], the
in-plane magnetic field is extensively applied and so the
in-plane magnetization of FM is unavoidable. Experimental
measurements in the TI bilayer [22,26] also observed complex
SOT phenomenology since the polarized field δS depends
on the azimuthal angle of m, which is often not captured
by the above physical scenarios. Theoretically, as far as we
know, there is no theoretical study on the role of in-plane
magnetization on the spin torque in FM/TI layered structure.

In previous works on SOT in FM/TI heterostructure
[33,37,38], the linear dispersion of TIs was employed, where
the in-plane FM magnetization can be straightforwardly elim-
inated by a scaled transform. But in the high energy regime
which is usually the work regime to generate the current-
induced torque, the in-plane magnetization will play an im-
portant role due to the existence of the warping effect. In
this work, we extend the previous discussions further to the
more realistic case beyond the linear dispersion by taking
into account high order hexagonal warping and investigate the
magnetic dynamics associated with spin-momentum locking
surface states. The hexagonal warping in the band structure
[42,43] of the Dirac cone arises when we take into account the
next-order terms in the dispersion of TIs with the hexagonal
lattices [44,45], such as Bi2Te3 and Bi2Se3. Recently, it is
found that the warping effect significantly modifies the trans-
port properties, such as dc conductivity [46,47] and optical
conductivity [48–50].

In this paper, we in detail analyze how the SOT is in-
fluenced by in-plane FM magnetization analytically and nu-
merically, including the intrinsic and extrinsic contributions
and interband and intraband contributions. It is found that
the hexagonal warping along with the in-plane magnetization
can enhance the antidampinglike SOT and make the SOT
significantly depend on the azimuthal angle of magnetization.

II. THEORETICAL MODEL AND METHOD

We consider a three-dimensional (3D) TI surface with
hexagonal warping spectrum covered by an FM, as shown in
Fig. 1. Near the Dirac point in the surface Brillouin zone of
the TIs, the low-energy effective Hamiltonian [44,51] reads

HTI =
∑

k

c†
k

[
h̄vF (σ × k) · ẑ + λ

2
(k3

+ + k3
−)σz + Jm · σ

]
ck,

(1)
where ck = (ck↑, ck↓)T , k = (kx, ky, 0) is the in-plane wave
vector, σ = (σx, σy, σz ) is the vector of three Pauli matrices
acting on the real spin, ẑ is the direction vector normal
to the TI plane, and k± = kx ± iky. The first term is the
Rashba-type spin-orbit coupling with a Fermi velocity vF .
The warping parameter λ in the second term characterizes the
hexagonal warping effect of 3D-TI. The last term in the above
Hamiltonian stands for the magnetic exchange interaction
between the spin σ of conducting electrons and the FM layer
whose unit vector of the magnetization is m = (mx, my, mz ) =
(sin θm cos φm, sin θm sin φm, cos θm), as shown in Fig. 1(a).
The dispersion relation of the model Hamiltonian is
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FIG. 1. Schematic (a) and band structure (b) of the proposed
FM/TI model. Anisotropic energy contours of εk for (c) m ‖ ẑ and
(d) m ‖ x̂ . Parameters: h̄vF = 0.255 eV nm [44], λ = 250 eV Å3

[51], and J = 0.05 eV.

εk± = ±εk with

εk =
√

h̄2v2
F k2 + 2Jh̄vF (m × k) · ẑ + J2m2

‖ + 	2
k, (2)

where m2
‖ = m2

x + m2
y , 	k = λkx(k2

x − 3k2
y ) + Jmz, and ± la-

bel the conduction and valence bands, respectively.
Without the warping effect λ = 0, the energy band is

gapped to be εg = 2Jmz by the out-of-plane magnetization
while the in-plane magnetization only shifts the Dirac cone
to (Jmy/h̄vF ,−Jmx/h̄vF ) in momentum space. By redefining
the position of the Dirac node, these in-plane magnetiza-
tion components are not expected to impact any physical
observables. In fact, we can eliminate the in-plane magne-
tization components by performing a gauge transformation
in the electron field operators [52] ck → ck exp [− i

h̄ eA · k]
with eA = J

h̄vF
(ẑ × m). For a finite λ, however, the gauge

symmetry is broken since the in-plane momentum is cubic
dependent in 	k. As a consequence, an extra energy gap
ε′

g = −2λ( J
h̄vF

)
3

sin3 θm sin (3φm), opened at the Dirac point,
is induced by the in-plane magnetization. As the TIs is cov-
ered by a FM, the snowflake energy structure is disturbed
not only by the out-of-plane magnetization mz but also by
the in-plane component mx/y, as depicted in Figs. 1(c) and
1(d). One can notice that ε′

g can have the opposite sign to
εg and so the competition of the contribution between the
exchange energy J and the warping parameter λ leads to
the complicated anisotropy in the band structure and in turn
significantly affects the Berry curvature.

The eigenstates of the Hamiltonian Eq. (1) can be
solved as

|u+〉 =
(

cos ζ

2

eiη sin ζ

2

)
, |u−〉 =

(
− sin ζ

2

eiη cos ζ

2

)
, (3)

where cos ζ = 	k
εk

and tan η = Jmy−h̄vF kx

Jmx+h̄vF ky
. According

to the definition of Berry curvature of energy bands
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�± = i∇k × 〈u±|∇k|u±〉, we derive it as

�±
z = ∓ h̄vF

2ε3
k

{h̄vF Jmz − 2λh̄vF k3 cos (3φk )

+ 3λJk2[mx sin (2φk ) + my cos (2φk )]}, (4)

with φk = arctan(ky/kx ). Not only mz but mx/y is involved in
the Berry curvature for hexagonal warping bands. Thus, it is
expected that the in-plane magnetization will contribute to the
intrinsic SOT.

Below, we first present a theoretical method based on
the Matsubara-Green function formalism to derive a general
formula for the nonequilibrium spin polarization induced by
an external electric field. To describe the interaction between
the conducting electron and the electric field, one can intro-
duce a time-dependent vector potential A(t ) = A(�)e−i�t/h̄

with frequency � . The electric field is described by E(t ) =
−∂t A(t ) = − i�

h̄ A(t ). Thus, a perturbation term in the form of
Hp(t ) = −j · A(t ) is added to HTI in Eq. (1). According to the
linear response theory [37,53], the spin polarization induced
by the electric perturbation can be calculated as

δS = − lim
�→0

1

�
Im�s,j(i�n → � + i0+). (5)

Here, �s,j(i�) = 1
β

∫ β

0 dτe
i
h̄ �τ 〈Tτ s(τ )(j(0) · E)〉 is the

imaginary-time retarded correlation function between
conducting electron spin s = h̄

2 σ and current operator j,
and β = 1/kBT and Tτ is the time order operator. Defining
the Green’s function Gk(τ ) = −i〈Tτ ck(τ )c†

k(0)〉, one
can find

�s,j(i�) = 1

V β

∑
k,m

Tr[sGk(iωm + i�)(j · E)Gk(iωm)], (6)

where V is the area of topological surface and the current
operator is j = ev with the velocity operator v = 1

h̄∇kHTI.
Performing the standard procedure on analytical

continuation of the Matsubara-Green function [54], we
reach

�s,j(�)

=
∑

k

∫
dε f (ε)Tr

{
s
[
GR

k (ε) − GA
k (ε)

]
(j · E)GA

k (ε − �)

+ sGR
k (ε + �)(j · E)

[
GR

k (ε) − GA
k (ε)

]}
. (7)

Here, f (ε) = [eβ(ε−μF ) + 1]
−1

is the Fermi-Dirac distribution
function and GR/A

k (ε) is the retarded/advanced Green’s func-
tion with respect to HTI. The Green function matrix GR/A

k (ε)
can be obtained from the eigenstates Eq. (3)

GR/A
k (ε) =

∑
ν=±

|uν〉〈uν |
ε − εkν ± i�

, (8)

where the weak impurity effect, for convenience, is taken
into account with a spin-independent finite imaginary part
�. In Eq. (8), we divide the Green function into different
bands, which is convenient to discuss the contribution from
intrabands and interbands.

From the above derivation, one can clearly see that the
warping parameter λ affects the correlation function �s,j(�)

by entering both the Green’s functions and current operator.
If proceeding an integration by parts in Eq. (7) and inserting
�s,j(�) into Eq. (5), one in the dc limit � → 0 can obtain the
Streda-Smrcka version of the Kubo formula for δS, resem-
bling the formula of universally adopted electric conductivity
[55–57], which consists of two parts:

δSsur = h̄e

2πV
Re

∑
k

∫
dε∂ε f (ε)

× Tr
{
sGR

k (ε)(v · E)
[
GR

k (ε) − GA
k (ε)

]}
, (9)

δSsea = h̄e

2πV
Re

∑
k

∫
dε f (ε)Tr

{
sGR

k (ε)(v · E)∂εGR
k (ε)

− s∂εGR
k (ε)(v · E)GR

k (ε)
}
. (10)

δSsur originates from the contribution of Fermi surface char-
acterized by ∂ε f (ε) while δSsea comes from the Fermi sea
characterized by f (ε). In this study, we are interested in the
current-induced torque and so keep |μF | > |εg + ε′

g|/2, where
the contribution from the Fermi sea can be ignored safely [37].
Substituting the expressions of GR/A

k (ε) into Eq. (9) and taking
∂ε f (ε) → −δ(μF − ε) at low temperatures, we obtain

δS = − h̄e

2πV
Re

∑
k

Tr
{
sGR

k (μF )(v · E)GA
k (μF )

}

= h̄e

2πV
Re

∑
k,νξ

〈s〉νξ

μF − εkξ + i�

〈v · E〉ξν

μF − εkν − i�
, (11)

where 〈O〉νξ = 〈uν |O|uξ 〉. The spin polarization can be sepa-
rated into three parts: δS = δSintra + δSinter,1 + δSinter,2, with
the intraband contribution

δSintra = eh̄

2�V
Re

∑
k,ν

〈s〉νν〈v · E〉ννδ(μF − εkν ), (12)

and the interband contributions

δSinter,1 = − h̄e

2V

∑
k,ν 
=ξ

Im[〈s〉νξ 〈v · E〉ξν](εkν − εkξ )

(εkν − εkξ )2 + 4�2

× [δ(μF − εkν ) + δ(μF − εkξ )], (13)

δSinter,2 = h̄e

V

∑
k,ν 
=ξ

Re[〈s〉νξ 〈v · E〉ξν�]

(εkν − εkξ )2 + 4�2

× [δ(μF − εkν ) + δ(μF − εkξ )]. (14)

From here, one can see that the intraband contribution δSintra

proportional to 1/� completely originates from the extrinsic
perturbation. On the contrary, the interband contribution not
only contributes to the extrinsic component δSinter,2, which is
proportional to �, but also the intrinsic component δSinter,1,
independent to the impurity scattering. With Eqs. (12)–(14),
we in the following discuss the spin polarization and SOT for
different scenarios.
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III. RESULTS AND DISCUSSION FOR SOT

A. SOT without warping effect

First, we consider a simple scenario without warping effect
λ = 0 and set an electric field along the x axis, E =Ex̂. The
off-diagonal elements are

〈σ〉+− = Jmz(Jm‖ + h̄vF k × ẑ) − (
ε2

k − J2m2
z

)
ẑ

εk

√
ε2

k − J2m2
z

− i
h̄vF k + Jm‖ × ẑ√

ε2
k − J2m2

z

, (15)

and 〈σ〉−+ = [〈σ〉+−]†. The velocity operator is v =
1
h̄∇kHTI = vF (ẑ × σ). With these expressions, we find

δSintra = − h̄2vF eE

16π2�μ2
F

∫
d2k(Jm + h̄vF k × ẑ)

× (Jmy − h̄vF kx )δ(μF − εk ), (16)

δSinter,1 = h̄2vF eE

16π2

μF

μ2
F + �2

∫
d2k

Jmx + hvF ky

μF
(
μ2

F − J2m2
z

)
× [

Jmz(Jm + h̄vF k × ẑ) − μ2
F ẑ

]
δ(μF − εk )

+ h̄2vF eE

16π2

μF

μ2
F + �2

∫
d2k

Jmz(Jmy − hvF kx )

μF
(
μ2

F − J2m2
z

)
× (Jm × ẑ − h̄vF k)δ(μF − εk ), (17)

δSinter,2 = h̄2vF eE

16π2

�

μ2
F + �2

∫
d2k

Jmz(Jmy − hvF kx )

μF
(
μ2

F − J2m2
z

)
× [

Jmz(Jm + h̄vF k × ẑ) − μ2
F ẑ

]
δ(μF − εk )

− h̄2vF eE

16π2

�

μ2
F + �2

∫
d2k

Jmx + hvF ky

μF
(
μ2

F − J2m2
z

)
× (Jm × ẑ − h̄vF k)δ(μF − εk ), (18)

where δ(εk − μF ) = μF

h̄vF

√
μ2

F −J2m2
z

δ(k − kF ) with kF the

Fermi wave vector. Taking h̄vF kx − Jmy → h̄vF k′
x and

h̄vF ky + Jmx → h̄vF k′
y and performing the integration of mo-

mentum, we have

δSintra = −1 − J 2m2
z

16πvF

μF

�
(ẑ × eE), (19)

δSinter = J
8πvF

mzeE − 1 + J 2m2
z

16πvF

�

μF
(ẑ × eE), (20)

with J = J/μF . Obviously, δS =δSintra + δSinter is in plane,
either parallel (∼eE) or perpendicular (∼ẑ × eE) to the cur-
rent direction, while the z component of δS is strictly for-
bidden. Notice that only the out-of-plane magnetization mz

affects δS while the in-plane magnetization mx/y plays no
role. Similar results are also reported in previous works
[37,53]. Compared with those results, we further obtain an

extra fieldlike term 1+J 2m2
z

16π h̄vF

�
μF

(ẑ × eE), which is proportional
to �, originating from the extrinsic interband contribution.
Besides, the intrinsic interband contribution, the first term in
δSinter, originating from the Berry curvature [34,53], vanishes

if mz = 0. The spin polarization of Dirac electrons causes the
corresponding SOT, given by

τ = 2J

h̄
m × δS = τ f m × (ẑ × eE) + τd mzeE, (21)

where τ f = −J (1−J 2m2
z )

8π h̄vF

μ2
F

�
− J (1+J 2m2

z )
8π h̄vF

� and τd = J 2μF

4π h̄vF
are

the strength of the fieldlike and antidampinglike SOTs, re-
spectively. The former arises from the extrinsic inverse spin
galvanic effect and the latter is from the intrinsic one.

B. SOT with warping effect

1. Hexagonal warping effect on spin polarization

In this section, we focus on the current-induced spin po-
larization δS by consideration of the hexagonal warping of
TIs. Due to the warping term ∝σz, 〈σ 〉+− and 〈σ〉−+ have
similar forms as Eqs. (15) but εk include the contribution from
warping effect λ, and Jmz is replaced by 	k. The velocity
operator is

v = vF (ẑ × σ ) + 3λk2

h̄
σz[cos (2φk )x̂ − sin (2φk )ŷ]. (22)

With this formula, we can perform the same calculation proce-
dure as before. The result can be written as δS = δSin + δSex

where δSin and δSex are the intrinsic (scattering-independent)
and the extrinsic (scattering-independent) spin polarization,
respectively,

δSin = − μF eh̄2E

4
(
μ2

F + �2
) ∫

d2k

(2π )2

× Im[〈σ〉+−〈vx〉−+]δ(μF − εk ), (23)

δSex = eh̄2E

4�

∫
d2k

(2π )2
〈σ〉++〈vx〉++δ(μF − εk )

+ �eh̄2E

4
(
μ2

F + �2
) ∫

d2k

(2π )2

× Re[〈σ〉+−〈vx〉−+]δ(μF − εk ). (24)

Before demonstrating the numerical results of δS in FM/TI
heterostructure with hexagonal warping, we derive their ana-
lytical expressions in the case of limit. Notice that the momen-
tum shift h̄vF kx − Jmy → h̄vF kx and h̄vF ky + Jmx → h̄vF ky

employed as before cannot eliminate the in-plane magnetiza-
tion due to the snowflakelike Fermi surface. When using the
relation δ(μF − εk ) = δ(k − kF )/|∂kεk|k=kF

, one has to find
kF satisfying εkF = μF . In the weak warping limit � � J <

1 with � = λμ2
F /h̄3v3

F and weak impurity scattering limit
� → 0, we keep � to the second order (detailed calculations
see Sec. A in the Supplemental Material [58]) and obtain the
approximate results as

δSin = I0J
(
mzÊ − 3�m̃‖ + 9

2�2mxẑ
)
, (25)

δSex = −[
(I−1 + I1) − (I−1 − I1)J 2m2

z

]
(ẑ × Ê)

+ 1
2

[
(I−1 + 5I1) + 9(I−1 + 3I1)J 2

(
m2

‖ − m2
z

)]
×�2(ẑ × Ê) − 3(I−1 + I1)�J 2(m × m̃‖)zẑ

− 9(I−1 + 3I1)�2J 2(m × m̃‖)yẑ. (26)
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Here, we denote I−1 = μF eE/(16πvF �), I0 = eE/(8πvF ),
and I1 = �eE/(16πvF μF ), where the subscripts (−1, 0, 1) in
I represent the power of �. Ê is the unit vector of E direction
and m̃‖ = (my, mx, 0) is a mirror vector of m‖ = (mx, my, 0)
with respect to mx = my.

As λ (or �) vanishes, the current-induced
spin polarization is reduced to δS = I0JmzÊ −
[(I−1 + I1) − (I−1 − I1)J 2m2

z ](ẑ × Ê), where only mz

appears, recovering the results in Refs. [36,37] if ignoring
the vertex correction. When a finite λ is introduced, the
situation is greatly different from that for λ = 0, exhibiting
complicated dependence on the orientation of m. There
appear extra contributions from the in-plane magnetizations
mx and my not grasped theoretically before, which is the
focus of our study. From Eqs. (25) and (26), one can see
several interesting results: (I) Even though mz = 0, there still
is nonzero spin polarization, which is contributed by the joint
effect of the warping effect and the in-plane magnetization.
The warping effect labeled with λ not only modifies
the intrinsic component δSin (characterized by I0) but also
the extrinsic component δSex (characterized by I−1 and I1).
The former is realized through modifying the Berry curvature
of energy bands, which can be understood from Eq. (4),
where the Berry curvature is modified by the finite warping
together with the in-plane magnetization. (II) The modified
intrinsic part makes the dampinglike term δSin, which is
odd upon magnetization m reversal, deviate from usual
current direction Ê, and the modified extrinsic part makes
the fieldlike term δSex, which is even upon magnetization
m reversal, deviate from ẑ × eE. (III) More importantly,
there comes up an out-of-plane part ∼ẑ in both δSin and
δSex. Note that the out-of-plane component δSz remains zero
if m is perpendicular to the surface even for a finite λ. It
is well known that for the FM/TI bilayer without warping
term, the orientation of the spin polarization in the weak
exchange limit is along the TI surface, controlled by the
spin momentum locking. As a consequence, the total spin
polarization δS = δSin + δSex is not only dependent on mz

but on mx/y and the resulting SOT shows sensitive to the
azimuthal angle of the FM magnetization.

Above, we present the analysis about the role of in-plane
FM magnetization and the warping effect of TIs. To obtain
accurate results, we carry out the numerical calculations on δS
directly starting from formula Eqs. (23) and (24). In Fig. 2, we
demonstrate the dependence of δS on the FM magnetization
direction, where the polar angle θm and the azimuthal angle φm

are defined in Fig. 1(a). In Figs. 2(a)–2(c), we arrange the FM
magnetization in plane (i.e., keeping polar angle θm = π/2)
and tune the azimuthal angle φm. For λ = 0, naturally, all
components of δS are independent on the azimuthal angle
φm due to mx/y having no contribution, in agreement with
previous theoretical results [37]. Finite δSx and δSz appear and
oscillate with enhanced amplitude as λ increases. The former
exhibits 2π -period oscillation due to the contribution from
m̃‖ = (my, mx, 0) while the latter is π -period oscillation due
to different symmetry along the z axis and x axis. In fact, δSz

exhibits a complex oscillation type owing to the competition
between a threefold function of momentum in Hamiltonian
and a twofold function of momentum in velocity operator
Eq. (22), as shown in the inset of Fig. 2(c) which presents

FIG. 2. (a)–(c) Azimuthal angle φm dependence of the current-
induced spin polarization δS with fixed θm = π/2 and (d)–(f) de-
pendence of δS on θm with fixed φm = π/2, for different warping
parameters λ. We set μF = 0.2 eV, J = 0.05 eV, and � = 0.1 meV.

different oscillation behaviors for different polar angles θm.
Only when θm = π/2, the oscillation is reduced to be cos 2φm.
On the contrary, δSy, proportional to (ẑ × Ê), is independent
on φm though it is also sensitive to the size of λ. These results
are obvious since δSy in Eq. (26) is affected only by the size
of the in-plane magnetization (m2

‖ ) corrected by a factor �2.
These interesting results stem from the joint effect of warping
effect and in-plane magnetization, and without either one φm

dependence will disappear. As we know, this dependence is
not reported theoretically before, which provides a new per-
spective to understand the related experiments [22,27] where
the in-plane magnetic field was adopted.

In Figs. 2(d)–2(f), we display the dependence of δS on
the polar angle θm of m with fixed azimuthal angle φm =
π/2. Without the warping effect (λ = 0), δSx is strictly anti-
symmetric with respect to θm = π/2, indicating the behavior
δSx ∝ mz, but δSy is strictly symmetric. As finite λ is turned
on, the antisymmetry of δSx is broken due to curves shifting
upwards while δSz develops an oscillation. Obviously, these
behaviors are caused by the extra contribution from the in-
plane magnetization mx and my. If the magnetization m is
arranged strictly along the z axis m = (0, 0, 1), seeing θm =
0 or π, δSx and δSz are regardless of the strength of λ

because of no available in-plane magnetization. In contrast,
δSy is dependent on λ stemming from m2

z (ẑ × Ê) in Eq. (26).
It is emphasized that nonzero out-of-plane component δSz
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FIG. 3. Variation of the current-induced spin polarization δS
with the warping parameter λ for different Fermi energies μF under
(a)–(c) m ‖ ẑ(θm = 0) and (d)–(f) m ⊥ ẑ(θm = π/2).

and its significant dependence on the orientation of m in
Figs. 2(c) and 2(f) originate from the joint effect of the
warping effect and the in-plane magnetization. Without the
warping effect or the in-plane magnetization, δSz will always
vanish.

Since the snowflakelike Fermi surface induced by warping
effect is sensitive to the Fermi energy μF , we in Fig. 3 depict
the variation of δSx, δSy, and δSz with warping parameter λ for
different values of μF . To compare, we plot two limited cases:
m perpendicular to the surface (θm = 0) in Figs. 3(a)–3(c) and
along the TI surface (θm = π/2) in Figs. 3(d)–3(f). When the
magnetization is chosen perpendicular to the plane (θm = 0)
and no in-plane components, all components of δS are quite
insensitive to the warping parameter λ even for large μF .

Especially, no finite δSz appears no matter what the value
of the warping parameter λ and μF . These numerical results
are in agreement with our analytic formula in Eqs. (25) and
(26). The slight variation with λ stems from the high order
terms of �, not including in Eqs. (25) and (26). Therefore,
for m perpendicular to the surface, the effect of warping
effect on the current-induced spin polarization can be ignored
even for high μF . On the contrary, the scenario is heavily
different when the magnetization is orientated to be in-plane
(θm = π/2), shown in Figs. 3(d)–3(f). All components of
δS are sensitive to warping parameter λ, especially for δSx

and δSz. The magnitudes of δSx and δSz increase with λ

in a linearlike behavior for low Fermi level μF . When μF

FIG. 4. Ratios (a) |δSx/σxy| and (b) |δSy/σxx| as a function of the
warping parameter λ for different polar angles θm.

is lifted, the lineshape on parameter λ deviates from the
linearlike behavior. Unlike this, the component δSy shows
weaker decay with λ for large μF . These results are asso-
ciated with the decreased density of states [48] and change
of the Berry curvature with a nonzero λ for large chemical
potential.

2. The relation between spin polarization and conductivity

Spin-momentum locking in linear dispersion draws an
equivalence between the electric current j on the surface
of magnetic TIs and the in-plane components of the spin
polarization δS. In the zero λ case, the helical surface states
ensure the identity between charge current j and electron spin
σ by the relation j = evF (ẑ × σ ). However, this identity is
distinctly broken while λ is turned on. One can recall that the
electric field driven dc conductivity in the FM/TI interface can
be calculated in a similar procedure within the linear response
theory:

σαx = − lim
�→0

1

�E
Im�R

jα, jx (� + i0+), (27)

where α = x, y and the symbol σxx(σxy) is longitudinal (Hall)
conductivity. Without λ, the ratio of spin polarization and
conductivity is a constant [33,36]:

δSx = h̄E

2evF
σxy, δSy = − h̄E

2evF
σxx, (28)

which implies the spin polarization can be detected through
measuring the conductivity. In the case with hexagonal warp-
ing effect, however, ratio |δSα/σxγ | is not still a constant
but depends on the systemic parameters. Figure 4 illus-
trates the variation of ratio |δSα/σxγ | with λ for different
magnetization orientation. Obviously, with the increase of
λ the ratios |δSx/σxy| and |δSy/σxx| heavily deviate from
the constant h̄E/2evF , and the deviated extent is dependent
on the magnetization orientation, e.g., θm. When |δSy/σxx|
decays monotonously with λ, |δSx/σxy| exhibits prominent
nonmonotonic change and even vanishes at certain values of
λ, which stems from the strong dependence on the in-plane
magnetization mx and my. Only when m is perpendicular to
the surface (θm = 0), the ratios can almost remain a constant
for smaller λ.

3. Hexagonal warping effect on SOT

When an applied current generates the nonequilibrium
spin polarization δS on the TI surface, the adjacent FM
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FIG. 5. Magnitude of the fieldlike SOT τ f and dampinglike SOT
τd as functions of the magnetization direction [(θm, φm )]. The left
panels (a) and (b) for λ = 0 and the right panels (c) and (d) for λ =
100 eV Å

3
. The other parameters are the same as Fig. 1 and Fig. 2.

layer feels a SOT as τ = 2J
h̄ m × δS. The torque is gener-

ally decomposed into two parts according to its symmetry
and antisymmetry with respect to the magnetization reversal
(m → −m), namely, the FL-SOT τFL and the DL-SOT τDL.
One can straightforwardly check that m × δSex is asym-
metric and m × δSin is symmetric, and so the FL and DL
torques are

τFL = 2J

h̄
m × δSex,

τDL = 2J

h̄
m × δSin. (29)

From Eqs. (25) and (26) we can see that the total torque cannot
be expressed in the form of τ = τ f m × (ẑ × eE) + τd mzm ×
eE as in the TIs without hexagonal warping or more gener-
ally form in 2D electron gas τ = τ f m × (ẑ × eE) + τd m ×
[(ẑ × eE) × m]. The warping effect introduces a more com-
plicated dependence on the magnetization direction associated
with the distortion of the band structure as in Fig. 1. Even
so, we still can determine the magnitude of the FL-SOT τ f =
|τFL| and the DL-SOT τd = |τDL| according to their odd and
even function with respect to m. With Eqs. (23) and (24) we
numerically calculate τ f and τd and present the corresponding
results in Fig. 5 as functions of the m direction (θm, φm). We
plot SOT in Figs. 5(a) and 5(b) for λ = 0 and in Figs. 5(c)
and 5(d) for finite λ. For λ = 0, the FL-SOT term τ f in
Fig. 5(a) shows insensitive to the direction angle (θm, φm) ex-
cept for around θm = φm = kπ/2, where the torque vanishes
due to m ‖ δSex. The finite λ only slightly affects τ f [seeing
Fig. 5(c)] since the dominant component δSex

y is insensitive to
the warping parameter λ, as illustrated in Figs. 3(b)–3(e). In
contrast, the DL-SOT term τd for λ = 0 in Fig. 5(b) shows the
oscillating dependence, determined by the factor mz|m×x̂|.
When finite λ is induced further, the oscillating behaviors of

FIG. 6. (a)–(c) Magnitude of FL-SOT τ f and DL-SOT τd and
their ratio R = τd/τ f , respectively, as a function of warping parame-
ter λ for different polar angles θm. (d) Comparison between numerical
and approximate results of the ratio for different Fermi energies μF .

τd with θm and φm are significantly changed in Fig. 5(d). This
originates from the λ-induced other components of δSin along
the y and z axis. This prominent variation implies that one
can crease the DL-SOT term by tuning the parameter λ. In
order to clarify the behavior of λ, we plot the FL-SOT τ f in
Fig. 6(a), DL-SOT τd in Fig. 6(b), and their ratio R = τd/τ f

in Fig. 6(c) as a function of warping parameter λ. While τ f

is insensitive to the parameter λ, τd is significantly enhanced
by λ, especially for the magnetization oriented along the TI
surface (i.e., θm = π/2). As a consequence, the ratio R is
increased significantly by λ with the magnitude depending on
the m direction (θm, φm), as shown in Fig. 6(c). Importantly,
in the presence only of an in-plane magnetization (θm = π/2),
the DL-SOT is contributed completely by the warping effect.
In this situation, the ratio for small warping parameter λ

(or �) can be approximated as

R ≈ R0
3�√

1 + 9�2J 4
(
m2

x − m2
y

)2
, (30)

with R0 = 2�J /μF . The approximate values are compared
with the numerical results in Fig. 6(d). The enhancement
of DL-SOT τd by the joint effect of the hexagonal warping
and the in-plane magnetization provides a new perspective to
understand the giant antidampinglike SOT observed experi-
mentally.

IV. DISCUSSION

In this section, we want to remark the effect of vertex
corrections. The impurity-renormalized velocity in general
takes the form

Vx = vx + δVx = vx + niu
2
0

∫
d2k

(2π )2 GR
kVxGA

k . (31)

By setting δVx = Aσ0 + Bσx + Cσy + D(k2
x − k2

y )σz, we can
solve all the coefficients, seeing the detailed derivation in
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Sec. B of the Supplemental Material [58]. In the absence of the
warping term and J � 1, we find Vx = 2vx. In the presence
of the warping term, the vertex correction gives A = D = 0.
The nonzero C is to renormalize the Fermi velocity vF in
Eq. (22) to be vFy = vF (1 + C), while Bσx leads to a new
velocity component. The calculated spin polarization δS
by taking into account the vertex corrections is given in
Eqs. (B19) and (B20) in the Supplemental Material [58].
Compared with Eqs. (25) and (26), it is obvious to find that
the vertex correction has two effects: (1) modifies the constant
factors before In in δSin and δSex. Especially, the corrected
different factors before m2

x and m2
y in δSex make δSy shown in

Fig. 2(b) weakly dependent on magnetic azimuthal angle φm;
(2) brings an extra term 	 = −�(I−1 + 13I1)J 2mxmzx̂ +
3�2(I−1 + I1)J 2mxmyx̂ + 2�(I−1 + I1)J 2mymzŷ to δSex.
The term ∼mymz along the y direction makes δSy extra depend
on the in-plane angle φm, which modulates the curves of
δSy in Fig. 2(e) slightly asymmetric to θm = π/2. The other
two new terms affect the dependence of spin polarization
δSx on magnetic azimuthal angle φm. For example, the term
∼mxmy makes the oscillating period of δSx shown in Fig. 2(a)
change from 2π to π . For the in-plane field θm = π/2 which
is our focus, only the term ∼mxmy plays a role. It is noticed
that the extra term 	 induced by the vertex corrections only
corrects the δSex, which does not affect the behavior of the
dampinglike spin torque.

In the self-energy of the Green’s function in Eq. (8), we
only take into account the spin-independent component i�
for convenience to derive the analytical expressions. When
the hexagonal warping and magnetization are considered,
additional spin-dependent terms in self-energy appear, seeing
the detailed derivation in Sec. C of the Supplemental Material
[58]. For weak warping under consideration, to second order
in the warping parameter �, we obtain the imaginary part of
the self-energy as Im �R = −i�

∑
a=0,x,y,z waσa with w0 =

(1 − 3
2�2), wx = −3Jmx�

2, wy = − 7
2Jmy�

2, and wz =
Jmz(1 − �2). Since we focus on the regime of � � J < 1,
the spin-dependent components wx and wy and the second
terms in w0 and wz, as higher-order terms of warping pa-
rameter, can be ignored. The diagonal component wz only
provides a self-energy �Jmzσz to weakly correct the constant
factors in the first term of Eq. (26). Since our study focuses
on the combination effect of the in-plane magnetization and
the warping effect, for weak impurity scattering, ignoring the
spin-dependence components in the self-energy would not
affect our main results.

In our study, we start from the effective Hamiltonian in
Eq. (1), where the magnetic exchange interaction Jm · σ

between conducting electrons and the FM layer is added due
to magnetic proximity effect. When the FM layer is metallic,
the TI surface states are strongly coupled with the FM metallic
states. To grasp this physics, we can start from a more general
FM-TI coupling Hamiltonian Hfull = (HFM jex

j∗ex HTI
), where HFM

is the Hamiltonian of the FM metal and jex is the FM-TI
coupling strength. By performing the equation of motion
with respect to Hfull and tracing the degrees of freedom of
the FM, we can obtain the TI-subsystem Green’s function

and then an effective Hamiltonian of the TI layer, HTI,eff =
HTI + j∗ex(ε − HFM)−1 jex. Taking the FM metal in a typical
form of HFM = αk2 + δμ + 	FMm · σ, with α = h̄/2me the
inverse mass, δμ the mismatch of Fermi surface between FM
and TI bands, and 	FM the exchange energy within the FM,
the effective Hamiltonian reduces to HTI,eff = HTI + μ0(ε) +
J0(ε)m · σ, where μ0(ε) = | jex|2(ε − ε0)/[(ε − ε0)2 − 	2

FM]
and J0(ε) = | jex|2	FM/[(ε − ε0)2 − 	2

FM] with ε0 = αk2 +
δμ. Obviously, μ0(ε) is to modify the dispersion of TI energy
bands and J0(ε) is the effective exchange energy from the FM.
When the energy-dispersion dependence of μ0(ε) and J0(ε)
can be ignored, for example, taking large mismatch energy
δμ, in which μ0(ε) ≈ −|J|2δμ/[(δμ)2 − 	2

FM] and J0(ε) ≈
|J|2	FM/[(δμ)2 − 	2

FM], we reach Eq. (1). Therefore, the
effective Hamiltonian in Eq. (1) is valid in the condition of
the bottom of the FM band far away from the Dirac point
or not very large Fermi level in TI. In our study, we keep
a relative small Fermi energy and the main results, obtained
analytically and numerically, are reliable. Experimentally, in
order to ensure the large mismatch energy in the FM-TI het-
erostructure and minimize the current shutting effect through
the FM layer, one can use the FM material with high resistivity
as in Refs. [22,24,25,27].

In conclusion, current-induced spin polarization and result-
ing SOT in the FM/TI bilayer have been investigated. We
find that the usually ignored in-plane FM magnetization plays
an important role when hexagonal warping of topological
surface states is taken into account. Not only the out-of-plane
magnetization mz but also the in-plane magnetizations mx and
my contribute to the spin-orbit torque. As a consequence,
the resulting spin polarization and spin torque significantly
depend on the FM magnetic direction, importantly exhibiting
a remarkable dependence on the azimuthal angle of magne-
tization, which has not been reported theoretically before in
the linear dispersion TI model. We also obtain the out-of-
plane spin polarization δSz component, which cannot yield
in the linear TI model. These interesting results arise from
the combination effect of in-plane magnetization and warping
effect, which induces new intrinsic contribution and extrinsic
contribution by modifying the Berry curvature and impurity
scattering. We analyze the results analytically and numeri-
cally, starting from derivation of the formula of nonequilib-
rium spin polarization based on Matsubara-Green function
approach. Besides, we discuss the nonlinear relation between
the current-induced spin polarization and the dc conductivity.
More importantly, it is found that the warping effect can
significantly enhance the antidamping SOT if there exists the
in-plane FM magnetization, which provides a new perspective
to understand the recent giant SOT effect.
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