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Semilocal properties of the Pauli kinetic potential
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The logarithmic singularity of the Lindhard linear response function plays an important role in various
phenomena, such as the long-range Friedel oscillations and Kohn anomaly in phonon dispersion. Such a weak
singularity cannot be captured by the known gradient expansion of the kinetic energy (KE), but it can be
somewhat mimicked by the second-order gradient singularity expansion (GSE2) developed in this work. We
show that the GSE2 Pauli KE potential of atoms, computed with the Kohn-Sham density, is remarkably accurate,
being the best possible approximation provided by any second-order KE gradient expansion. Next, we study the
utility of GSE2 for orbital-free density functional theory, and we prove that the GSE2-based KE functionals give
an important and systematic improvement over other popular KE functionals.
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I. INTRODUCTION

The orbital-free density functional theory (OFDFT) [1,2] is
a promising linear scaling O(N ) method (here N is the number
of electrons) [3,4] that finds the ground-state electron density
ρ(r), and implicitly all the ground-state properties, by solving
the Euler equation [5]

δTs[ρ]

δρ(r)
+ vext (r) +

∫
dr′ ρ(r′)

|r − r′| + δExc[ρ]

δρ(r)
= μ, (1)

where vext (r) is the external potential, μ is a Lagrange mul-
tiplier fixed from the normalization condition

∫
dr ρ(r) = N ,

and Exc[ρ], Ts[ρ] are the exchange-correlation (XC) and the
noninteracting kinetic energy (KE) functionals, respectively.
Both Exc[ρ], Ts[ρ] must be approximated. The XC energy
represents the many-body quantum effects beyond the Hartree
approximation, being usually only a small fraction of the
total energy and being accurately approximated by various
XC functionals [6,7]. On the other hand, the KE of common
matter (e.g., atoms and molecules) has the same order of mag-
nitude as the total energy [8,9], therefore its approximation
dictates the OFDFT accuracy.

Started with the seminal work of Thomas [10] and Fermi
[11] (TF), over nine decades of intensive investigations
did not succeed to provide an accurate and practical all-
electron OFDFT, but important progress has been achieved
[3,4,12–16], and various OFDFT large scale applications have
been successfully performed [17–29]. The reason for this
slowness is related to the highly nonlocal nature of the exact
Ts[ρ] [30–35], especially at the nuclear cusp [34,36–39], in
the tail of the density [34,40–42], and at the inflection points
of the density [38,42–44].

The KE functional is usually separated in two main contri-
butions:

Ts[ρ] = T W
s [ρ] + T θ

s [ρ], (2)

with

T W
s [ρ]=

∫
dr τW (r), τW (r)= |∇ρ(r)|2

8ρ(r)
=τ T F (r)

5

3
s(r)2

(3)

being the von Weizsäcker KE functional [45], which is exact
for any one- and two-electron spin-singlet state systems, as
well as for the ground-state KE of any bosonic system. The
T θ

s [ρ] is called the Pauli KE functional, and it represents
all many-body fermionic effects [46–54]. Note that while
T W

s has a simple semilocal exact expression, there are many
approximations for the unknown T θ

s [ρ] classified as: general-
ized gradient approximations (GGAs), e.g. [12,13,15,55–71],
Laplacian-dependent meta-GGAs, e.g. [15,72–76], Hartree-
potential dependent u-meta-GGAs, e.g. [77,78], and nonlocal
approximations [14,79–90]. These functionals have been usu-
ally constructed from exact conditions and fitting to various
data benchmarks, but we also acknowledge the emerging
machine learning techniques [35,76,91–97] that may boost
the OFDFT accuracy. Here τ T F = (3/10)k2

F ρ is the Thomas-
Fermi (TF) KE density [10,11], with the Fermi wave vector
being kF = (3π2ρ)1/3, and s = |∇ρ|/(2kF ρ) is the reduced
gradient of the density.

Up to date, the most sophisticated Pauli KE nonlocal
functionals have been constructed from the linear response of
the uniform electron gas (UEG), for which the central quantity
is the Lindhard function [31]

F Lind =
(

1

2
+ 1 − η2

4η
ln

∣∣∣∣1 + η

1 − η

∣∣∣∣
)−1

(4)

that is related to the density response χUEG via:

− 1

χUEG
= π2

kF
F Lind. (5)

Here η = k/(2kF ) is the dimensionless momentum. At η =
1, there is a weak, logarithmic singularity in the slope of the
Lindhard function, then

lim
η=1

χUEG = − kF

2π2
, lim

η=1

∂

∂η
χUEG = ∞. (6)

This behavior is responsible for long-range Friedel oscil-
lations [31,98]. For example, a point impurity in a three-
dimensional (3D) UEG will produce an induced charge
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density δρ which decays asymptotically as [1,31,99]

lim
r→∞ δρ ∝ cos(2kF r + φ)/r3, (7)

with φ being a phase shift dependent on the impurity. Note
that the singularity in the UEG dielectric response at η =
1 is present for all dimensions [99,100]. The KE gradient
expansion of any finite order is reasonably accurate until η <

1 (see Fig. 7 of Ref. [31]) but cannot capture the logarithmic
singularity at η = 1, such that the extensions of the Thomas-
Fermi method, as semilocal OFDFT, cannot yield the Friedel
oscillations and the atomic shell structure of the density,
which are of the same origin [1,31,101,102]. Moreover, the
logarithmic singularity occurs for various (anisotropic) Fermi
surfaces of electron liquids [103], playing an important role
in several physical phenomena, such as the Kohn anomaly in
phonon dispersion [104].

The gapped UEG (gUEG) model [14,62,105–116], also
called jellium-with-gap, is a generalization of the UEG that
depends on the dimensionless ingredient � = Eg/EF , with
Eg being the gap energy and EF = k2

F /2 the Fermi energy.
Levine and Louie [105] derived a simple analytical form for
the linear response function of the jellium-with-gap F GAP,
which recently has been analyzed in detail and used to develop
semilocal [62] and nonlocal [14] KE functionals. At η = 1,
∂
∂η

χgUEG is dependent on �, being in general finite, with the
exception of � → 0 limit, when it behaves as

lim
η=1

∂

∂η
χgUEG ∝ − ln(�). (8)

Then, only for � = 0, which represents the true UEG case,
the logarithmic singularity is present.

In this work, we investigate the importance of the singular-
ity at η = 1 in the linear response of GGA KE functionals,
showing that it is closely related to the Pauli KE potential
of atoms. The paper is organized as follows. In Sec. II, we
present our theoretical results on the semilocal properties of
the KE functional derivative. In Sec. III we incorporate these
KE conditions into simple GGA functionals, and we perform
a careful assessment of their OFDFT performance for atoms
and ions. Finally, in Sec. IV we summarize our results.

II. THEORY

A. The KE second-order gradient singularity expansion

Let us consider a GGA kinetic functional of the form

T GGA
s [ρ] =

∫
dr τ T F (r)F GGA

s (s(r)), (9)

where F GGA
s is the KE enhancement factor, which we assume

to have the correct formal expression in the slowly-varying
density regime

F GGA
s → 1 + μs2, when s → 0. (10)

The linear response of such a functional

F (η) = kF

π2
F

(
δ2T GGA

s [ρ]

δρ(r)δρ(r′)
|ρ0

)
, (11)

where F represents the Fourier transform, can be straight-
forwardly computed using the following elegant approach
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FIG. 1. The GSE2 [see Eq. (13)] and GE2 UEG linear responses,
compared with the exact curve 1/F Lind. Note that any GGA that
recovers the GSE2 (GE2), at small variations of the density (when
s → 0), has the same UEG linear response as GSE2 (GE2), see
Ref. [118].

[62,117]: Consider a small perturbation in the UEG density
ρ0 at r = 0, such that the density is ρ = ρ0 + ρkeikr. Then, at
r = 0, we obtain ρ = ρ0 + ρk , ∇ρ = ρkik, and ∇2ρ =
−ρkk2. Using them in the GGA expression, the linear re-
sponse is obtained as twice the second-order coefficient of the
series expansion with respect to ρk/ρ0. Then, the GGA linear
response function is

F = 1 + 9
5μη2. (12)

For details on derivation of Eq. (12), see Ref. [118]. The only
way to obtain a singularity of (∂χ/∂η)|η=1 at the GGA level
is to chose μ = −5/9, which defines the following second-
order gradient singularity expansion (GSE2) KE enhancement
factor

F GSE2
s = 1 − 5

9 s2 + γ q, (13)

with γ being a positive constant and q =
∇2ρ/[4(3π2)2/3ρ5/3] the reduced Laplacian of the density.
The UEG linear response of any GGA functional that recovers
GSE2 in the slowly-varying density regime is reported in
Fig. 1. Due to the strong and unphysical singularity at η = 1,
this functional fails obviously in the k space, being exact only
at η = 0, and in the asymptotic limit η → ∞, such that it is
not useful for solid-state OFDFT calculations. Also shown in
Fig. 1 is the UEG linear response of any GGA functional that
recovers the second-order gradient expansion (GE2).

The linear term γ q in Eq. (13) does not contribute to
the linear response, does not change the total KE because∫

dr τ T F q = 0 for any finite system and extended system
under periodic boundary conditions [119], does not contribute
to the functional derivative δTs[ρ]/δρ (and implicit to the
Pauli KE potential), but is very important for the quality of
the KE density τ . The recent interest for accurate τ models
[120–123] makes us also consider this linear term. Minimiz-
ing the quality factor [59,60,124]

δ(γ ) = 1

N

∫
dr |τ exact (r) − τ approx(r, γ )|, (14)
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FIG. 2. The quality factor δ(γ ) of Eq. (14), for noble atoms (from
Ar to Uuo). We use KSDFT atomic orbitals and densities.

where τ exact (r) is the positive-defined Kohn-Sham (KS) DFT
KE density, we find γ = 3.3. In Fig. 2, we show δ(γ ) for
noble atoms. For each atom, the minimum occurs at γ ≈
3.3, being bigger than the corresponding GE2 Laplacian
coefficient. We recall that the GE2 enhancement factor is
F GE2

s = 1 + 5s2/27 + 20q/9, being very different from
F GSE2

s of Eq. (13).
The KSDFT and OFDFT calculations are all-electron cal-

culations, performed with a modified version of the Engel
code [125,126], which uses numerical orbitals and densities
computed on a logarithmic grid on the radial direction. The
Euler equation was implemented in the form of Eq. (1)
of Ref. [5]. We use the LDA exchange functional with no
correlation. This simple choice for the XC functional permits
a better understanding of the KE functional performance in
the OFDFT context.

To conclude this subsection, we recall several KE gradient
expansions with negative coefficient of the gradient term

Airy gas, Ref. [61]; Fs(s, q) = 1 − 5s2/27 + 10q/3,

empirical, Ref. [75]; Fs(s, q) = 1 − 0.275s2 + 2.895q,

empirical, Ref. [123]; Fs(s, q) = 1.069 − 0.407s2+5.84q,

(15)

and all of them have strong singularities for UEG linear
response but none at the right position η = 1.

B. Properties of Pauli potential for atoms

The Pauli potential for any finite system with spherical
symmetry is [127,128]

vθ = τ − τW

ρ
+ 1

ρ

N∑
i=1

(εN − εi )2φ2
i , (16)

with φi being the ith occupied Kohn-Sham orbital.
For a single shell with density ρnl , where n, l are the

principal and angular quantum numbers, the positive-defined
KE density is [34]

τnl = τW
nl + l (l + 1)

2

ρnl

r2
. (17)
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FIG. 3. The Err(β ) function of Eq. (22), for noble atoms (from
Ar to Uuo). We use KSDFT atomic orbitals and densities. Note that
β = 1 and 3/2, represent the GE2 and GSE2, respectively.

Combining Eqs. (16) and (17), we obtain for regions domi-
nated by a single shell

vθ = l (l + 1)

2

1

r2
+ 1

n

N∑
i=1

(εN − εi )2φ2
i . (18)

A straightforward application of Eq. (18) is the asymptotic
behavior in the tail of the density (when r → ∞), where the
Pauli potential behaves as

vθ → l (l + 1)

2

1

r2
. (19)

In order to understand if a gradient expansion can describe
the Pauli potential in the atomic core, let us consider the
following expression

v
app
θ (β ) = δT T F

s

δρ
− β

8

9

δT W
s

δρ
, (20)

where β is a parameter, and

δT T F
s

δρ
= dτ T F

dρ
,

δT W
s

δρ
= |∇ρ|2

8ρ2
− ∇2ρ

4ρ
(21)

are the functional derivatives of the Thomas-Fermi and von
Weizsäcker functionals. Note that Eq. (20) spans all possible
second-order gradient expansions (with Fs = 1 + μs2, μ be-
ing a real number), by varying β.

When β = 0, 1, or 9/8 then v
app
θ (β ) corresponds to vTFW

θ ,
vGE2

θ , and vT F
θ , respectively. To find β that gives the most

accurate Pauli potential for atoms, we minimize the following
error:

Err(β ) = 1

N

∫
dr ρ(r)

∣∣vexact
θ − v

app
θ (β )

∣∣, (22)

and the results are reported in Fig. 3 for noble atoms and
in Fig. S1 of Ref. [118] for alkaline earth (from Mg to Ra)
and closed-shell transition metal atoms (from Zn to Cn). The
minimum is found for β = 3/2 that represents the GSE2 of
Eq. (13). This result proves that GSE2 contains important
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FIG. 4. Comparison between the exact and GSE2 Pauli kinetic
potentials vθ (upper panel), and KE enhancement factors Fs (lower
panel), for the Ar atom. We use KSDFT orbitals and densities. The
inset shows the GE2 Pauli kinetic potential of the Ar atom.

physics that has not yet been investigated. We remark that
Eq. (22) has similar scaling properties as Eq. (14) under the
uniform scaling of the density [ρλ(r) = λ3ρ(λr), with λ �
0], and, as shown below, can well capture the atomic shell
structure of vθ .

In Fig. 4, we report the GSE2 performance for Pauli
kinetic potential and KE enhancement factor, in case of the
Ar atom. Similar results, not shown here, are found for all
noble atoms. Results for Mg and Zn atoms are reported in
Fig. S2 of Ref. [118]. GSE2 can well reproduce the shell
structure of both vθ and Fs, when the KSDFT density is used.
This is a significant achievement of the semilocal theory that
should be further explored. Nevertheless, the region near the
nucleus cannot be accurately described by the GSE2. Here the
Laplacian diverges (∇2ρ → −∞), the nonlocality becomes
important [36,78], but still the von Weizsäcker KE functional
is a good approximation [34].

Finally, in Fig. 5, we show the GSE2 performance for the
jellium cluster with N = 92 electrons and bulk parameter rs =
4, which has the radius Rc = rsN1/3 ≈ 18.1 a.u. Inside the
jellium sphere, for r � Rc, the GSE2 is able to describe well
both vθ and Fs, capturing all the quantum shell oscillations.
Outside the cluster, in the tail of the density, Eq. (19) becomes
accurate, and the GSE2 fails to be a good approximation.
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FIG. 5. Pauli kinetic potential vθ (upper panel), and KE enhance-
ment factor Fs (lower panel), versus the radial distance r, for the
jellium cluster with 92 electrons and bulk parameter rs = 4. We use
KSDFT orbitals and densities.

III. APPLICATIONS

A. GGA KE functionals that recover the GSE2

Let us consider the Pauli-Gaussian-μ (PGμ) family of
GGA KE functionals, which have the Pauli KE enhancement
factor [15]

F θ
s (s) = e−μs2

. (23)

For any μ � 0, the exact important conditions are fulfilled by
construction

F θ
s (s) � 0,

F θ
s (s = 0) = 1.

An attractive functional for OFDFT local-pseudo-potential-
based solid-state calculations is PG1, being remarkably ac-
curate for equilibrium volume, bulk modulus, total energy,
and density error of metals and semiconductors, as shown in
Fig. 1 and Table 1 of Ref. [15]. On the other hand, the PG 40

27 ,
called also PGS (from Pauli-Gaussian second order) because
it recovers the GE2 in the slowly-varying density regime, is
slightly better than PG1 for semiconductors but almost twice
worse for metals. Moreover, when μ increases slowly, the
accuracy of PGμ for metals is rapidly falling down.

The PG 20
9 is the only functional from the PGμ family that

recovers GSE2. This functional, that gives the UEG linear
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response shown in Fig. 1, is not suited for OFDFT solid-
state calculations. We also propose an interpolation between
PG 20

9 and PGS. We call this KE GGA functional PGint,
because of similarities with PBEint exchange enhancement
factor [129–131], having the following expression

F θ,PGint
s (s) = e−μ(s)s2

,

μ(s) = μ1 + (μ2 − μ1)
αs2

1 + αs2
, (24)

with μ1 = 40/27, μ2 = 20/9, and the parameter α = 10 has
been chosen such that PGint will be close to PG 20

9 for s � 0.2.
Nevertheless, because PGint recovers GE2 when s → 0, its
UEG linear response is represented by the GE2 one. In Fig. 6,
we show a comparison between the PGint, PG20/9, PGS (a.i.
PG40/27), and the Luo-Karasiev-Trickey (LKT) GGA [71]
Pauli KE enhancement factors. We recall that LKT is very
accurate for OFDFT local-pseudo-potential-based solid-state
calculations [71]. By construction, PGint recovers PGS only
at small gradients (s � 0.2), otherwise being close to PG 20

9 .
Finally, we mention that any GGA cannot recognize the

nuclear region (where s ≈ 0.4) from other atomic shells, and
all the functionals of Fig. 6 are not accurate at the nuclear
cusp. On the other hand, they are recovering the accurate von
Weizsäcker at large gradients, behaving well in the asymptotic
region, where the density decays exponentially.

B. Kinetic energy of noble atoms

We perform OFDFT calculations using several KE func-
tionals (TFW, PG 20

9 , PGS, PG1, PGint, and LKT) for noble
atoms, from He up to the atom with 290 electrons. We test
only KE functionals that have positive Pauli enhancement
factors (F θ

s � 0), such that from the λTFW family of func-
tionals [15,70,132,133], we chose only the TFW functional.
All calculations converged well, with an accuracy criterion
less than 10−7 in the absolute value of the maximum deviation
between the effective potentials (see Eq. (2) of Ref. [5])
of successive iterations. We recall that such atoms have
been used to better understand the connection between DFT
and semiclassical atom theory [134–138], to derive modified

TABLE I. Exact KSDFT noninteracting KE, and relative errors
in % ([approx-exact]/exact × 100), of noninteracting KE computed
either self-consistently, within the OFDFT scheme (upper panel), or
non-self-consistently, using accurate KSDFT densities (lower panel),
from various KE functionals, for nonrelativistic noble atoms (2 �
Z � 290). Last line of the panels reports the mean absolute relative
error (MARE), in %. Best result of each line is shown in bold style.

Atom KSDFT TFW PG 20
9 PGS PG1 PGint LKT

Self-consistent calculations

He 2.72 −41.6 −12.0 −18.9 −25.2 −12.8 −29.4
Ne 127.49 −31.1 5.0 −6.8 −15.1 2.6 −19.0
Ar 524.52 −27.5 6.7 −5.0 −13.0 4.0 −16.4
Kr 2746.87 −23.0 7.8 −3.1 −10.3 4.7 −13.1
Xe 7223.66 −20.6 7.8 −2.4 −9.1 4.6 −11.6
Rn 21852.32 −18.0 7.4 −1.9 −7.8 4.2 −10.0
Uuo 46303.50 −16.4 7.0 −1.5 −7.0 3.9 −9.0
168 e− 106998.43 −14.8 6.5 −1.3 −6.3 3.5 −8.0
218 e− 198231.01 −13.6 6.2 −1.1 −5.7 3.2 −7.4
290e− 389334.88 −12.5 5.7 −1.0 −5.2 2.9 −6.7
MARE − 21.9 7.2 4.3 10.5 4.6 13.1

Using KSDFT orbitals and densities

He 88.5 29.2 40.1 50.9 30.9 58.6
Ne 61.5 8.4 19.5 29.9 10.5 36.4
Ar 51.3 2.4 13.5 23.4 4.8 29.0
Kr 40.4 −2.1 8.3 17.2 0.5 21.7
Xe 35.3 −3.3 6.4 14.6 −0.7 18.6
Rn 30.0 −4.1 4.8 12.1 −1.4 15.5
Uuo 27.0 −4.2 4.0 10.7 −1.5 13.7
168 e− 23.9 −4.2 3.3 9.3 −1.6 12.0
218 e− 21.8 −4.1 2.9 8.5 −1.6 10.9
290 e− 19.8 −4.0 2.5 7.6 −1.5 9.9

MARE 39.9 6.6 10.5 18.4 5.5 22.6

gradient expansions of the kinetic and exchange energies
[75,78,139], to construct and investigate kinetic and exchange
functionals [74,132,140–145], or to suggest that the periodic
table of atoms with infinity number of electrons becomes
perfectly periodic [146].

The OFDFT results for the kinetic energy are summarized
in the upper panel of Table I. Best results for light atoms
(He, Ne, and Ar) are provided from PGint, while for heavier
atoms (Kr to 290 e−) the PGS is the most accurate. In fact
both PGint and PGS have a similar overall performance, with
MARE ≈ 4.5%, followed by PG20/9 with MARE ≈ 7.2%.
The worst results are found from TFW, which underestimates
the KE with about 22% on average. We also remark that
PG20/9 and PGint are the only functionals which slightly
overestimate the KE, with the exception of He atom.

In the lower panel of Table I, we also report the kinetic
energies computed using the accurate KSDFT densities. This
is a common practice for the testing and assessment of KE
functionals [78]. We can see that TFW strongly overestimates
the KE by about 40%, showing that (i) the density plays a
crucial role and (ii) TFW is not a stable functional. We recall
that TFW is still one of the most used KE approximations in
OFDFT applications [147,148] and hydrodynamical models
for quantum plasmonics [149]. On the other hand, the most
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TABLE II. Density error D0 of Eq. (25) (upper panel), and
ionization density error DIP,0 of Eq. (26) (lower panel), for noble
gas nonrelativistic atoms (2 � Z � 290). Best result of each line is
shown in bold style. Last line reports the MAE in a.u.

Atom TFW PG 20
9 PGS PG1 PGint LKT

Density error D0 × 103

He 751 347 451 535 363 582
Ne 340 291 311 325 297 324
Ar 279 275 263 268 260 270
Kr 194 190 184 187 182 188
Xe 172 167 161 162 159 164
Rn 137 130 126 127 125 129
Uuo 117 112 110 111 108 112
168e− 99.3 92.9 91.5 92.7 90.4 94.0
218e− 86.1 81.5 80.4 81.4 78.8 82.2
290e− 77.3 70.7 70.6 72.0 69.0 72.9
MAE 225.3 175.7 184.8 196.1 173.2 201.8

Ionization density error DIP,0 × 103

He 1021 530 677 785 557 835
Ne 851 479 667 759 561 764
Ar 324 170 288 337 231 309
Kr 220 181 257 281 242 245
Xe 162 247 194 201 197 172
Rn 225 273 227 204 220 211
Uuo 377 381 336 320 315 338
168e− 446 420 379 369 351 393
218e− 565 514 472 468 438 499
290e− 624 557 516 515 477 550

MAE 481.5 375.2 401.3 423.9 359.0 431.6

accurate functionals are PG20/9 and PGint with MARE �
7%, both of them slightly underestimating the total KE of
heavy atoms.

The best overall performance is found from PGint, that
improves significantly over the TFW, but still shows a large
variance between the OFDFT self-consistent and KSDFT
non-self-consistent results of Table I. This fact suggests that
the PGint OFDFT density is quite different from the exact
KSDFT one. Same trend is found in Table S1 of Ref. [118]
for the alkaline earth atoms.

C. Density and radial ionization density errors

In the upper panel of Table II, we show the density error
[15]

D0 = 1

N

∫
dr

∣∣ρKSDFT(r) − ρOFDFT(r)
∣∣, (25)

for the same set of noble atoms. For light atoms (He and Ne),
PG20/9 is the most accurate, being closely followed by PGint.
While for the other atoms (Ar to 290 e−), PGint and PGS
give the best results. Overall, PGint has the smallest mean
absolute error (MAE) of 173.2, and TFW is the worst with
MAE=225.3. We also mention that the heavier the atom is,
the more accurate OFDFT density is obtained.

In Fig. 7, we show a comparison between the worst
(TFW) and best (PG20/9) functionals for Ne atom. Neither
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FIG. 7. Comparison of OFDFT TFW and PG20/9 radial densi-
ties [r2ρ(r)] with the KSDFT one, for Ne atom.

one shows the atomic shell structure. However, the PG20/9
density is remarkably accurate near the nucleus, and improves
significantly over the TFW one, which is too shallow, giving
a too small KE (see Table I).

Next, in the lower panel of Table II, we report the ioniza-
tion density error

DIP,0 =
∫

dr
∣∣ρKSDFT

IP (r) − ρOFDFT
IP (r)

∣∣, (26)

where

ρIP(r) = ρatom(r) − ρ ion(r) (27)

is the ionization density [
∫

dr ρIP(r) = 1]. In this case, the
error DIP,0 does not decrease for heavy atoms. The best results
are again found from PG20/9 (MAE = 375) and PGint
(MAE = 359) functionals, which are the most accurate for
lighter atoms (He to Kr), and heavy atoms (Uuo to 290 e−),
respectively. On the other hand, the worst performances are
given by TFW (MAE = 482), LKT (MAE = 432), and PG1
(MAE = 424).

The errors D0 and DIP,0 of Eqs. (25) and Eq. (26),
respectively, are biased toward the valence and tail re-
gions. In Table S2 of Ref. [118], we report the errors of
D0 = 1

N

∫ ∞
0 dr |ρKSDFT(r) − ρOFDFT(r)| (upper panel), and

DIP,0 = ∫ ∞
0 dr |ρKSDFT

IP (r) − ρOFDFT
IP (r)| (lower panel), which

are biased toward the nuclear and inner atomic core re-
gions. In this case, PGS and PGint are the most accu-
rate for D0, while all functionals perform very similar for
DIP,0.

In order to visualize the functional performance for the
ionization potential, we report in Fig. 8 a comparison between
the KSDFT and PGint OFDFT radial ionization densities
4πr2ρIP(r), for Ar and Xe atoms. For these atoms, the PGint
ionization density is unable to describe the exact behavior in
the atomic core, most probably because the OFDFT calcula-
tions do not capture the atomic shell oscillations. However,
the PGint ionization densities are accurate in the valence and
tail regions. This is an important achievement of PGint KE
functional, and further tests for nanoparticles and clusters
should be done.
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Finally, in Fig. 9, we show the KSDFT and OFDFT ioniza-
tion energies of noble atoms. The TFW, LKT, and PG1 results
vary very little from He to heavy atoms, and the curves are
quite flat. Better shapes are found from PG20/9 and PGint
functionals, but the improvement is small. In the semiclassical
limit Z → ∞, all OFDFT should presumably be close to the
extended Thomas-Fermi (ETF) theory which gives IPETF

∞ ≈
0.11 Ha [146]. However, smooth extrapolations to Z → ∞
predict IPOFDFT

∞ ≈ 0.4 Ha.

D. Kinetic energy response in atoms

The linear response DFT formalism in atoms has been
theoretically investigated [150–153], and the linear response
function χ (r, r′) is nowadays used in the conceptual DFT as
one of the most important reactivity descriptor [154–164].
Because of the use of perturbation theory for degenerate
electrons with a given quantum number n, it cannot be found
a simple formula as in the case of the uniform electron gas,
where the Lindhard function plays the main role [31]. Here we
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and δv

(M=10)
i /Z = (v(M=10)

i − vext )/Z , with i = 1, 2, and 3 [see
Eq. (28)].

tested atoms in perturbed external potentials of the following
forms:

vext (r) → vM
1 (r) = vext (r) + vext (r) sin(r)/M,

vext (r) → vM
2 (r) = vext (r) + vext (r) sin2(r)/M, (28)

vext (r) → vM
3 (r) = vext (r) + vext (r) sin2(r)e−r/M,

where vext (r) = −Z/r, and M is a constant. We consider the
cases M = 10 (a.i. small perturbation where linear response
can be accurate), and M = 3 (a.i. large perturbation where
terms beyond linear response may be important). By construc-
tion, vM

i (r) are very different one to the other: vM
1 (r) has a

finite nonzero value at the nucleus, where the density is large
and thus will give a significant deviation of the KE. vM

2 (r) and
vM

3 (r) vanish at the nucleus, but while vM
2 (r) has a long-range

(1/r) decay in the tail of the density, vM
3 (r) is exponentially

small. In Fig. 10, we show a comparison of the normalized
potentials vext/Z , and δv

(M=10)
i /Z = (v(M=10)

i − vext )/Z , with
i = 1, 2, and 3.

For all these cases and the tested KE functionals, we
calculate the self-consistent KE response

δTs = Ts[vext] − Ts
[
vM

i

]
, i = 1, 2, 3, M = 10 and M = 3.

(29)
The Ne and Rn results are summarized in Table III. In the

case of the perturbed Ne atom, best performances are obtained
with PG20/9 (MARE = 22.6%) and PGint KE functionals
(MARE = 24.6%), that are almost twice better than TFW
(MARE = 44.7%). However, they are not accurate for the
localized perturbations of vM=3

3 and vM=10
3 , where the solid-

state designed LKT and PG1 functionals are more appropriate.
On the other hand, for the perturbed Rn atom, PGint shows
best overall results (MARE = 8.1%), but all functionals give
good KE atomic responses, with MARE below 10.5%.

Next, we consider the error of the perturbed density
ρP(r) = ρatom(r) − ρperturbed atom(r)

DP,0 =
∫

dr
∣∣ρKSDFT

P (r) − ρOFDFT
P (r)

∣∣. (30)

Note that
∫

dr ρP(r) = 0. This test shows in more detail the
OFDFT accuracy for perturbed atoms.
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TABLE III. KSDFT KE energy response δTs (in a.u.), and relative errors in % ([approx-exact]/exact × 100), of δTs computed self-
consistently, within the OFDFT scheme, using several KE approximations, for the perturbed Ne atom (upper panel) and Rn atom (lower
panel), subject to external potentials of Eq. (28). Last lines of the panels report the MAREs in %. Best result of each line is shown in bold style.

KS TFW PG 20
9 PGS PG1 PGint LKT

Perturbed Ne atom

vM=10
1 2.143 31.82 −0.47 13.35 20.16 6.07 21.75

vM=3
1 5.997 27.81 0.20 10.79 16.57 5.00 18.28

vM=10
2 −0.983 −96.13 −25.53 −58.29 −72.23 −43.03 −74.47

vM=3
2 −3.729 −66.40 −15.02 −37.33 −48.22 −26.39 −49.69

vM=10
3 0.546 15.75 −50.73 −23.44 −11.36 −35.71 −6.41

vM=3
3 1.561 30.49 −43.56 −16.59 −1.67 −31.45 4.10

MARE − 44.7 22.6 26.6 28.4 24.6 29.1

Perturbed Rn atom

vM=10
1 96.935 −6.35 −8.80 −7.71 −7.24 −6.19 −7.21

vM=3
1 261.228 −7.61 −10.71 −9.60 −9.00 −8.55 −8.84

vM=10
2 −93.952 16.28 10.84 12.38 13.74 8.88 14.31

vM=3
2 −377.832 7.86 3.87 5.14 6.12 3.16 6.47

vM=10
3 −13.906 −11.43 −6.72 −8.38 −9.31 −15.70 −9.56

vM=3
3 −50.542 12.24 15.09 13.63 13.15 6.50 13.33

MARE − 10.3 9.3 9.5 9.8 8.2 9.9

In Table IV we report the results. We observe the same clas-
sification of the functionals as in Table III: PG20/9 and PGint
are the best, while TFW is the worst. The total performance
of the PG20/9 and PGint KE functionals shows a significant
and systematic improvement over the other tested functionals
(PGS, PG1, LKT, and TFW), due to the (partial) recovery of
the GSE2.

TABLE IV. The perturbed density errors DP,0 [see Eq. (30)], for
the Ne and Rn atoms subject to the external potentials of Eq. (28).
Last lines of the panels report the MAEs. Best result of each line is
shown in bold style.

TFW PG 20
9 PGS PG1 PGint LKT

Perturbed Ne atom

vM=10
1 0.83 0.40 0.59 0.71 0.47 0.71

vM=3
1 1.60 0.92 1.21 1.40 1.03 1.41

vM=10
2 0.62 0.24 0.39 0.51 0.29 0.51

vM=3
2 1.31 0.60 0.85 1.09 0.69 1.09

vM=10
3 0.26 0.16 0.21 0.23 0.18 0.23

vM=3
3 0.79 0.47 0.61 0.70 0.52 0.70

MAE 0.90 0.47 0.64 0.77 0.53 0.77

Perturbed Rn atom

vM=10
1 4.96 4.73 4.68 4.74 4.44 4.82

vM=3
1 7.39 6.92 6.99 7.14 6.68 7.22

vM=10
2 4.83 4.79 4.71 4.72 4.54 4.77

vM=3
2 7.25 7.40 7.43 7.43 7.39 7.38

vM=10
3 2.33 2.13 2.13 2.20 2.00 2.24

vM=3
3 5.79 5.32 5.38 5.53 5.07 5.61

MAE 5.4 5.2 5.2 5.3 5.0 5.3

E. Jellium clusters

The UEG linear response of any GGA functional that
recovers GSE2 at small reduced gradient is failing badly in
almost all the wave vector space, as shown in Fig. 1. Then, in
order to understand the behavior of such KE functionals, for
finite jellium systems, we present in Fig. 11 a comparison of
several electron densities of a 18 e− jellium sphere with bulk
parameter rs = 2.07. Here we use an accuracy criterion less
than 10−4 in the absolute value of the maximum deviation
between the effective potentials (see Eq. (2) of Ref. [5])
of successive iterations. The PG20/9 and PGint calculations
have been performed using a smaller mixing ratio between the
effective potentials of two successive iterations and require a
large number of iterations.
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FIG. 11. Electron densities ρ(r) of the jellium sphere with 18 e−

and bulk parameter rs = 2.07, computed from KSDFT and OFDFT
with several KE functionals.
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The PG20/9 functional, which has the UEG linear re-
sponse of GSE2, is the most accurate at r → 0 but shows
large and spurious Friedel oscillations inside the sphere. This
is the right physical behavior expected from GSE2, which,
by construction, is overestimating the Friedel oscillations. On
the other hand, the PGint, whose UEG linear response is the
same as PGS (and GE2), gives a small drop of the density
at the center of the cluster but rapidly recovers the PGS
behavior.

IV. CONCLUSIONS

We have constructed the nonempirical second-order gra-
dient singularity expansion (GSE2) of the kinetic energy,
which can accurately mimic the exact behaviors of both Pauli
potential vθ and KE density τ of atoms, with the exception
of the asymptotic and near-the-nucleus regions, where the
KE nonlocality cannot be described at the semilocal level.
Nevertheless, GSE2 can show the atomic shell structures of
vθ and τ when the KSDFT density is used.

Due to its behavior near the nucleus, the GSE2 alone is
not suitable for OFDFT calculations, but it can be used in
the development of kinetic energy functionals. In order to
study the importance of GSE2 for the semilocal KE func-
tionals, we have constructed the simple PG20/9 GGA KE
functional, which is a member of the Pauli-Gaussian-μ family
of functionals [15], where μ = 20/9 was chosen to recover
the GSE2 in the slowly-varying density regime. The PG20/9
GGA preserves the UEG linear response of GSE2 (see Fig. 1)

and has a positive KE Pauli enhancement factor. We have
also proposed the PGint GGA KE functional that recovers the
regular GE2 in the slowly-varying density regime and for the
UEG linear response (see Fig. 1), otherwise being very close
to the PG20/9 functional, as shown in Fig. 6.

Using OFDFT calculations, as well as post-processing
KSDFT densities, we tested these functionals together with
the recently proposed PG1 and PGS [15], LKT [71], and
the popular TFW [70], for several properties of noble atoms
(from He up to 290 e− atom): total kinetic energies, ionization
energies, density errors, ionization density errors, KE, and
electronic density response in atoms due to various changes
in the external potential. For all these benchmark tests, the
PG20/9 and PGint are between the most accurate, showing
a systematic improvement over the other KE functionals.
The overall PG20/9 and PGint performance is a strong in-
dication on the usefulness of GSE2 for the KE functional
development.

However, still these functionals do not capture the shell-
structure oscillations in OFDFT calculations, as shown in
Figs. 7 and 8. One of the main reason for this failure can be
the modest description of the nuclear region, provided by the
GGA level of theory (see also Fig. S3 of Ref. [118], which
shows the Pauli KE potentials of Ar and He atoms, computed
from OFDFT calculations). We recall that the nuclear region
gives a large contribution to the KE. Further investigation of
the Laplacian-level meta-GGAs and nonlocal functionals such
as u-meta-GGAs [36,77,78] can boost the all-electron OFDFT
accuracy for finite systems.

[1] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[2] M. Levy, Proc. Natl. Acad. Sci. 76, 6062 (1979).
[3] W. C. Witt, G. Beatriz, J. M. Dieterich, and E. A. Carter,

J. Mater. Res. 33, 777 (2018).
[4] E. A. Carter, Science 321, 800 (2008).
[5] M. Levy, J. P. Perdew, and V. Sahni, Phys. Rev. A 30, 2745

(1984).
[6] G. E. Scuseria and V. N. Staroverov, Theory and Applications

of Computational Chemistry, edited by C. E. Dykstra, G.
Frenking, K. S. Kim, and G. E. Scuseria (Elsevier, Amsterdam,
2005), pp. 669–724.

[7] F. Della Sala, E. Fabiano, and L. A. Constantin, Int. J.
Quantum Chem. 116, 1641 (2016).

[8] M. Levy and J. P. Perdew, Phys. Rev. A 32, 2010 (1985).
[9] M. Levy, Phys. Rev. A 26, 1200 (1982).

[10] L. H. Thomas, in Mathematical Proceedings of the Cam-
bridge Philosophical Society (Cambridge University Press,
Cambridge, 1927), Vol. 23, pp. 542–548.

[11] E. Fermi, Rend. Accad. Naz. Lincei 6, 32 (1927).
[12] V. V. Karasiev, D. Chakraborty, and S. B. Trickey, Many-

Electron Approaches in Physics, Chemistry and Mathematics
(Springer, Cham, 2014), pp. 113–134.

[13] V. V. Karasiev and S. B. Trickey, Adv. Quantum Chem. 71,
221 (2015).

[14] L. A. Constantin, E. Fabiano, and F. Della Sala, Phys. Rev. B
97, 205137 (2018).

[15] L. A. Constantin, E. Fabiano, and F. Della Sala, J. Phys. Chem.
Lett. 9, 4385 (2018).

[16] T. T. Chau, J. H. Hue, M.-I. Trappe, and B.-G. Englert, New J.
Phys. 20, 073003 (2018).

[17] L. Hung and E. A. Carter, Chem. Phys. Lett. 475, 163 (2009).
[18] F. Lambert, J. Clérouin, and S. Mazevet, Europhys. Lett. 75,

681 (2006).
[19] M. Chen, L. Hung, C. Huang, J. Xia, and E. A. Carter, Mol.

Phys. 111, 3448 (2013).
[20] V. Gavini, K. Bhattacharya, and M. Ortiz, J. Mech. Phys. Sol.

55, 697 (2007).
[21] B. Radhakrishnan and V. Gavini, Phys. Rev. B 82, 094117

(2010).
[22] V. Gavini, Phys. Rev. Lett. 101, 205503 (2008).
[23] B. Radhakrishnan and V. Gavini, Philos. Mag. 96, 2468

(2016).
[24] K. J. Caspersen and E. A. Carter, Proc. Nat. Acad. Sc. 102,

6738 (2005).
[25] H. Xiang, M. Zhang, X. Zhang, and G. Lu, J. Phys. Chem. C

120, 14330 (2016).
[26] B. G. del Rio, M. Chen, L. E. González, and E. A. Carter,

J. Chem. Phys. 149, 094504 (2018).
[27] G. Ho, M. T. Ong, K. J. Caspersen, and E. A. Carter, Phys.

Chem. Chem. Phys. 9, 4951 (2007).
[28] I. Shin and E. A. Carter, Acta Mater. 64, 198 (2014).
[29] W. Mi and M. Pavanello, arXiv:1812.08952.

155137-9

https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1073/pnas.76.12.6062
https://doi.org/10.1073/pnas.76.12.6062
https://doi.org/10.1073/pnas.76.12.6062
https://doi.org/10.1073/pnas.76.12.6062
https://doi.org/10.1557/jmr.2017.462
https://doi.org/10.1557/jmr.2017.462
https://doi.org/10.1557/jmr.2017.462
https://doi.org/10.1557/jmr.2017.462
https://doi.org/10.1126/science.1158009
https://doi.org/10.1126/science.1158009
https://doi.org/10.1126/science.1158009
https://doi.org/10.1126/science.1158009
https://doi.org/10.1103/PhysRevA.30.2745
https://doi.org/10.1103/PhysRevA.30.2745
https://doi.org/10.1103/PhysRevA.30.2745
https://doi.org/10.1103/PhysRevA.30.2745
https://doi.org/10.1002/qua.25224
https://doi.org/10.1002/qua.25224
https://doi.org/10.1002/qua.25224
https://doi.org/10.1002/qua.25224
https://doi.org/10.1103/PhysRevA.32.2010
https://doi.org/10.1103/PhysRevA.32.2010
https://doi.org/10.1103/PhysRevA.32.2010
https://doi.org/10.1103/PhysRevA.32.2010
https://doi.org/10.1103/PhysRevA.26.1200
https://doi.org/10.1103/PhysRevA.26.1200
https://doi.org/10.1103/PhysRevA.26.1200
https://doi.org/10.1103/PhysRevA.26.1200
https://doi.org/10.1016/bs.aiq.2015.02.004
https://doi.org/10.1016/bs.aiq.2015.02.004
https://doi.org/10.1016/bs.aiq.2015.02.004
https://doi.org/10.1016/bs.aiq.2015.02.004
https://doi.org/10.1103/PhysRevB.97.205137
https://doi.org/10.1103/PhysRevB.97.205137
https://doi.org/10.1103/PhysRevB.97.205137
https://doi.org/10.1103/PhysRevB.97.205137
https://doi.org/10.1021/acs.jpclett.8b01926
https://doi.org/10.1021/acs.jpclett.8b01926
https://doi.org/10.1021/acs.jpclett.8b01926
https://doi.org/10.1021/acs.jpclett.8b01926
https://doi.org/10.1088/1367-2630/aacde1
https://doi.org/10.1088/1367-2630/aacde1
https://doi.org/10.1088/1367-2630/aacde1
https://doi.org/10.1088/1367-2630/aacde1
https://doi.org/10.1016/j.cplett.2009.04.059
https://doi.org/10.1016/j.cplett.2009.04.059
https://doi.org/10.1016/j.cplett.2009.04.059
https://doi.org/10.1016/j.cplett.2009.04.059
https://doi.org/10.1209/epl/i2006-10184-7
https://doi.org/10.1209/epl/i2006-10184-7
https://doi.org/10.1209/epl/i2006-10184-7
https://doi.org/10.1209/epl/i2006-10184-7
https://doi.org/10.1080/00268976.2013.828379
https://doi.org/10.1080/00268976.2013.828379
https://doi.org/10.1080/00268976.2013.828379
https://doi.org/10.1080/00268976.2013.828379
https://doi.org/10.1016/j.jmps.2007.01.012
https://doi.org/10.1016/j.jmps.2007.01.012
https://doi.org/10.1016/j.jmps.2007.01.012
https://doi.org/10.1016/j.jmps.2007.01.012
https://doi.org/10.1103/PhysRevB.82.094117
https://doi.org/10.1103/PhysRevB.82.094117
https://doi.org/10.1103/PhysRevB.82.094117
https://doi.org/10.1103/PhysRevB.82.094117
https://doi.org/10.1103/PhysRevLett.101.205503
https://doi.org/10.1103/PhysRevLett.101.205503
https://doi.org/10.1103/PhysRevLett.101.205503
https://doi.org/10.1103/PhysRevLett.101.205503
https://doi.org/10.1080/14786435.2016.1205232
https://doi.org/10.1080/14786435.2016.1205232
https://doi.org/10.1080/14786435.2016.1205232
https://doi.org/10.1080/14786435.2016.1205232
https://doi.org/10.1073/pnas.0408127102
https://doi.org/10.1073/pnas.0408127102
https://doi.org/10.1073/pnas.0408127102
https://doi.org/10.1073/pnas.0408127102
https://doi.org/10.1021/acs.jpcc.6b05841
https://doi.org/10.1021/acs.jpcc.6b05841
https://doi.org/10.1021/acs.jpcc.6b05841
https://doi.org/10.1021/acs.jpcc.6b05841
https://doi.org/10.1063/1.5040697
https://doi.org/10.1063/1.5040697
https://doi.org/10.1063/1.5040697
https://doi.org/10.1063/1.5040697
https://doi.org/10.1039/b705455f
https://doi.org/10.1039/b705455f
https://doi.org/10.1039/b705455f
https://doi.org/10.1039/b705455f
https://doi.org/10.1016/j.actamat.2013.10.030
https://doi.org/10.1016/j.actamat.2013.10.030
https://doi.org/10.1016/j.actamat.2013.10.030
https://doi.org/10.1016/j.actamat.2013.10.030
http://arxiv.org/abs/arXiv:1812.08952


LUCIAN A. CONSTANTIN PHYSICAL REVIEW B 99, 155137 (2019)

[30] P. García-González, J. E. Alvarellos, and E. Chacón, Phys.
Rev. A 54, 1897 (1996).

[31] Y. A. Wang and E. A. Carter, Theoretical Methods in
Condensed Phase Chemistry (Springer, New York, 2002),
pp. 117–184.

[32] I. A. Howard, N. H. March, and V. E. Van Doren, Phys. Rev.
A 63, 062501 (2001).

[33] N. March and R. Santamaria, Int. J. Quantum Chem. 39, 585
(1991).

[34] F. Della Sala, E. Fabiano, and L. A. Constantin, Phys. Rev. B
91, 035126 (2015).

[35] J. C. Snyder, M. Rupp, K. Hansen, K.-R. Müller, and K.
Burke, Phys. Rev. Lett. 108, 253002 (2012).

[36] L. A. Constantin, E. Fabiano, and F. Della Sala, Computation
4, 19 (2016).

[37] R. O. Esquivel, J. Chen, M. J. Stott, R. P. Sagar, and V. H.
Smith Jr, Phys. Rev. A 47, 936 (1993).

[38] J. Sun, B. Xiao, Y. Fang, R. Haunschild, P. Hao, A.
Ruzsinszky, G. I. Csonka, G. E. Scuseria, and J. P. Perdew,
Phys. Rev. Lett. 111, 106401 (2013).

[39] Z. Qian, Phys. Rev. B 75, 193104 (2007).
[40] L. A. Constantin, E. Fabiano, J. M. Pitarke, and F. Della Sala,

Phys. Rev. B 93, 115127 (2016).
[41] M. Ernzerhof, K. Burke, and J. P. Perdew, J. Chem. Phys. 105,

2798 (1996).
[42] A. D. Becke and K. E. Edgecombe, J. Chem. Phys. 92, 5397

(1990).
[43] E. Fabiano, L. Constantin, and F. Della Sala, J. Chem. Theory

Comput. 10, 3151 (2014).
[44] Y. Han and D.-J. Liu, Phys. Rev. B 80, 155404 (2009).
[45] C. F. von Weizsäcker, Z. Phys. 96, 431 (1935).
[46] K. Finzel, Int. J. Quantum Chem. 115, 1629 (2015).
[47] K. Finzel, Int. J. Quantum Chem. 116, 1261 (2016).
[48] K. Finzel, J. Davidsson, and I. A. Abrikosov, Int. J. Quantum

Chem. 116, 1337 (2016).
[49] K. Finzel, J. Chem. Phys. 144, 034108 (2016).
[50] K. Finzel, Theor. Chem. Acc. 135, 87 (2016).
[51] K. Finzel, Theor. Chem. Acc. 134, 106 (2015).
[52] K. Finzel and P. W. Ayers, Int. J. Quantum Chem. 117, e25364

(2017).
[53] K. Finzel, Theor. Chem. Acc. 135, 148 (2016).
[54] K. Finzel, Int. J. Quantum Chem. 117, e25329 (2017).
[55] D. Kirzhnitz, Sov. Phys. JETP 5, 64 (1957).
[56] H. Ou-Yang and M. Levy, Int. J. Quantum Chem. 40, 379

(1991).
[57] J. P. Perdew, Phys. Lett. A 165, 79 (1992).
[58] M. Ernzerhof, J. Mol. Struct.: THEOCHEM 501, 59 (2000).
[59] L. A. Constantin and A. Ruzsinszky, Phys. Rev. B 79, 115117

(2009).
[60] L. Vitos, B. Johansson, J. Kollar, and H. L. Skriver, Phys. Rev.

A 61, 052511 (2000).
[61] A. Lindmaa, A. E. Mattsson, and R. Armiento, Phys. Rev. B

90, 075139 (2014).
[62] L. A. Constantin, E. Fabiano, S. Śmiga, and F. Della Sala,
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