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Efficient representation of topologically ordered states with restricted Boltzmann machines
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Representation by neural networks, in particular by restricted Boltzmann machines (RBMs), has provided
a powerful computational tool to solve quantum many-body problems. An important open question is how to
characterize which class of quantum states can be efficiently represented with RBMs. Here, we show that RBMs
can efficiently represent a wide class of many-body entangled states with rich exotic topological orders. This
includes (1) ground states of double semion and twisted quantum double models with intrinsic topological orders,
(2) states of the AKLT model and two-dimensional CZX model with symmetry protected topological orders,
(3) states of stabilizer Fracton models with fracton topological order, and (4) (generalized) stabilizer states and
hypergraph states that are important for quantum information protocols. One twisted quantum double model state
considered here harbors non-Abelian anyon excitations. Our result shows that it is possible to study a variety of
quantum models with exotic topological orders and rich physics using the RBM computational toolbox.
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I. INTRODUCTION

Deep learning has become a powerful tool with wide appli-
cations [1,2]. Recently, deep learning methods have attracted
considerable attention in quantum physics [3,4], especially
for attacking quantum many-body problems. The difficulty of
quantum many-body problems mainly originates from the ex-
ponential growth of the Hilbert space dimension. To overcome
this exponential difficulty, researchers traditionally use tensor
network methods [5–7] and quantum Monte Carlo (QMC)
simulation [8]. However, QMC methods suffer from the sign
problem [9]; tensor network methods have difficulty dealing
with high dimensional systems [10] or systems with massive
entanglement [11]. These issues call for new methods.

Being one of the fundamental building blocks of deep
learning, the neural network has been recently employed
as a compact representation of quantum many-body states
[12–22]. Many variants of neural networks have been in-
vestigated numerically or theoretically, such as the restricted
Boltzmann machines (RBM) [12,13,15,21], the deep Boltz-
mann machine (DBM) [15,16,22], and the feedforward neu-
ral network (FNN) [18]. The RBM ansatz has also been
investigated for quantum information protocols [23–25]. We
focus here on the RBM states which work efficiently during
variational optimization although the representational power
of this is somewhat limited. An important open issue is how
to characterize the class of quantum many-body states that can
be represented by the RBMs.

In past decades, the studies of topological order [26,27],
which are beyond the framework of Landau’s symmetry
breaking paradigm [28], have attracted tremendous attention.
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There are several types of topological ordered states: the
intrinsic topological ordered states feature unliftable ground
state degeneracy through local perturbations; the symmetry
protected topological (SPT) ordered states with a given sym-
metry cannot be smoothly deformed into each other without
a phase transition if the deformation preserves the symmetry;
the fracton topological ordered states harbor point excitations
that are immobile in the three-dimensional space, i.e., frac-
tons. While several studies have shown that the RBM can
capture simple many-body states such as graph/cluster states
[13,15] and toric/surface code states [13,15,21], no single
study exists which represents other more exotic topological
states in the condensed matter physics [26,27,29,30].

In this paper, we incorporate tools from quantum informa-
tion to construct the RBM representations for other notable
many-body states, focusing on different topologically ordered
states. Many exotic condensed matter topological states can
be described by powerful quantum information tools: (i) the
hypergraph state formalism which generalizes the graph-state
formalism; (ii) the stabilizer formalism [31] which describes
most of the quantum error correction code; (iii) the XS-
stabilizer formalism [32] which generalizes stabilizer for-
malism. These formalisms themselves are vital for quantum
error correction [31], classical simulation of quantum circuits
[33], and Bell’s nonlocality [34–38]. We prove these states
of (i)–(iii) can be represented by the RBM efficiently based
on the properties of their wave functions. We also propose a
unary representation to generalize the RBM state to higher
spin systems.

These tools from quantum information provide recipes
for constructing the RBM representation within their formal-
ism. The stabilizer formalism describes many fracton models
[39–44] such as Haah’s code [39]. Concerning the intrinsic
topological order, we show the RBM states can capture dou-
ble semion of a string-net model [45,46] and many twisted
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FIG. 1. Different generalizations of graph states. (a) Hypergraph
states generalize graph states by introducing three-body correlation
factors; (b) stabilizer states generalize graph states by additional
parity constraints on qubits; (c) XS-stabilizer states combine the
parity constraints from Pauli stabilizers and three-body correlation
factors from hypergraph states. Many condensed matter topological
models fall into these quantum information formalisms and thus can
be represented efficiently by RBM. We will encounter them later.
Combining with the unary representation, stabilizer states with added
unary constraints can describe the AKLT state. Thus the AKLT state
can be efficiently represented by the RBM.

quantum double models [47–49] using their XS-stabilizer
description. For symmetry protected topological orders, we
give exact constructions of the AKLT model [50,51] with the
unary representation, which is thought to be impossible with
RBMs [19]. We also consider RBM representation for other
SPT models such as the two-dimensional (2D) CZX model
[52]. Our exact representation results provide insights and a
powerful tool for future studies of quantum topological phase
transitions and quantum information protocols.

II. RBM STATE

We first recall the definition of the RBM state and de-
scribe notations. In the computational basis, a quantum wave
function of n qubit can be expressed as |�〉 = ∑

v �(v)|v〉
with v ≡ (v1, . . . , vn), where the �(v) is a complex func-
tion of n binary variables vi. We use {0, 1} valued ver-
tices instead of {−1, 1} valued vertices for convenience.
In the case of RBM, �(v) = ∑

h eW (v,h), where the weight
W (v, h) = ∑

i, j Wi jvih j + ∑
i aivi + ∑

j b jh j is a complex
quadratic function of binary variables. While a Boltzmann
machine allows arbitrary intralayer connection, in RBM the
visible neurons v only connect to hidden neurons h. Let the
number of visible neurons be n and the number of hidden
neurons be m. We say the representation is efficient if m =
poly(n). The whole wave function writes

�RBM(v) = e
∑n

i=1 aivi

m∏
j=1

[1 + exp(θ j )], (1)

with effective angles θ j = b j + ∑n
k=1 Wk jvk .

We depict this paper’s roadmap in Fig. 1. RBM states
[53] have been shown to represent graph states efficiently
[13,15] [recall the wave function of graph states takes the

FIG. 2. Unary RBM representation for higher spin systems. The
three left yellow neurons correspond to the qubit 1 and the three right
yellow neurons correspond to the qubit 2. Two blue neurons in the
unary hidden layers restrict three visible yellow neurons to be one of
100, 010, and 001 that correspond to |−1〉, |0〉, and |+1〉 in spin 1.
The whole graph is still a bipartite graph.

form �(v1, . . . , vn) = ∏
{i, j}(−1)viv j (up to a normalization

factor), where {i, j} denotes an edge linking the ith and
jth qubits represented by visible neurons vi, v j]. There are
various ways to generalize graph states. Hypergraph states
[54] generalize graph states by introducing more than two
body correlation factors such as (−1)v1v2v3 . Stabilizer states
generalize graph states through additional local Clifford op-
erations [55–57], which impose parity constraints and extra
phases. XS-stabilizer states [32] combine three-body corre-
lation factors from hypergraph states and parity constraints
from stabilizer states. A parity constraint, (v1 + v2 + · · · +
vk ) mod 2 = 0, can be realized by a hidden neuron that
connects to each of these visible neurons v1, v2, . . . , vk with
weight function W (v, h) = iπvh − (ln 2)/4 [58]. Next we de-
rive the RBM representation of multibody correlation factors
(hypergraph states) and the unary representation, so that all
the states in Fig. 1 can be represented by the RBM.

III. UNARY RBM REPRESENTATION

To study higher spin systems, we propose a unary repre-
sentation. The idea of unary representation is best illustrated
using an example, as depicted in Fig. 2. We use three neurons
(qubits) to represent a spin-1, |100〉 → |−1〉, |010〉 → |0〉,
and |001〉 → |1〉, by restricting these three neurons (qubits)
to the subspace spanned by |100〉, |010〉, and |001〉. This can
be done by using two hidden neurons (blue neurons in Fig. 2)
(see Appendix B for more details). Our unary representation is
simpler than multivalued neurons or encoded binary neurons
in distinguishing and decoding basis states. We emphasize
that our unary RBMs are more powerful than RBMs with
multivalue neurons; an example is that the state of the AKLT
model can be represented by short-ranged unary RBMs but
cannot be represented by short-ranged RBMS with ternary
visible units. We will describe this example in Sec. V C.

IV. RBM REPRESENTATION OF STATES FROM
QUANTUM INFORMATION FORMALISMS

A. RBM representation of hypergraph states

Hypergraphs generalize graphs by allowing an edge to join
any number of vertices. We define an edge that connects k
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FIG. 3. RBM representation of hypergraph state. (a) A hyper-
graph. There are two three hyperedges that connect q1, q2, q3 and
q3, q4, q5. (b) The encoding circuit of this hypergraph state, where
|+〉 = (|0〉 + |1〉)/

√
2 represents the input state for all the qubits and

the connected dots denote the controlled-controlled-Z gate. (c) The
corresponding RBM representation of (a). Orange neurons are visible
neurons, and both green and yellow vertices are hidden neurons. The
two different colors (yellow and green) represent different weight
functions.

vertices a k hyperedge. Given a mathematical hypergraph,
the wave function of its corresponding hypergraph state [54]
takes the form �hypergraph(v) ∝ ∏

{v1,v2,...,vk}∈E (−1)v1v2...vk . The
notation {v1, v2, . . . , vk} ∈ E means that these k vertices
{v1, v2, . . . , vk} are connected by a k hyperedge. We illustrate
the correspondence in Fig. 3. We now extend RBM represen-
tation to hypergraph states.

Theorem 1. Restricted Boltzmann machines can represent
any hypergraph states efficiently and exactly.

In the main text, we take the graph with three hyperedges
as an example; it will be useful later for representation of XS-
stabilizer states and SPT states. Precisely, we make use of the
following decomposition:

(−1)v1v2v3 = eiπ (
∑3

i=1 vi )
∑
h1,h2

ew(
∑3

i=1 vi )(h1−h2 )+b(h1+h2 )+c, (2)

where w = i, b = ln( 1+√−15
4 ), and c = ln 2

3 − b. Thus the
exact RBM representation of (−1)v1v2v3 uses two hidden
neurons, as shown in Fig. 3(c). The method for decomposing
(−1)v1v2v3 can be extended to treat (−1)v1v2···vk for arbitrary k
with 2k + O(1) hidden neurons [59].

B. RBM representation of XS/Pauli-stabilizer states

The Pauli stabilizer formalism generalizes graph states by
applying some local Clifford transformations [56,60]. The
XS-stabilizer formalism generalizes the Pauli stabilizer for-
malism [32] by changing the single qubit Pauli group to Pauli-
S group PS = 〈αI, X, S〉, where α = eiπ/4 and S = diag(1, i).
We have the following theorem based on the key observa-
tion that the wave function of the stabilizer state (proved in
[55,61–63]) and the similar result on the XS-stabilizer state
(proved in [32]).

Theorem 2. Restricted Boltzmann machines can represent
any Pauli-stabilizer states and XS-stabilizer states efficiently
and exactly.

Let δ(x) be a Boolean function which satisfies δ(0) = 1 and
δ(1) = 0. The wave functions of every Pauli-stabilizer state

FIG. 4. Closeup of a Clifford circuit. Visible neurons are
vp, vq, . . . and hidden neurons are hi, hj, . . .. Each H gate corre-
sponds to two neurons with the weight (−1)xix j . Each S gate corre-
sponds to one neuron with the weight ix j ; each CZ gate corresponds
to two neurons with the weight (−1)x1x2 . The whole wave function is
a DBM which can be eliminated to a RBM.

and XS-stabilizer state on n qubits can be written as the closed
form of

�Pauli(v) ∝ il (v)(−1)q(v)
∏

j

δ
(
Lp

j mod 2
)
, (3)

�XS(v) ∝ αl (v)iq(v)(−1)c(v)
∏

j

δ
(
Lp

j mod 2
)
, (4)

where l (v), q(v), and c(v) are linear, quadratic, and cubic
polynomials of v with integer coefficients, respectively. The
Lp

j are affine (linear terms plus constant term) functions of
some subsets of v. Moreover, the polynomials l (x), q(x), and
c(x) along with Lp

j can be determined efficiently from the
given stabilizers.

Given this wave function, we can easily deduce its RBM
representation. First, the

∏
j δ(Lp

j mod 2) parts correspond to
parity constraints, which RBM can represent. Meanwhile,
functions that are products of il (v), (−1)q(v), αl (v), iq(v), and
(−1)c(v) can also be represented by RBM using techniques
used for graph states and hypergraph states.

In the case of stabilizer states, we provide a new proof of
the closed form wave function as follows. First, a stabilizer
state can be generated from a Clifford circuit [31] consist-
ing of H, S, and CZ gates. From the encoding circuit, the
stabilizer state can be represented by a DBM in the closed
form Eq. (3) directly. Then we can iteratively reduce it to an
RBM while still keeping the closed form. The reader who is
not interested in the derivation can safely skip the following
detailed recipe for proving Eq. (3).

The wave function can be represented by a DBM as
follows. We denote visible neurons as vp, vq, . . . and hidden
neurons as hi, h j, hk, . . .. For convenience. we unify the no-
tation of these neurons as xi, x j, xk, . . . here. As shown in
Fig. 4, each H gate corresponds to two neurons with the
weight (−1)xix j ; each S gates corresponds to one neuron with
the weight ix j (even though each single qubit matrix has
two indices); each CZ gate corresponds to two neurons with
the weight (−1)x1x2 . Multiplying together and summing over
all the hidden indices, we can get the wave function of the
stabilizer state:

�(vp, vq, . . .) ∝
∑

hi,h j ,...

iL(hi,h j ,...,vp,vq,...)(−1)Q(hi,h j ,...,vp,vq,...),

(5)
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where L and Q are affine (with linear and constant terms)
and quadratic (without linear term) polynomials with integer
coefficients.

Next, we reduce this DBM to a RBM with the following
strategy: after eliminating an hi for some i, the remaining term
still keeps the form shown in Eq. (5) except for an additional
parity constraint on some of vp, vq, . . .. Here, we consider the
effect of eliminating hi in detail.

(1) If the coefficient of hi in L is zero or 2, ignoring the
terms not depending on hi, the remaining in Eq. (5) could be
written as

∑
hi

(−1)hiL′
i = 2δ

(
Lp

i mod 2
)
,

where δ means constraint and Lp
i is an affine polynomial

involving those x j which interact with hi in Q and constant
terms which are the coefficients of hi in L. There are two cases
for Lp

i .
(1.1) If Lp

i only involves visible neurons, we can put this
constraint δ before the summation in Eq. (5).

(1.2) If Lp
i involves hidden neurons, e.g., h j , then we can

solve the equation Lp
i = 0 mod 2 by h j = Lp′

i mod 2. After
the summation of h j , the only remaining terms are those
satisfying h j = Lp′

i mod 2 so we can replace h j by Lp′
i in Q

and by (Lp′)2 in L [because Lp′ mod 2 = (Lp′)2 mod 4] in
Eq. (5). The key point is the coefficients of quadratic terms
in (Lp′)2 are always 2; thus they keep the same form as the
terms in the summation of Eq. (5) after summation over hi

and h j .
(2) If the coefficient of hi in L is 1 (the case for 3 is similar),

ignoring the terms not depending on hi, the remaining in
Eq. (5) can be written as

∑
hi

(−1)hiL
p
i ihi = (1 + i)i3(Lp

i )2
.

The key point is that the coefficient of quadratic terms in (Lp
i )2

is 2; thus it keeps the same form as the terms in the summation
of Eq. (5) after summation over hi.

After eliminating all the hidden variables, the wave func-
tion could be written as the form of Eq. (3).

One can make use of local Clifford equivalence between
stabilizer state and graph states [56,64] to further simplify
our procedure. The encoding circuit can be chosen based on
the fact that every stabilizer state can be chosen to be locally
equivalent to a graph state such that only at most a single H or
S gate is acting on each qubit [64]. Then, the number of hidden
neurons used to represent hidden variables is fewer than the
number of H acting on each qubit. In total, the number of
hidden neurons needed is of order O(Ne + n). The Ne is the
number of edges in the corresponding graph, and is at most
O(n2); however, we do not usually encounter graph states
from dense graphs [65], typically only O(n log n) or even
O(n) hidden neurons are needed. Our representation method
is effective and optimal.

Next, we describe topological states with different topolog-
ical orders within our quantum information framework. These
topological states can be represented as RBM efficiently.

V. RBM REPRESENTATION OF TOPOLOGICALLY
ORDERED STATES

A. Fracton topological order

The Pauli stabilizer formalism covers most of the fracton
topological order models [39–41,44], such as Haah’s code
[39], X-cube model [43], and checkboard model [43]. For
example, stabilizers of Haah’s code involve two types of
stabilizers on eight spins: eight Z operators and eight X
operators in each cube. The RBM representations for states
of these models can be easily deduced using our method in
Sec. IV B.

B. Intrinsic topological order

We now consider RBM representation for some notable XS
stabilizer states: the double semion (an example of the string-
net model [45]) and many twist quantum double models. We
define the double semion model on a honeycomb lattice with
one qubit per edge. The wave function of double semion
is |ψ〉 = ∑

x is loops(−1)number of loops|x〉. In the XS-stabilizer
formalism, this model has two types of stabilizer operators
[32]: gp = ∏

l∈v Zl , gp = ∏
l∈p Xl

∏
r∈legs of p Sr correspond-

ing to the vertex s and the face p, respectively.
Quantum double models [47] are generalizations of the

toric code that describe systems of Abelian and non-Abelian
anyons. Twisted quantum double models further generalize
quantum double models [47–49,66,67] and are Hamiltonian
realizations of Dijkgraaf-Witten topological Chern-Simons
theories [68]. Many twisted quantum double models fit into
the XS-stabilizer formalism [32] and thus can be represented
as RBM exactly. Examples include twisted quantum double
model Dω(Zn

2) with the group Zn
2 and different twists ω ∈

H3(Zn,U (1)) on a triangular lattice, where H3(Zn
2,U (1)) is

the third cohomology group. The H3(Z1
2,U (1)) case includes

the double semion. It is known [32,69] that a nontrivial twist
from H3(Z3

2,U (1)) harbors non-Abelian anyon excitations.

C. Symmetry protected topological order

The AKLT model [50,51] is a one-dimensional spin-1
model with symmetric protected topological order. When
imposing the periodic boundary condition, the unique ground
state |ψAKLT 〉, in terms of the matrix product state, is written

�AKLT (a1, a2, . . . , an) ∝ Tr
(
Aa1 Aa2 . . . Aan

)
, (6)

where A−1 = X, A0 = Y , A+1 = Z , and ai = −1, 0,+1. Al-
ternatively, matrix product states can be described as projected
entangled pair states (PEPS) [26]. As shown in Fig. 5, every
red line is a EPR pair |00〉 + |11〉. Each shaded circle repre-
sents a projection from two spins of dimension 2 to a physical
degree of dimension 3 (spin-1). P = ∑

ai,α,β Aai,α,β |ai〉〈αβ|,
where the summation is over ai = −1, 0, 1 and α, β = 1, 2.
After using unary representation, in the quantum circuit lan-
guage, the projection P is a map that maps |01〉 + |10〉 →
|100〉, i(|01〉 − |10〉) → |010〉, and |00〉 − |11〉 → |001〉. We
find such a quantum circuit made of Clifford gate, as shown in
Fig. 5(b). Because all operations are Clifford gates, the whole
quantum state is a Pauli stabilizer state restricted to the single
excitation subspace spanned by |001〉, |010〉, and |100〉. Thus
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FIG. 5. (a) Ground state of the AKLT model. The spin one on
each lattice site can be decomposed into two spin 1/2’s which
form EPR pairs between nearest neighbor pairs. At the two ends
of an open chain, there are two isolated spin 1/2’s giving rise
to a fourfold ground state degeneracy. Every red line represents
a |00〉 + |11〉 state. Each shaded circle represents a projection op-
erator P = |100〉(〈01| + 〈10|) + |010〉i(〈01| − 〈10|) + |001〉(〈00| −
〈11|). (b) The Clifford circuit that realizes the projection P under the
unary representation (living in the space spanned by |100〉, |010〉 and
|001〉). Here |+〉 means projecting onto the |+〉 state.

it can be represented by RBM with unary hidden neurons
(blue neurons in Fig. 2) and other hidden neurons [70].

We also show RBM can represent other symmetry-
protected topologically ordered states. These examples in-
clude the 2D CZX model (with Z2 symmetry), and Yoshida’s
CCZ model [71] (with Z2 ⊗ Z2 ⊗ Z2 symmetry). The ground
state of the 2D CZX model [52] is a tensor product of GHZ
states |0000〉 + |1111〉 on each plaquette. Because the GHZ
states belong to stabilizer states, RBM can exactly represent
the ground state of the 2D CZX model. Similar to SPT cluster
states, the ground state of Yoshida’s CCZ model [40] on the
trivalent lattice is a hypergraph state with three hyperedges.
Thus it can also be represented efficiently by RBMs.

VI. CONCLUSION AND DISCUSSION

This paper sets out to investigate different topological
models with RBM representation using tools from quantum
information such as the (XS) stabilizer and the (hyper) graph-
state formalisms. The most significant findings are the fact
that RBM states can capture ground states of exotic models
with different types of topological orders, including intrinsic
topological orders, symmetry protected topological orders,
and fracton topological orders. It remains open whether RBM
can capture additional string-net models with more exotic
non-Abelian anyon excitations such as the states of the double
Fibonacci model [45]. The RBM state may be helpful in
investigating symmetry enriched topological order [72] and
symmetry fractionalization [73]. We remark that our method
also generalizes conveniently to qudit stabilizer states [64]
with the proposed unary representation. Our exact represen-
tation results provide useful guidance for future numerical
studies on topological phase transitions.

Our results are also of interest from the quantum infor-
mation perspective. The Gottesman-Knill theorem [33,65,74]

states that stabilizer dynamics can be efficiently simulated.
Our result which shows RBM states contain stabilizer states
suggests classical simulation of an unknown larger family of
quantum circuits may benefit from the RBM representation
[24]. Because hypergraph states allow for an exponentially
increasing violation of the Bell inequalities [34–37], our re-
sults provide analytical evidence for numerical studies [13]
on estimating maximum violation of Bell inequalities.

Note added. Recently, a report appeared [75] which gives
a different method to represent stabilizer states with the re-
stricted Boltzmann machine.
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APPENDIX A: DETAILED DERIVATION OF RBM
REPRESENTATIONS OF HYPERGRAPH STATES

First we recall the definition of the quantum hypergraph
state in more detail. Mathematically, hypergraphs are gener-
alizations of graphs in which an edge may connect more than
two vertices. Formally, a hypergraph H is a pair H = (X, E )
where X is a set of elements called vertices and E is a
subset of P(X ), where P(X ) is the power set of X . Given
a mathematical hypergraph, the corresponding quantum state
can be generated by following similar steps in constructing a
graph state: first, assign to each vertex a qubit and initialize
each qubit as |+〉; then, whenever there is hyperedge, perform
a controlled-Z operation between all connected qubits; if the
qubits v1, v2, . . . , vk are connected by a k hyperedge, then
perform CkZi1,i2,...,ik . As a result, the hypergraph state and its
wave function [54] take the form

|g〉 =
∏

{i1,i2,...,ik}∈E

CkZi1,i2,...,ik |+〉⊗n,

�(g) =
∑

v1,v2,...,vn

∏
{i1,i2,...,ik}∈E

(−1)i1i2...ik |v1v2 · · · vn〉. (A1)

Next, we give a detailed derivation of realizing the correlation
factor of the type (−1)v1v2···vk using restricted Boltzmann
machines. We first recall (−1)v1v2 which relates to graph states
from [15]:

Hv1,v2 = (−1)v1v2

√
2

=
∑

h=0,1

eWH (v1,h)+WH (v2,h)

= cos

(
π

4
[2(v1 + v2) − 1]

)
. (A2)

Note the above equation (A2) is only true for vi = 0, 1. By
cos v = 1

2 (eiv + e−iv ) = ∑
h eiv(2h−1)−ln 2, we have an explicit

formula for WH :

WH (vi, h) = iπvih − iπ [2vi + h]/4 + (iπ/4 − ln 2)/2

= π

8
i − ln 2

2
− π

2
iv − π

4
ih + iπvh.
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Then we consider (−1)v1v2v3 with the following decomposi-
tion:

(−1)v1v2v3

= (−1)v1+v2+v3

[
8

3
cos2

(
2π

3
(v1+v2 + v3 − 1)+π

2

)
−1

]

= eiπ (v1+v2+v3 )

[
1

3
+ 4

3
cos

(
4π

3
(v1 + v2 + v3) − π

3

)]
.

Let v = 4π
3 (v1 + v2 + v3) − π

3 . The above equation simplifies
to

(−1)v1v2v3 = eiπ (v1+v2+v3 )
(

1
3 + 4

3 cos v
)

= eiπ (v1+v2+v3 )
(

1
3 + 2

3 (eiv + e−iv )
)
.

The RBM can represent the first part by definition. We con-
sider the second part as a RBM with two hidden neurons and
set equations:

1

3
+ 2

3
(eiv + e−iv )

=
∑
h1,h2

ewvh1+w2vh2+b1h1+b2h2+c

= ec(1 + ew1v+b1 + ew2v+b2 + e(w1+w2 )v+b1+b2 ).

Solving the above equation, we get w1 = −w2 = √−1, b1 =
b2 = b, and

ec(1 + e2b) = 1
3 , eb+c = 2

3 .

Solving the above system of equations, we obtain

b = ln

(
1 ± i

√
15

4

)
, c = ln

2

3
− b.

In fact, this construction can be extended to any function of
the form (−1)v1v2···vk . The proof goes as follows. First, we
generalize our construction a bit to simulate the correlation
factor 2A cos(

∑k
i=1 vi ) + B by two hidden neurons. Setting

the equation∑
h1,h2

ew1(
∑k

j=1 v j )h1+w2(
∑k

j=1 v j )h2+b1h1+b2h2

= A(ei(
∑k

i=1 v j ) + e−i(
∑k

j=1 v j ) ) + B.

Simplifying the above equation, we obtain

w1 = −w2 = i, ec+b1 = ec+b2 = A, ec(1 + eb1+b2 ) = B.

Solving the system of equations, we get

b = b1 = b2 = ln

(
B ± √

B2 − 4A2

2A

)
,

c = ln A − b = ln A = ln
2A2

B ± √
B2 − 4A2

.

Now we proceed to construct RBM representation for
g(v1, v2, . . . , vk ) = (−1)v1v2···vk . Note g(v1, v2, . . . , vk ) is
equal to 1 only if v1 = v2 = · · · vk = 1, i.e., v1 + v2 + · · · +

vk = k. For convenience, we first consider

f

(
k∑

i=1

vi

)
= 1

2

[
1 − g

(
k∑

i=1

vi

)]

=
{

1, v1 + v2 + · · · vk = k,

0, otherwise.

The trick of the construction is to introduce the function

t

(
k∑

i=1

vi

)
= cos

(
2π

k + 1
(v1 + v2 + · · · + vk + 1)

)

=
{

1, v1 + v2 + · · · vk = k,

other values otherwise.

Then the function f can be chosen as (the idea is similar to
Lagrange polynomial method)

f

(
k∑

i=1

vi

)
=

k∏
i=0

t
( ∑k

i=1 vi
) − t (i)

t (i) − t (1)
=

{
1,

∑k
i=1 vi = k,

0, otherwise.

Then by substitution we get g:

g = 1 − 2 f = 1 − 2
k∏

i=0

t
( ∑k

i=1 vi
) − t (i)

t (i) − t (1)
.

In principle we can factorize g into the form of g(t ) =∏
i(2Cit + Di ), which can then be simulated by RBM term

by term.
Now we remark on the relation between our decomposition

and Eq. (27) in [22]. These two mainly differ in the choice of
the basis. We use a {0, 1} basis in contrast to the {−1,+1}
basis in [22]. This difference leads to several consequences.
First, in the {0, 1} basis, (−1)x1x2x3 is only equal to −1 when
all the xi is equal to 1. While, in the {−1,+1} basis, ex1x2x3V is
equal to eV or e−V if the number of −1 in xi is even/odd.
That’s the reason why the latter decomposition only needs
two hidden neurons. If we derive a similar RBM expression
of our n-body gadget from Eq. (27) in [22] directly, O(2k )
hidden neurons are needed. In contrast our cost is 2k + O(1).
Meanwhile, the correlation factor of graph/hypergraph states
(−1)x1x2x3 is somewhat meaningless in the {−1,+1} basis.

APPENDIX B: DERIVATION DETAILS
OF RBM UNARY REPRESENTATIONS

Restricting three neurons only take values from 100, 010,
and 001 equivalently to construct the RBM representation of
a W state: |W 〉 = (|001〉 + |010〉 + |001〉)/

√
3. This can be

done by two hidden neurons as follows. Consider the function

h(v1, v2, v3) =
{

1, v1 + v2 + v3 = 1,

0, otherwise.

We find a decomposition of h(v1, v2, v3):

h(v1, v2, v3)=(−1)
∑3

i=1 vi

{
−1

3
+2

3
cos

[
4π

3

(
3∑

i=1

vi

)
−π

3

]}
,

which can be simulated using two hidden neurons and the
method from the last section. The weights can be easily
computed.
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When we want to use unary neurons for spin-k/2 systems,
we need the generalized W states Wn,k , which are defined to
be a uniform superposition of all computational basis states

|x〉 where x is a Hamming weight k bit string. These states
can be represented by RBM using nearly the technique from
Appendix A.
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