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A t5
2g system with a honeycomb lattice structure such as Na2IrO3 was firstly proposed as a topological

insulator even though Na2IrO3 and its isostructural materials in nature have been turned out to be a Mott
insulator with magnetic order. Here we theoretically revisit the topological property based on a minimal
tight-binding Hamiltonian for three t2g bands incorporating a strong spin orbit coupling and two types of the
first nearest-neighbor (NN) hopping channel between transition metal ions, i.e., the hopping (t1) mediated by
edge-shared ligands and the direct hopping (t ′

1) between t2g orbitals via ddσ bonding. We demonstrate that the
topological phase transition takes place by varying only these hopping parameters with the relative strength
parametrized by θ , i.e., t1 = t cos θ and t ′

1 = t sin θ . We also explore the effect of the second and third NN
hopping channels, and the trigonal distortion on the topological phase for the whole range of θ . Furthermore,
we examine the electronic and topological phases in the presence of on-site Coulomb repulsion U . Employing
the cluster perturbation theory, we show that, with increasing U , a trivial or topological band insulator in the
absence of U can be transferred into a Mott insulator with nontrivial or trivial band topology. We also show that
the main effect of the Hund’s coupling can be understood simply as the renormalization of U . We briefly discuss
the relevance of our results to the existing materials.

DOI: 10.1103/PhysRevB.99.155135

I. INTRODUCTION

Topology of electronic states is one of the most fascinating
research subjects in the current condensed matter physics.
This is a new physical aspect to distinguish quantum phases
beyond the traditional Landau’s approach based on the spon-
taneous symmetry breaking. The quantum spin Hall (QSH)
phase, which can arise in the presence of the time-reversal
symmetry (TRS), is the most extensively studied example
of intriguing topological phases [1]. The QSH insulator,
termed as a topological insulator (TI), is characterized by
the Z2 topological invariant determined by the time-reversal
polarization [2–4]. In contrast with a conventional insulator,
gapless edge or surface states protected by the TRS emerge
along with a peculiar magnetoelectric effect [5]. After the
theoretical proposal of the QSH phase in graphene [6,7] and
HgTe quantum well [8], many theoretical and experimental
researches have verified that not only a TI but also other types
of topological phases such as a topological crystalline insu-
lator and a Weyl semimetal are indeed stabilized in existing
materials [9].

TIs and many candidate TIs are 5p- or 6p-based with
a strong spin-orbit coupling (SOC) such as Bi2Se3 [10,11],
and only a few candidates have been proposed in 4d or 5d
transition metal (TM) compounds [12–23]. Na2IrO3 is the
first candidate of TM-based TIs. This system is in the low-
spin state of Ir4+ ion, stabilized due to the gigantic cubic
crystal field of approximately 3 eV, with five electrons per
TM occupying in Ir t2g-based bands, which are split into

fourfold degenerate jeff = 3/2 bands and twofold degenerate
jeff = 1/2 bands in the presence of a strong SOC. Here,
jeff is referred to as the effective total angular momentum.
Because of their large splitting, it is expected that the fourfold
degenerate jeff = 3/2 bands are fully occupied, and only the
doubly degenerate jeff = 1/2 bands cross the Fermi energy
and are half filled. Because Ir atoms in Na2IrO3 form a layered
honeycomb lattice and the energy band dispersion along the
interlayer direction is much smaller than that in the intralayer
plane, the low-energy electronic structure of Na2IrO3 can be
mapped into an effective tight-binding model for the jeff =
1/2 bands, which is reminiscent of the Kane-Mele model
of graphene [6,7]. If the parameters in the effective Kane-
Mele model is in the right range, the QSH phase necessarily
emerges in Na2IrO3. This point has been firstly pointed out by
Shitade et al. [12]. The consecutive studies have supported a
weak TI in Na2IrO3 and a strong TI in isostructural Li2IrO3

if the trigonal distortion and further neighbor hoppings are
tailored suitably [15,16].

In spite of the theoretical prediction, the QSH phase in
Na2IrO3 and its isostructural materials, Li2IrO3, Li2RhO3, and
α-RuCl3, has not been experimentally reported yet. In fact,
these materials prefer to exhibit topologically trivial insulat-
ing phases with long-range magnetic order [24–27]. These
phases are rather understood in terms of the Mott physics of
relativistic d orbitals with a strong SOC [28–30]. Although
the spatial distribution of 4d or 5d orbitals is somewhat
extended as compare with that of 3d orbitals, the electron
correlation could be hardly screened out and still play a role in
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determining their electronic characteristics. There have also
been extensive studies along this line on these systems, fo-
cusing on their exotic magnetic phases induced by the mutual
interplay among the kinetic energy, SOC, and Coulomb inter-
action, which include, for example, Kitaev spin liquid phase
[31–33].

Nevertheless, the possibility of the QSH phase in these
systems is still interesting. State-of-the-art structural control
with pressure, chemical substitution, or substrate engineering
can potentially manipulate experimentally their electronic
kinetics and correlations. Moreover, a recent photoemission
spectroscopy experiment has observed metallic surface states
near the � point in Na2IrO3 [34,35]. Despite that its tex-
ture is not direct evidence on the QSH phase, in which
a gapless mode is expected to appear at the M points, it
still infers the possibility that the electronic character near
surfaces could be quite different from the bulk Mott insulating
phase [34,35].

The topological phase transition in the presence of electron
correlations has also attracted much attention. A lot of theoret-
ical approaches have been employed to determine electronic
and topological phases of various interacting topological in-
sulators [36]. When the correlations are weak, both electronic
and topological phases are still robust in the topological band
insulator (TBI) even though the insulating gap can be slightly
modified. In the limit of strong electron correlations, an elec-
tronic phase is surely changed from a band insulator (BI) to a
Mott insulator (MI) with often magnetic order. In a moderate
correlation regime, however, exotic electronic and topological
phases are expected. The mean-field approximation based
on the slave-rotor approach has shown the possibility of a
topological Mott insulator (TMI) in pyrochlore iridates [13].
The first-principles electronic structure calculation [37] and
the cellular dynamical mean-field theory (CDMFT) [38] have
revealed that exotic topological phases such as an axion
insulator and a Weyl semimetal emerge between a TI and an
antiferromagnetic (AFM) MI when the electron correlations
are increased. The topological phase transition of the Kane-
Mele-Hubbard model for interacting graphene has also been
investigated by various numerical methods [39–44]. The ef-
fect of correlations in the effective jeff = 1/2 model proposed
by Shitade et al. has also been studied with the slave-spin
approaches [45].

All these studies have found that the topological phase
transition occurs from a TBI to an AFM MI with increasing
the Coulomb repulsion. However, the contradicting results
are obtained among the different studies on the nature of
the intermediate phase. The CDMFT calculations [42] have
found a spin liquid phase near the phase boundary in a very
weak SOC region, whereas the quantum Monte Carlo (QMC)
method [43] and the cluster perturbation theory (CPT) method
[44] have not predicted the presence of the spin liquid phase.
The single-particle excitation gap is perfectly closed at the
critical point in the calculations using the CPT and variational
cluster approximation (VCA) methods [40,44]. In contrast,
the QMC calculations show that the gap becomes smallest
but remains finite [39,41]. Recent studies on the Haldane-
Hubbard model using the VCA have found nonmagnetic and
magnetic TBI phases in the presence of electron correlations
[46,47].

Here, in this paper, we revisit the topological property
of Na2IrO3 and its isostructural compounds theoretically by
considering a t5

2g system in the single-layer honeycomb lattice.
In contrast with the previous studies, which mainly elucidate
the role of longer-range hoppings, i.e., the second nearest-
neighbor (2nd NN) and third nearest-neighbor (3rd NN) hop-
ping channels, in the topological phase in the analogy of the
Kane-Mele model, we focus on the two dominant processes in
the first nearest-neighbor (1st NN) hopping channel between
TMs: the direct d-d hopping via the ddσ bonding and the
indirect hopping mediated by edge-shared ligands via the pdπ

bonding, and examine the topological phase transition. We
demonstrate that the topological phase is transferred from a
trivial BI to a TBI and vice versa with varying the relative
strength between the two different hoppings in the 1st NN
channel. In addition, we explore the topological phase tran-
sition against the Coulomb repulsion. Employing the CPT,
we calculate the electronic and topological phase diagram in
the presence of the Coulomb repulsion. We find that a Mott
insulator with nontrivial band topology similar to the QSH
state appears over a broaden parameter region of the phase
diagram.

The rest of this paper is organized as follows. Section II
introduces a model Hamiltonian of the t2g system and explains
briefly numerical methods to calculate the topological invari-
ant for both noninteracting and interacting cases. The topolog-
ical phase diagram in the noninteracting limit with respect to
the SOC and the 1st NN hopping parameters is examined in
Sec. III. The edge states in a zigzag stripy geometry are also
analysed. The roles of the trigonal distortion as well as the
2nd and 3rd NN hopping channels in the topological phase
is also studied in Sec. III. The effect of electron correlations
on the topological phase diagram is investigated in Sec. IV.
Finally, Sec. V discusses the relevance of our results to
the existing t5

2g compounds, before concluding the paper in
Sec. VI. Appendix A provides the details of the CPT used
here, followed by the results of the single-particle excitation
spectrum in Appendix B and the topological Hamiltonian in
Appendix C.

II. MODEL AND METHOD

A. Noninteracting Hamiltonian

To investigate the electronic and topological phases of a t5
2g

system with the honeycomb lattice structure such as Na2IrO3

and its isostructural systems, we consider three hopping chan-
nels between 1st NN, 2nd NN, and 3rd NN sites, as schemat-
ically shown in Figs. 1(a)–1(c). Let T(γ )

1 , T(γ )
2 , and T(γ )

3 be
the 3 × 3 hopping matrices of γ -type (γ = X, Y , and Z) for
the 1st, 2nd, and 3rd NN hoppings, respectively. Because
there is no inversion symmetry (IS) about the bond center
of sites connected via the 2nd NN hopping [see Fig. 1(b)],
T(γ )

2 along the γ direction, indicated by arrows in Fig. 1(b), is
not the same as that along the opposite direction denoted as
γ̄ . The hopping matrix along the opposite hopping direction,
T(γ̄ )

2 , is given by the transpose of T(γ )
2 . In contrast, the other

two hopping matrices T(γ )
1 and T(γ )

3 are independent of the
hopping directions because there is the IS at the center of the
corresponding bond, and hence T(γ̄ )

1(3) = T(γ )
1(3).
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FIG. 1. (a)–(c) Schematic diagrams describing three types of
hopping channels, i.e., (a) T(γ )

1 for the 1st NN hopping, (b) T(γ )
2 for

the 2nd NN hopping, and (c) T(γ )
3 for the 3rd NN hopping, where

γ (= X, Y , and Z) distinguishes three different bonds indicated
by different colors for each type of hopping channels. Note that
T(γ )

2 depends also on the hopping direction and the γ direction is
defined by arrows in (b). The opposite hopping direction to the γ

direction is denoted as the γ̄ direction in the text. (d) A schematic
honeycomb lattice structure divided into supercell clusters, where
each supercell cluster is composed of six sites enumerated from 0
to 5. Gray and green arrows refer to basis vectors of the original
honeycomb lattice and the honeycomb lattice composed of the su-
percell clusters, respectively. All lattice sites are laid on the xy plane
and the z direction is perpendicular to the plane. X, Y , and Z are
mutually orthogonal local coordinates to define the t2g orbitals, i.e.,
dXY , dY Z , and dZX orbitals. Unit vectors of the local coordinates are

given as X̂ =
√

1
6 x̂ −

√
1
2 ŷ +

√
1
3 ẑ, Ŷ =

√
1
6 x̂ +

√
1
2 ŷ +

√
1
3 ẑ, and

Ẑ = −
√

2
3 x̂ +

√
1
3 ẑ, where x̂, ŷ, and ẑ are unit vectors of the global

coordinates indicated in the figure.

We consider the following tight-binding Hamiltonian Ht on
the honeycomb lattice:

Ht =
∑

i,γ ,α,β,σ

T (γ )
1,αβc†

i1γ ασ ciβσ +
∑

i,γ ,α,β,σ

T (γ )
2,αβc†

i2γ ασ ciβσ

+
∑

i,γ ,α,β,σ

T (γ̄ )
2,αβc†

i2γ̄ ασ ciβσ +
∑

i,γ ,α,β,σ

T (γ )
3,αβc†

i3γ ασ ciβσ

+ λ
∑

i,α,β,σ,σ ′
(l · s)ασ,βσ ′c†

iασ ciβσ ′ − μt

∑
i,α,σ

c†
iασ ciασ

+ 
tr

3

∑
i,σ

(c†
ix̃σ cix̃σ + c†

iỹσ ciỹσ − 2c†
iz̃σ ciz̃σ ), (1)

where ciασ is the annihilation operator of electron with orbital
α (=XY, Y Z , and ZX ) and spin σ (=± 1

2 ) at lattice site i,
and XY, Y Z , and ZX are three t2g orbitals, i.e., dXY , dY Z , and
dZX orbitals, represented in the local coordinates indicated in
Fig. 1(d) (also see Ref. [30]). The first four terms describe
the electron hopping, where i1γ , i2γ , and i3γ are site indices,
denoting sites connected from site i via the γ -type 1st, 2nd,

TABLE I. Nonzero hopping matrix elements for the 1st, 2nd, and
3rd NN hopping channels, T(γ )

1 , T(γ )
2 , and T(γ )

3 , of γ (=X,Y , and Z )
type.

γ T(γ )
1 T(γ )

2 T(γ )
3

X
t ′
1 : Y Z → Y Z

t1 : ZX → XY
t1 : XY → ZX

t ′
2 : ZX → XY

t2 : XY → ZX
t3 : Y Z → Y Z

Y
t ′
1 : ZX → ZX

t1 : XY → Y Z
t1 : Y Z → XY

t ′
2 : XY → Y Z

t2 : Y Z → XY
t3 : ZX → ZX

Z
t ′
1 : XY → XY
t1 : Y Z → ZX
t1 : ZX → Y Z

t ′
2 : Y Z → ZX

t2 : ZX → Y Z
t3 : XY → XY

and 3rd NN hopping channels, respectively, with γ = X, Y ,
and Z , as shown in Figs. 1(a)–1(c). Note that each site has
three neighboring sites that are connected via the 1st and 3rd
NN hopping channels, while there are six neighboring sites
that are connected from a given site via the 2nd NN hopping
channel.

The fifth term in Ht is the SOC Hamiltonian and the
matrix elements of l · s are given as (l · s)ασ,βσ ′ = 〈α|l|β〉 ·
〈σ |s|σ ′〉, where l and s are orbital and spin angular momen-
tum operators, respectively. Among these matrix elements,
the nonzero matrix elements are 〈XY,± 1

2 |l · s|Y Z,∓ 1
2 〉 =

± 1
2 , 〈Y Z,± 1

2 |l · s|ZX,± 1
2 〉 = ± i

2 , 〈ZX,± 1
2 |l · s|XY,∓ 1

2 〉 =
i
2 , and the complex conjugate of these elements. The SOC
causes the sixfold degenerate t2g orbitals, including the spin
degree of freedom, to split into fourfold degenerate jeff = 3/2
and doubly degenerate jeff = 1/2 relativistic orbitals. μt in the
sixth term in Ht is the chemical potential and is determined for
the number of electrons per site to be 5.

The last term in Ht describes the energy level splitting
due to the trigonal distortion. In the presence of the trigonal
distortion, the threefold degenerate t2g orbitals, not including
the spin degree of freedom, split into doubly degenerate e′

g
(x̃ and ỹ) orbitals and nondegenerate a1g (z̃) orbital with the
level splitting energy 
tr = Ex̃(ỹ) − Ez̃. Here, x̃, ỹ, and z̃
orbitals are given as |x̃〉 = 1√

6
(|ZX 〉 − 2|XY 〉 + |Y Z〉), |ỹ〉 =

1√
2
(|ZX 〉 − |Y Z〉), and |z̃〉 = 1√

3
(|ZX 〉 + |XY 〉 + |Y Z〉). The

SOC term has nonzero matrix elements in these x̃, ỹ, and z̃ or-
bitals only for 〈x̃,± 1

2 |l · s|ỹ,± 1
2 〉 = ± i

2 , 〈ỹ,± 1
2 |l · s|z̃,∓ 1

2 〉 =
i
2 , 〈z̃,± 1

2 |l · s|x̃,∓ 1
2 〉 = ± 1

2 , and the complex conjugate of
these elements.

For simplicity, we only consider one or two hopping
processes in each hopping channel, which contribute dom-
inantly for the hopping channel, as previously estimated in
Refs. [15,48–50]. The hoppings considered here in this study
is summarized in Table I. For the 1st NN hopping chan-
nel, t ′

1 and t1 refer to the hopping amplitudes of the direct
hopping via the ddσ bonding of d orbitals and the indirect
hopping mediated via the pdπ bonding between a TM and its
neighboring ligands, respectively. These hopping amplitudes
t1 and t ′

1 are parametrized as t1 = t cos θ and t ′
1 = t sin θ by

introducing two parameters t (>0) and θ . As already noted
above, the broken IS of the 2nd NN hopping channel gives
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rise to different hopping amplitudes t2 from orbital α to orbital
β and t ′

2 from orbital β to orbital α. Because the previous
studies have supported that both 2nd and 3rd NN hoppings
are negative [15,48–50], here we only consider negative t2, t ′

2,
and t3.

B. Z2 topological invariant

Because Ht possesses both IS and TRS simultaneously, the
topological characteristic induced by the TRS can be investi-
gated without directly calculating the Berry curvature over the
whole momentum space. Owing to the theory by Fu and Kane
[3], the Z2 topological invariant ν of the QSH phase can be
evaluated simply from parity eigenvalues of occupied energy
bands at every time-reversal invariant momentum (TRIM)
point. Provided that (2m−1) and 2mth energy bands are mth
Kramers pair (ascending order in energy eigenvalues) with
the same energy and parity eigenvalues at a TRIM point, the
topological quantity (−1)ν is given as

(−1)ν =
4∏

i=1

δi =
4∏

i=1

nv∏
m=1

ξm(i ), (2)

where ξm(i ) (=±1) is the parity eigenvalue of the mth
Kramers pair at specific TRIM i. nv is total number of
Kramers pairs below the Fermi energy and nv = 5 for our t5

2g
system in the honeycomb lattice. The topological quantity δi

is defined as the product of all parity eigenvalues of Kramers
pairs below the Fermi energy at i. For the honeycomb lattice,
there are four TRIM points at the � point and three M points
(M1, M2, and M3) [see red dots in Fig. 3(b)].

C. Correlation effect

To investigate the correlation effect, we add to Ht the
Kanamori-type interaction term described by the following
Hamiltonian:

HU = 1

2

∑
i,σ,σ ′,α,β

Uαβc†
iασ c†

iβσ ′ciβσ ′ciασ

+ 1

2

∑
i,σ,σ ′,α �=β

Jαβc†
iασ c†

iβσ ′ciασ ′ciβσ

+ 1

2

∑
i,σ,α �=β

J ′
αβc†

iασ c†
iασ̄ ciβσ̄ cβσ , (3)

where Uαα = U and Uαβ = U − 2JH with α �= β are the
intraorbital and interorbital on-site Coulomb interactions, re-
spectively, Jαβ = J ′

αβ = JH represents the Hund’s coupling,
and σ̄ stands for the opposite spin of σ . We employ the
CPT of a six-site cluster depicted in Fig. 1(d) to examine the
electronic band structure of the interacting system by calcu-
lating the single-particle excitation spectrum [51]. According
to a recent study [44], the symmetry of cluster is crucial
to determining the topological property in a honeycomb lat-
tice because the discrepancy of the symmetry between the
cluster and the original lattice leads to wrong symmetry of
the self-energy in the single-particle Green’s function, which
can give rise to artificial electronic and topological phases.
Our selection of the cluster is the minimum cluster to keep

the point group symmetry of the original honeycomb lattice.
Details on the CPT used here are described in Appendix A.

To identify the topological property of an interacting sys-
tem, we adopt the framework proposed by Wang and Zhang
[52,53]. In this framework, the topological property of an
interacting system is evaluated from the corresponding non-
interacting system described by the so-called “topological
Hamiltonian” HT(k) = −G−1(0, k), where G(ζ , k) is the
single-particle Green’s function of the interacting system at
frequency ζ and momentum k. This is justified because there
always exists the smooth transformation from the single-
particle Green’s function of the noninteracting system de-
scribed by the topological Hamiltonian, [ζ − HT(k)]−1, to
that of the interacting system [52]. We can calculate the
topological invariant (−1)ν of the interacting system by using
Eq. (2), in which the parity eigenvalues are evaluated for the
eigenstates of HT(k) with the negative energy eigenvalues at
the TRIM points [53].

When the z component Sz of the total spin is conserved, the
topological invariant can be obtained by directly calculating
the spin Chern number expressed in terms of the single-
particle Green’s function. However, in t2g systems with the
SOC, the spin Chern number is hardly formulated because
the up and down spin sectors of the single-particle Green’s
function always couple together. The approach based on
the topological Hamiltonian is best suited to the numerical
calculation of the topological invariant for the interacting t2g

systems. Therefore this method has been adopted very often to
explore the topological properties of many interacting systems
[44,46,54–57]. Moreover, it has been shown that the method
is enough to obtain relevant results on the topological phase
transition in interacting systems as long as the electronic
and topological phases can be certainly defined by fermionic
degrees of freedom [58].

III. NONINTERACTING SYSTEM

A. Topological phase diagram

First, we explore the role of the 1st NN hopping channel
on the topological property. Figure 2(a) shows the topological
phase diagram as functions of the 1st NN hopping parameter
θ and the SOC strength λ. The phase diagram is obtained by
calculating the product of a band gap 
sp (�0) and a topolog-
ical invariant (−1)ν given in Eq. (2). This quantity is exactly
the same as a topological mass of the Kane-Mele model when
the band gap is determined at TRIM points [59]. Red and blue
regions in Fig. 2(a) correspond to topologically trivial BI and
nontrivial Z2 TBI phases, respectively. A semimetallic region,
in which the highest energy of the valence bands is larger
than the lowest energy of the conduction bands, is indicated
by green in Fig. 2(a).

Since the reversal of the hopping parameters (i.e., θ →
θ + π ) does not change the energy band dispersions and the
corresponding Bloch wave functions but only alter the sign
of their parity eigenvalues, all topological quantities δi for
θ + π have the opposite signs of those for θ when odd
numbers of Kramers pairs are occupied. Note that there are
ten electrons per unit cell in our t5

2g system in the honeycomb
lattice, and hence odd numbers of Kramers pairs are occupied
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FIG. 2. (a) Topological phase diagram for the t5
2g system obtained from the product of the single-particle gap 
sp (�0) and the topological

invariant (−1)ν with respect to the 1st NN hopping parameter θ (in t1 = t cos θ and t ′
1 = t sin θ ) and the spin-orbit coupling λ. BI and TBI

denote trivial band insulator and topological band insulator phases, respectively. A green region indicates a semimetallic (SM) phase. Dashed
lines with black, magenta, and orange colors represent regions where Dirac dispersions appear across the Fermi energy at the �, M, and
K points, respectively, and thus 
sp = 0. A green dashed line at λ = 0 represents the semimetal region with 
sp = 0. (b)–(d) Energy band
dispersions around the Fermi energy (E = 0) for various values of θ (indicated in the figures) when λ = 1.6t . Dirac dispersions appear at the
M points when θ ≈ 25.77◦, at the K and K ′ points when θ = 90◦ and θ ≈ 153.43◦, and at the � point when θ ≈ 169.78◦. Parity eigenvalues
for (b) θ = 0◦ and 35◦ at the M1 point and (d) θ = 160◦ and 176◦ at the � point are also indicated with black and blue colors, respectively.
Here we assume that t > 0 and set that t2 = t ′

2 = t3 = 
tr = 0. The signs of t1 and t ′
1 are indicated on the top of (a).

at each TRIM point. However, this never changes the Z2

topological invariant because there are four TRIM points
in our system. Therefore the topological phase diagram for
180◦ � θ � 360◦ is exactly the same as that for 0◦ � θ �
180◦ as shown in Fig. 2(a).

When θ is 0◦ or 180◦, t ′
1 = 0 and only t1 contributes to the

hopping. In this limit, the electronic energy band structures
without the SOC can be interpreted in terms of quasimolecular
orbitals formed in each hexagon of the honeycomb lattice,
which are well separated in energy and characterized by the
parity eigenstates [48,60]. Once the hopping t1 is considered
with the other terms kept absent, the sixfold degenerate t2g

bands (two sites per unit cell without considering the spin
degree of freedom) are split into dispersionless bands with
a1g, e2u, e1g, and b1u symmetries, charactering the quasi-
molecular orbitals, whose energies are 2t1, t1, −t1 and −2t1,
respectively. Therefore the highest unoccupied band for the
t5
2g configuration is the band with a1g symmetry for t1 > 0

or b1u symmetry for t1 < 0. Based on the analytic form
of the quasimolecular orbital with a1g (b1u) symmetry in
Ref. [30], we can easily show that the parity eigenvalues at the
�, M1, M2, and M3 points of the highest unoccupied band,
i.e., ξ6(�), ξ6(M1), ξ6(M2), and ξ6(M3), are +1, −1, +1,

and −1 (−1, +1, −1, and +1), respectively. Topological
quantities (δ�, δM1 , δM2 , δM3 ) are thus (−1,+1,−1,+1) for
t1 > 0 and (+1,−1,+1,−1) for t1 < 0. Therefore topo-
logically trivial insulator with (−1)ν = +1 is stabilized for
both θ = 0◦ and 180◦ without the SOC. When the SOC
increases, the energy band character smoothly changes from
the quasimolecular to relativistic jeff bands [30]. However, no
gap closure happens at the Fermi energy and the topological
invariant remains the same regardless of the strength of λ. This
is why the Z2 number is always zero near θ = 0◦ and 180◦ in
Fig. 2(a), although the trivial BI region apparently decreases
with increasing λ.

When θ is away from θ = 0◦ or 180◦, the strength of t ′
1 in-

creases and modifies the electronic and topological character-
istics. A finite band gap at the M points (� point) gradually de-
creases but a direct gap at the � (M) point increases reversely
when θ increases (decreases) from 0◦ (180◦). Eventually, the
valence and conduction bands touch each other at the M (�)
point and the Dirac like dispersion appears around the Fermi
energy. Concomitantly, the parity eigenvalues at the three M
points (� point) of the highest occupied and lowest unoc-
cupied bands are reversed with further increasing (decreas-
ing) θ . Accordingly, topological quantities (δ�, δM1 , δM2 , δM3 )
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TABLE II. Topological quantities δ�, δM1 , δM2 , and δM3 , and
topological invariant (−1)ν for the t5

2g system in the honeycomb
lattice with several representative values of θ parametrizing the 1st
NN hopping parameters. Here we set that λ = 1.6t and t2 = t ′

2 =
t3 = 
tr = 0, assuming that t > 0.

θ δ� δM1 δM2 δM3 (−1)ν

0◦ −1 +1 −1 +1 +1
35◦ −1 −1 +1 −1 −1
160◦ −1 −1 +1 −1 −1
176◦ +1 −1 +1 −1 +1

are changed from (−1,+1,−1,+1) [(+1,−1,+1,−1)] to
(−1,−1,+1,−1), as shown in Table II. This is well illus-
trated in Figs. 2(b) and 2(d). In the case of λ = 1.6t , the
Dirac like dispersions appear at the three M points (� point)
when θ is about 25.77◦ (169.78◦). A dashed line with magenta
(black) color in Fig. 2(a) represents the topological phase
boundary where the Dirac like energy band dispersion with

sp = 0 appears at the M points (� point). Thus the increase
(decrease) of θ gives rise to the topological phase transition
from a trivial BI [(−1)ν = +1] to a TBI [(−1)ν = −1]. We
should emphasize that the TBI phase is realized in a much
broader parameter region, in sharp contrast with the previous
report based on an effective jeff = 1/2 model in which the t1
contribution on the 1st NN hopping channel between jeff =
1/2 orbitals exactly cancels out [12].

When only t ′
1 is finite (i.e., θ = 90◦), the hopping between

one specific orbital is allowed in each type of hoppings, i.e.,
dXY orbital for Z type, dY Z orbital for X type, and dZX orbital
for Y type of the 1st NN hopping channel (see Table I).
Therefore, when the SOC is absent, each orbital participates
to form the bonding and antibonding states with the same type
of orbital on the nearest neighboring sites connected through
t ′
1 along the different hoping direction. This brings about two

sixfold-degenerate Bloch states (including doubly degenerate
spin states) with momentum independent dispersions. When
t1 is turned on, the momentum dependence arises in the
dispersions and the sixfold degeneracy is lifted in the entire
momentum space expect for t1 = −2t ′

1, corresponding to θ =
π−cos−1( 2√

5
) ≈ 153.43◦, where the sixfold degeneracy still

remains at the �, K , and K ′ points. When the SOC is turned
on, the sixfold degenerate states at the K and K ′ points are split
into low-energy twofold degenerate states and high-energy
fourfold degenerate states. As in the graphene band, the Fermi
energy crosses the fourfold degenerate bands at the K and
K ′ points [also see Fig. 2(c)]. Therefore the zero gap region
with 
sp = 0 appears at θ = 90◦ and θ = π−cos−1( 2√

5
) ≈

153.43◦, regardless of λ values, as indicated by orange dashed
lines in Fig. 2(a). Figure 2(c) shows the more detailed energy
band structure at these θ values. Clear Dirac like dispersions
appear at both K and K ′ points, while there is a finite gap
at the � point. Since both K and K ′ are not the TRIM
points, the band gap closure at these points does not alter
the parity eigenvalues of the occupied bands at the TRIM
points. Topological quantities (δ�, δM1 , δM2 , δM3 ) are always
(−1,−1,+1,−1) across these values of θ and thus nontrivial
Z2 topology is still robust.

The 1st NN hopping between the relativistic jeff = 1/2 or-
bitals is exactly canceled when only t1 is considered. The other
hopping process attributed to t ′

1 can give rise to a finite 1st NN
hopping in the effective Kane-Mele model of the jeff = 1/2
manifold. However, t1 still leads to a finite 1st NN hopping
between the jeff = 1/2 and 3/2 orbitals. The virtual hopping
process via jeff = 1/2 → 3/2 → 1/2 orbital is enough to give
rise to the effective hopping between the 2nd and 3rd NN
sites in the jeff = 1/2 manifold [61]. Thus we expect that the
variation of θ parameter in our t2g model induces the relative
enhancement of the 2nd and 3rd NN hopping strengths in the
effective Kane-Mele model. Therefore the topological phase
transition found here by varying relative strengths of the two
processes in the 1st NN hopping channel of our system can be
understood in the analogy of the Kane-Mele model with the
2nd and 3rd NN hopping channels.

Recently, Laubach et al. have reported a similar topological
phase diagram of a t2g band model with respect to the relative
strength of two 1st NN hopping processes and the SOC [62].
The two 1st NN hopping processes considered in their model
are those that lead to the Kitaev-type and Heisenberg-type
magnetic interactions in the strong coupling limit. The former
is exactly the same as our t1 hopping. The latter is the hopping
processes with our t ′

1 hopping and additional hoppings among
the same orbitals. We consider the direct hopping only be-
tween, e.g., dXY orbitals in the Z type, whereas they consider
the direct hopping between all t2g orbitals, including also, e.g.,
dY Z and dZX orbitals in the Z type. Although this difference
in the hopping parameters gives rise to an additional metallic
region in a small SOC region around θ = 90◦ (not found
here in our phase diagram), the topological phase diagram is
in good agreement with our result for 0 � θ � π/2 because
their study is limited for both hopping processes positive.
Therefore the topological phase transition with the gap closure
at the � point appering in π/2 � θ � π is not found in their
study.

B. Edge state

One of the characteristic features of Z2 TIs is the presence
of symmetrically protected edge states which intersect the
Fermi energy odd numbers of times. To explore the surface
electronic structures of our t5

2g system in the honeycomb
lattice, here we consider a zigzag stripy geometry of the lattice
structure along the x direction with fifty lattice sites along the
y direction, thus containing one hundred sites in the unit cell,
as schematically depicted in Fig. 3(a). Because the translation
symmetry is broken along the y direction, the two-dimensional
momentum of the honeycomb lattice is projected onto the
one-dimensional one shown in Fig. 3(b).

Figures 3(c)–3(g) show the electronic energy band struc-
tures of the zigzag stripy geometry for various values of θ

with λ = 1.6t . The electronic bands dominantly contributed
from the edges are highlighted with magenta. Intriguingly, the
energy band dispersions manifested inside the bulk band gap
originate from the edge states for all the parameter region
of θ . Because the IS as well as the TRS is still preserved
even in the stripy geometry, the energy dispersions ε

(U)
kxs

and ε
(L)
kxs (s = ⇑,⇓: pseudospin) of the edge states at upper
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FIG. 3. (a) Schematic diagram of a zigzag stripy geometry of the honeycomb lattice. The unit cell indicated by a dashed box contains one
hundred sites. (b) Mapping of the crystal momenta between the two-dimensional honeycomb lattice and the one-dimensional stripy geometry
in (a). High symmetric momenta are denoted by �: (0,0), K : ( 2π

3
√

3a
, 2π

3a ), K ′: ( 4π

3
√

3a
, 0), M1: ( π√

3a
, π

3a ), M2: ( 2π

3a , 0), and M3: (− π√
3a

, π

3a ).

Representative momenta at k = 2
3 ( π√

3a
, π

3a ), 2
3 ( 2π

3a , 0), and 2
3 (− π√

3a
, π

3a ) are also indicated as 2/3M1, 2/3M2, and 2/3M3, respectively. Here, a
is the distance between the 1st NN sites of the honeycomb lattice. (c)–(g) Electronic energy band dispersions of the zigzag stripy geometry for
various values of the 1st NN hopping parameter θ indicated in the figures. The energy band dispersions dominated at the edges are highlighted
with magenta. The Fermi energy is located at E = 0. Here we set that λ = 1.6t and t2 = t ′

2 = t3 = 
tr = 0.

and lower edges, respectively, are related as ε
(U)
kx⇑ = ε

(L)
−kx⇑ =

ε
(L)
kx⇓ = ε

(U)
−kx⇓, where the first and third equalities are due to the

inversion operation and the second equality is due to the time
reversal operation. Therefore the edge states show fourfold
degeneracy at the TRIM points, i.e., kx = 0 and π√

3a
where a is

the distance between the 1st NN sites, irrespective of the width
of the zigzag stripy geometry of the lattice. At any momentum
away from these momenta, however, the surface bands are
simply doubly degenerate. As show in Figs. 3(c)–3(g), these
twofold degenerate surface bands are eventually connected to
other surface bands at kx = 0 and π√

3a
with quite different

ways depending on the bulk topological feature.
As shown in Fig. 3(c), in the topologically trivial BI phase

at and close to θ = 0◦ and 180◦, the surface bands located
inside the bulk band gap are well isolated from the bulk con-
duction and valence band continua and connect pairwise at the
TRIM points. This is reminiscence of the energy dispersion
at the edge of a single-layer Na2IrO3 recently studied by
Catuneanu et al. [61]. With increasing or decreasing θ from
0 or 180◦, some part of the surface bands is buried in the
valence band continuum but they never contact the conduction
band continuum until the bulk band gap is closed at the � or
M points. Thus the surface bands clearly intersect the Fermi
energy even number of times, as expected for a topologically
trivial BI.

When the bulk gap is closed at the M points for θ = 25.77◦
or at the � point for θ = 169.78◦ [see Figs. 2(b) and 2(d)], the
bulk conduction and valence band continua touch each other

at kx = π√
3a

, as shown in Fig. 3(d), or at kx = 0, as shown in
Fig. 3(g). With further increasing or decreasing θ , the bulk
conduction and valence band continua depart and the surface
bands in the bulk band gap are again well separated from the
bulk continua. However, the connectivity of the surface bands
qualitatively changes. The pairwise connection of the surface
bands is now broken and the surface bands cross the Fermi
energy from the bulk conduction band continuum to the bulk
valence band continuum, as shown in Figs. 3(e) and 3(f). Thus
the surface bands intersect the Fermi energy odd number of
times, as expected in the TI phase.

C. Further neighboring hopping and trigonal distortion

According to previous studies, the electronic and topologi-
cal properties of Na2IrO3 and its isostructural systems depend
sensitively on the further neighboring hopping channels or the
local electronic modulation induced by structural distortions.
Here we investigate the effects of the 2nd and 3rd NN hopping
channels and the trigonal distortion on the topological phase
diagram.

Figure 4 shows the topological phase diagrams for different
2nd and 3rd NN hopping parameters. Here we simply set
t2 = 2t3 and t ′

2 = t3 because this is not far from the theoretical
estimations for Na2IrO3 and its isostructural materials (also
see Table III). TBI and BI phases are determined by the
topological invariant (−1)ν in Eq. (2). When t2 varies from
0 to −0.3t , the semimetal region is enlarged, and the BI-TBI
phase boundaries indicated by black dashed lines, where the
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FIG. 4. Topological phase diagrams with respect to the 1st NN
hopping parameter θ (in t1 = t cos θ and t ′

1 = t sin θ ) and the spin-
orbit coupling λ for (a) t2 = −0.1t and t ′

2 = t3 = −0.05t , (b) t2 =
−0.2t and t ′

2 = t3 = −0.1t , and (c) t2 = −0.3t and t ′
2 = t3 = −0.15t .

Here we set 
tr = 0. Light red and blue areas represent topological
band insulator (TBI) and trivial band insulator (BI) phases with
(−1)ν = −1 and +1, respectively. Semimetallic (SM) phases are
stabilized in light green area. Black, magenta, and yellow dashed
lines represent regions where Dirac dispersions appear at the �, M,
and K points, respectively, with the Dirac points located exactly at the
Fermi energy. Green dashed lines at λ = 0 represent the semimetallic
regions with 
sp = 0. The signs of t1 and t ′

1 are indicated on the top
of (a).

Dirac dispersion appears at � point, shifts rightward, whereas
the other phase boundaries indicated by magenta dashed lines,
where the Dirac dispersions appear at the M points, shift
oppositely. Therefore, comparing to the topological phase di-
agram shown in Fig. 2(a), the topological insulating region is
slightly enlarged when the 2nd and 3rd NN hopping channels
are introduced. However, with further increasing the 2nd and
3rd NN hopping strengths, the topological insulating region
decreases and in particular the TBI phase is largely suppressed
for 270◦ � θ � 360◦ (i.e., t1 > 0 and t ′

1 < 0).
The trigonal distortion is also important to determine the

topological phase. Figure 5 shows the topological phase di-
agrams for several values of the trigonal distortion 
tr with
t2 = 2t ′

2 = 2t3 = −0.2t for the 2nd and 3rd NN hoppings. The
BI-TBI phase boundaries shift leftward with decreasing 
tr

from positive to negative values. Thus the trigonal distortion
affects the topological phases very differently depending on
the relative strength of t1 and t ′

1. For instance, the topological
phase at θ = 15◦ and λ = 1.6t changes from a trivial BI to
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FIG. 5. Topological phase diagrams with respect to the 1st NN
hopping parameter θ (in t1 = t cos θ and t ′

1 = t sin θ ) and the spin-
orbit coupling λ for (a) 
tr = 0.4t , (b) 0.2t , (c) −0.2t , and (d) −0.4t .
Here we set t2 = −0.2t and t ′

2 = t3 = −0.1t for the 2nd and 3rd NN
hopping parameters. Light red and blue areas represent topological
band insulator (TBI) and trivial band insulator (BI) phases with
(−1)ν = −1 and +1, respectively. Semimetallic (SM) phases are
stabilized in light green area. Black, magenta, and yellow dashed
lines represent regions where Dirac dispersions appear at the �, M,
and K points, respectively, with the Dirac points located exactly at the
Fermi energy. Green dashed lines at λ = 0 represent the semimetallic
regions with 
sp = 0. The signs of t1 and t ′

1 are indicated on the top
of (a).

a nontrivial TBI when 
tr decreases from 0.4t to −0.4t .
In contrast, the topological phase at θ = 300◦ and λ = 1.6t
transforms from a trivial BI to a nontrivial TBI when 
tr

increases from −0.4t to 0.4t .
Kim et al. have performed the first-principles calculations

based on the density functional theory (DFT) to estimate
t1 ≈ 0.25 eV and t ′

1 ≈ −0.5 eV for Na2IrO3 [15], which cor-
responds to θ = 296.6◦, as shown in Table III. According
to our calculations in Fig. 5, the TBI phase easily appears
at this value of θ when 
tr is positively large. Indeed, they
have concluded that a weak TBI phase can be realized in
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TABLE III. The hopping and trigonal distortion parameters for
Na2IrO3 and its isostructural Li2IrO3 and α-RuCl3, extracted from
literature. Because the atomic structure of these materials is slightly
deviated from the ideal honeycomb lattice, we adopt the parameters
from one among the three different types of the 1st and 2nd NN
hopping channels.

t (meV) θ (◦) t2/t t ′
2/t t3/t 
tr/t

Na2IrO3 [15] 559.0 296.6 −0.134 −0.134 −0.134 0.358
Na2IrO3 [48] 273.8 10.0 −0.276 −0.133 – 0.085
Na2IrO3 [49] 276.4 8.9 −0.308 −0.109 −0.134 0.101
Na2IrO3 [50] 264.3 5.7 −0.285 −0.137 −0.133 0.086
Li2IrO3 [50] 280.4 321.4 −0.203 −0.085 −0.143 0.134
α-RuCl3 [16] 255.8 296.5 −0.227 −0.078 −0.192 –
α-RuCl3 [50] 220.8 315.8 −0.268 −0.149 −0.188 0.090

Na2IrO3 when there is the large trigonal distortion with pos-
itive 
tr . However, other DFT based studies have estimated
quite different values of the 1st NN hopping parameters. Their
estimated values correspond to θ less than 10◦, as summarized
in Table III. In these values of θ , our results expect the TBI
phase to be more favorable when 
tr is negatively large,
not positively large, as opposed to the prediction by Kim
et al. [15].

IV. INTERACTING SYSTEM

To explore the effect of the Coulomb interaction on the
electronic and topological phases, here we consider a simple
system with λ = 1.6t and t2 = t ′

2 = t3 = 
tr = 0. First, we
focus on the role of the on-site Coulomb repulsion U in
Eq. (3) by setting JH = 0. The CPT is employed to calculate
the spectral function A(k, ω) of the single-particle Green’s
function [see Eq. (A6) for the definition] for various values
of θ and U . Figure 6 shows the representative results of
the spectral function at the M, 2/3M [2/3M1, 2/3M2, and
2/3M3 indicated by magenta crosses in Fig. 3(b)], and K
points as a function of U for three different values of θ

(i.e., θ = 20◦, 30◦, and 120◦). These three cases exhibit three
different types of the electronic phase transition from a BI
to a MI with increasing U : the phase transitions with the
single-particle excitation gap closing at the 2/3M points, with
the single-particle excitation gap closing consecutively at the
M and 2/3M points, and with the single-particle excitation
gap closing at the K and K ′ points.

In the noninteracting limit, the spectral function is simply
composed of the delta functions locating exactly at the energy
of the noninteracting band dispersions. In finite U , the elec-
tron correlation induces the nonzero self-energy that generates
additional peak structures in the spectral function. Because the
electron coherency becomes poor due to the scattering among
electrons, the spectral function becomes usually broader and
the spectral weight can be even redistributed involving a
large energy scale of U . These modifications of the spectral
function certainly lead to the change of the single-particle
excitation gap 
sp determined by the two lowest excitations
below and above the Fermi energy.

The insulating gap 
sp in the single-particle excitations
for the MI is directly attributed to the Coulomb repulsion.

It is easy to conjecture that 
sp is monotonically increased
with increasing U . In the BI, however, the insulating gap is
already opened, without U , according to its own electronic
kinetics. Because the Coulomb repulsion inhibits its kinetic
effect, the insulating gap 
sp would be decreased and can be
even diminished with increasing U . Indeed, this feature has
already been observed in our previous calculations of various
spectroscopic quantities such as optical conductivity when
θ = 0◦ [30]. As shown in Fig. 6, this is also the case in our sys-
tems studied here; the single-particle excitation gap in A(k, ω)
at the M, 2/3M, and/or K points first decreases and then start
to increase with increasing U from the noninteracting limit.
This implies that the insulating nature is changed from a BI to
a MI with increasing U .

Figures 7(b)–7(g) show the U dependence of the single-
particle excitation gaps at the M, 2/3M, and K points,

sp(M ), 
sp(2/3M ), and 
sp(K ), respectively, estimated
from the spectral functions for six different values of θ . One
of 
sp(M ), 
sp(2/3M ), and 
sp(K ) becomes zero at the
critical U value. These critical values at which 
sp(M ) = 0,

sp(2/3M ) = 0, and 
sp(K ) = 0 are drawn with red, green,
and blue solid lines, respectively, in the topological phase
diagram shown in Fig. 7(a). When θ is larger than 169.78◦,
the single-particle excitation gap at the � point, 
sp(�), can
also be zero with increasing U . The corresponding critical U
values are indicated with black solid line in Fig. 7(a).

As shown in Figs. 6(g) and 6(h), the two δ-function peaks
in the spectral function at the K and K ′ points near the Fermi
energy for U = 0 are split into multiple subpeaks as soon
as finite U is introduced. The two subpeaks closest to the
Fermi energy, which determine the single-particle excitation
gap for finite U , emerge at the energies rather away from the
δ-function peaks in the noninteracting system, as indicated by
dashed lines in Figs. 6(g) and 6(h). Their spectral weights
gradually decreases with decreasing U and completely van-
ishes at U = 0. Therefore the single-particle excitation gap
does not necessarily approaches to that of the noninteracting
system in the limit of U → 0, as indicated by dotted line near
U = 0 in Figs. 7(b)–7(f).

To explore the topological feature for finite U , we calculate
the topological Hamiltonian HT(k) based on the CPT and
evaluate the topological invariant (−1)ν for the eigenstates of
HT(k). Figure 8 shows examples of the energy dispersions of
HT(k) for various θ and U values. Although the topological
Hamiltonian HT(k) can mimic the topological properties of
the interacting system perfectly, the energy dispersion of
HT(k) has no reason to be the same as that of the correspond-
ing interacting system because the energy dispersion for the
latter is determined by the spectral function A(k, ω) of the
single-particle Green’s function. Only in a weakly interacting
system, such as U = 0.2t in Fig. 8(a), where the electronic
self-energy is almost zero, both dispersions are expected to
be almost the same. However, when U is large, these two
dispersions are evidently distinct, as shown in Figs. 8 and 10.
This has also been commonly observed in previous studies
[44,46].

When the single-particle excitation gap in an interacting
system is closed at a specific momentum k∗, the spectral
function A(k = k∗, ω) exhibits dominant spectral weight at
the Fermi energy (ω = 0). In other words, G(ζ , k) has poles at
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FIG. 6. Spectral function A(k, ω) of the single-particle Green’s function at the M, 2/3M, and K points with various U values, indicated
in the figures, for [(a), (d), and (g)] θ = 20◦; [(b), (e), and (h)] θ = 30◦; and [(c), (f), and (i)] θ = 120◦. Notice that in each figure the spectral
functions with different values of U are shifted from the top to the bottom in ascending order of U with the increment of 0.2t , for clarity. We set
that λ = 1.6t and t2 = t ′

2 = t3 = 
tr = JH = 0. The Fermi energy is located at ω = 0. Dashed lines in (g) and (h) indicate the location of the
low-energy excitations showing weak-intensity subpeak structures that determine the single-particle excitation gap at the K point for U �= 0.

ζ = 0 and k = k∗. Thus the topological Hamiltonian, which
is proportional to G(0, k)−1, should also exhibit the gap
closure at the same momentum, simultaneously. As shown
in Figs. 8(b), 8(h) and 10(b), 10(h), our calculation clearly
manifests that the lowest conduction energy band and the
highest valence energy band of the topological Hamiltonian
touch the Fermi energy simultaneously at the critical U value
and at the momentum where the single-particle excitation gap
of the interacting system is closed in the spectral function.

As the energy gap of HT(k) is closed at a TRIM point
i, the parity eigenvalues of the corresponding conduction
and valence energy bands of HT(k) at i are exchanged.
Accordingly, the topological quantities δi in Eq. (2) is re-
versed. If the gap closure happens at odd numbers of TRIM
points, the topological invariant (−1)ν is reversed. Therefore,
in this case, the topological phase transition occurs. In the
case of θ = 30◦, for instance, 
sp(M ) is closed at U ≈ 0.71t ,
as shown in Fig. 7(c). Concomitantly, the parity eigenval-
ues of the lowest conduction and highest valence energy
bands of HT(k) are reversed at the three M points. Thus the

topological quantities (δ�, δM1 , δM2 , δM3 ) of HT(k) change
from (−1,−1,+1,−1) to (−1,+1,−1,+1) when U in-
creases from below to above U ≈ 0.71t . This is an example
where the Coulomb repulsion compels the topological invari-
ant (−1)ν to change from −1 to +1, hence representing the
topological phase transition from the TBI to the trivial BI.
Red and black solid lines in Fig. 7(a) represent the parameters
where the single-particle excitation gap in the spectral func-
tion is closed at the TRIM points, i.e., at the M and � points,
respectively. Across these boundaries, the topological invari-
ant (−1)ν of HT(k) changes the sign between −1 and +1.

In the noninteracting case, the Z2 topological invariant can
be changed only when the single-particle excitation gap is
closed. Therefore the noninteracting single-particle Green’s
function has necessarily a pole at the Fermi energy exactly
when the topological phase transition occurs. In the interact-
ing case, however, this gap closure criteria is no longer manda-
tory. In the presence of the interaction, the single-particle
Green’s function could have zeros along the real axis as well
as poles [63–67]. If the single-particle Green’s function at a

155135-10



TOPOLOGICAL PROPERTY OF A T 5
2g SYSTEM … PHYSICAL REVIEW B 99, 155135 (2019)

FIG. 7. (a) Topological phase diagram with respect to the 1st NN hopping parameter θ (in t1 = t cos θ and t ′
1 = t sin θ ) and the Coulomb

repulsion U for λ = 1.6t . Other parameters 
tr, t2, t ′
2, t3, and JH are set to be zero. Light blue (red) and cyan (orange) regions represent

the band and Mott insulator phases, respectively, with topological invariant (−1)ν = −1 (+1). BI, TBI, and MI denote trivial band insulator
phase, topological band insulator phase, and Mott insulator phase, respectively. Black, red, green, and blue solid lines are phase boundaries
in which the single-particle excitation gap 
sp is zero at the �, M, 2/3M, and K points, respectively. The topological characters in hashed
regions are hard to be determined in our calculations. (b)–(g) Single-particle excitation gap 
sp at the M, 2/3M, and K points as a function
of U for various values of θ (0◦, 20◦, 30◦, 45◦, 60◦, and 120◦). Open red circles, green squares, and blue triangles at U = 0 indicate the
direct excitation gaps at the M, 2/3M, and K points, respectively, in the noninteracting system. Notice that the single-particle excitation gap
for θ � 60◦ does not necessarily approach asymptotically to the gap of the noninteracting system in the limit of U → 0, as indicated by dotted
lines near U = 0 in (b)–(f). This is because the weak-intensity subpeak structures appear inside the noninteracting gap for finite U , as shown
in Figs. 6(g) and 6(h).

TRIM point i becomes zero, instead of having a pole, at
ζ = 0 when the topological phase transition occurs, the lowest
conduction and highest valence energy bands of HT(k) do
not touch each other at the Fermi energy. Instead, they are
positively and negatively diverged, respectively, at i. More-
over, the parity eigenvalues of these diverging eigenstates of
HT(k) are able to be exchanged at i and thus the topological
invariant can be varied.

This is indeed observed in our calculations. As shown in
Figs. 8(d) and 8(e), the parity eigenvalues of the eigenstates
of HT(k) with the largest and smallest eigenvalues are re-
versed at three M points after their eigenvalues are diverged
positively and negatively, respectively. Accordingly, the topo-
logical quantities (δ�, δM1 , δM2 , δM3 ) of HT(k) changes from
(−1,+1,−1,+1) to (−1,−1,+1,−1), keeping a finite
single-particle excitation gap 
sp(M ) in the spectral function
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FIG. 8. Energy dispersions of the topological
Hamiltonian HT(k) for various U and θ values indi-
cated in the figures. We set that λ = 1.6t and t2 =
t ′
2 = t3 = 
tr = JH = 0. The Fermi energy is located at

E = 0. “+1” and “−1” given above the Fermi energy
refer to the parity eigenvalue of the lowest conduction
energy band at the M1 point, whereas those given blew
the Fermi energy refer to the parity eigenvalue of the
highest [(a)–(c) and (g)–(i)] or lowest valence energy
band [(d)–(f)] at the M1 point.
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FIG. 9. Single-particle excitation gap 
sp at the M (red circles),
2/3M (green squares), and K (blue triangles) points as a function of
U for (a) θ = 30◦, (b) 60◦, (c) 120◦, and (d) 45◦ when JH = 0.2U .
For comparison, the results for JH = 0 are also shown by red, green,
and blue lines, corresponding to 
sp at the M, 2/3M, and K points,
respectively. We set that λ = 1.6t and t2 = t ′

2 = t3 = 
tr = 0.

of the interacting system [see Figs. 10(d) and 10(e)]. This type
of topological phase transition is indicated with light magenta
lines in Figs. 7(a), 7(c), and 7(d).

As shown in Figs. 7(e)–7(g), in the cases of θ = 45◦, 60◦,
and 120◦, the single-particle excitation gap 
sp(K ) decreases
first, diminishes at a certain U , and then increases with
increasing U . Because the K point is not a TRIM, the parity
eigenvalues of HT(k) at the TRIM points remain the same
even after this gap closure happens. Thus the topological
property of a MI region, indicated by light cyan color in
Fig. 7, is the same as that of the noninteracting system with
25.77◦ � θ � 169.78◦, i.e., the QSH state. Our calculations
therefore affirm the possibility of the paramagnetic MI with
nontrivial band topology in t5

2g honeycomb systems.
We should note here that we fail to calculate the topological

invariant (−1)ν of HT(K) in parameter regions indicated by
hatched areas in Figs. 7(a) and 7(b). This is simply because
HT(K) evaluated by the CPT is broken down. More details
are discussed in Appendix C.

It is often the case that the Hund’s coupling JH as well as
the on-site Coulomb repulsion U plays a crucial role in deter-
mining the electronic and magnetic properties of t2g systems.
For example, anisotropic magnetic exchange interactions such
as Kitaev interaction are induced in the strong coupling limit
of t5

2g systems with a honeycomb lattice structure only when
JH is finite [31]. We thus investigate the effect of JH on the
electronic and topological phase diagram in a relatively weak
coupling region. Figure 9 shows the single-particle excitation
gap 
sp for θ = 30◦, 45◦, 60◦, and 120◦ when JH = 0 and
0.2U . Remarkably, we find that 
sp for various θ values is
approximately scaled with U − 2JH, which is the effective
Coulomb interaction among different orbitals, regardless of JH

values. As shown in Fig. 9(d), only 
sp at the K point near 45◦
seems to deviate from this scaling. Therefore we can conclude

that the dominant effect of JH on the electronic and topological
phase diagram is the renormalization of the on-site Coulomb
repulsion U .

V. DISCUSSION

Table III summarizes the hopping and trigonal distortion
parameters for the existing materials Na2IrO3, Li3IrO3, and
α-RuCl3, which are extracted from literature [15,16,48–50].
In the case of Na2IrO3, the expected value of θ is about
5 ∼ 10◦ [48–50], although Ref. [15] reports that θ can be
as large as 296◦. Note that the SOC λ for Na2IrO3 is
0.4 ∼ 0.5 eV and thus λ/t is about 1.5 ∼ 1.9t . Therefore,
according to our results shown in Fig. 4, this material can
be in the TBI phase only when the 2nd and 3rd NN hopping
strengths are within the proper range. In addition, as shown in
Fig. 5, the phase boundary separating the BI and TBI phases
tends to shift leftward as 
tr/t decreases to be negative. This
infers that strong negative 
tr/t is more profitable for Na2IrO3

to be in the TBI phase. However, the expected value of t2
is about −0.28 ∼ −0.30t and 
tr/t is positive. These are
pessimistic indications for Na2IrO3 being a TBI.

Recently, Catuneanu et al. have studied theoretically the
edge state of single-layer Na2IrO3 [61]. In their study,
the effective Hamiltonian for the jeff = 1/2 manifolds was
constructed with the 1st, 2nd, and 3rd NN hoppings be-
tween jeff = 1/2 orbitals, which are extracted from the first-
principles electronic band structure calculations of single-
layer Na2IrO3. The edge dispersion in the zigzag geometry
was also calculated with the effective jeff = 1/2 Hamilto-
nian. Their results are similar to the edge dispersion shown
in Fig. 3(c). This also confirms that Na2IrO3 is not in the
TBI phase.

However, recent photoemission spectroscopy measurement
on Na2IrO3 has observed a metallic band near the � point
[34,35]. If this metallic band is attributed dominantly to
the surface honeycomb layer, the physical parameters in the
surface honeycomb layer would be located very close to the
topological phase boundary because, according to our calcu-
lation in Figs. 4 and 5, the �-point Dirac dispersion appears
at the Fermi energy in the phase boundary between the BI and
TBI phases. This is an optimistic clue for the surface layer of
Na2IrO3 to be located not far from the TBI phase. Therefore
we expect that small structural tuning on Na2IrO3 would be
enough to bring about the topological phase transition in the
surface layer.

As shown in Table III, estimated θ for Li2IrO3 is about
320◦ and θ for α-RuCl3 is about 295◦–315◦. Therefore, ac-
cording to the topological phase diagrams shown in Figs. 4
and 5, these materials could be in the TBI phase when 
tr/t is
positively large, and the 2nd and 3rd NN hopping strengths are
small enough [15]. However, the estimated 2nd NN hopping
strengths listed in Table III are relatively large (|t2| > 0.2t).
This implies that the TBI phase is hard to be stabilized in
these parameters for Li2IrO3 and α-RuCl3. For the realization
of TBIs in these materials, it is advantageous to reduce the
further neighboring hoppings.

Recently, Yamada et al. have proposed a new efficient
way to experimentally control the hopping strengths
of a honeycomb lattice by introducing oxalate- or
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tetraaminopyrazine-based molecular ligands, instead of
chlorine atoms, which are connected to the adjacent TM Ru3+

ions [68]. They have theoretically suggested that the relative
strength of the 1st NN hopping channel can be tuned by
selecting the molecular ligand. Since molecular ligands can
also increase the distance between the adjacent TM ions in a
honeycomb lattice, it would be enough to modify the relative
hopping strength of the 2nd and 3rd NN hoping channels.
Although their theory expects that these systems should be in
the MI phase with the magnetic exchange interaction between
the TM ions being properly designed, the topological phase
could also be turned in the paramagnetic insulating limit.

In Sec. IV, we have shown the possibility of the MI
with nontrivial band topology in a t5

2g system with the hon-
eycomb lattice structure. However, the estimated U values
for Na2IrO3, Li2IrO3, and α-RuCl3 are much larger than 2t
studied in Fig. 7. Their U − 3JH values are estimated around
3.2t for Na2IrO3 and 6t for α-RuCl3 [30]. In such a large
U limit, the effective spin model with relativistic Jeff = 1/2
doublets is expected to be a better description for the insulat-
ing state. In the system with the honeycomb lattice structure,
the magnetic exchange interaction between the 1st NN sites
can be expressed with three different parameters: isotropic
Heisenberg term (J), Kitaev term (K), and symmetric off-
diagonal term (�) [69]. Furthermore, the relative strength of
these three magnetic interaction terms can be varied with θ .
When θ = 0◦ and 180◦, only the Kitaev term is accessible for
finite Hund’s coupling JH [31]. Thus, in this case, the magnetic
Z2 spin liquid can be stabilized. In contrast, the Kitaev term
is diminished and only the Heisenberg term is survived when
θ = 90◦. Thus it gives rise to the antiferromagnetic Neél order
[31]. Because the off-diagonal � parameter is proportional to
t1t ′

1, its magnitude is maximum at θ = 45◦ and 135◦, whereas
it is absent at θ = 0◦, 90◦, and 180◦.

VI. CONCLUSION

We have investigated the topological property of a t5
2g

system with a honeycomb lattice structure such as Na2IrO3

and the isostructural Li2IrO3 and α-RuCl3. By calculating the
bulk topological invariant and the energy band dispersions of
edge states, we have unraveled that the hopping parameter θ ,
which determines the relative strength of the two different
processes in the 1st NN hopping channel, plays an essential
role in the topological phase transition between the trivial BI
and the TBI. When the pdπ -type hopping process mediated
by the edge-shared ligands is dominant, the topologically
trivial phase is favorable. On the other hand, when the ddσ -
type direct hopping process becomes stronger, the topological
phase transition occurs to the TBI phase at the critical θ where
the band gap is closed at the � or M points.

We have also explored the topological phase transition
when the Coulomb repulsion U is introduced. As expected, we
have shown that the BI phase is transferred into the MI phase
with increasing U . We have found that there are the following
four cases for this transition to occur. (i) The electronic phase
transition occurs from a BI to a MI with trivial band topology,
accompanied with closing the single-particle excitation gap
(at non-TRIM points) at the same critical U value. (ii) The
topological phase transition occurs from a TBI to a BI with

the single-particle excitation gap closing at TRIM points,
followed by the electronic phase transition from a BI to a
topologically trivial MI with the single-particle excitation
gap closing at non-TRIM points. (iii) The topological phase
transition occurs within a MI from trivial to nontrivial band
topology at the critical U where the single-particle Green’s
function exhibits zeros, not poles, at the Fermi energy and at
TRIM points. (iv) In a wide range of θ values, the electronic
phase transition occurs from a TBI to a MI without changing
the band topology, where the single-particle excitation gap at
the K and K ′ points is closed at the same critical U value.
Therefore our calculations confirm the possibility of the MI
phase with nontrivial band topology in a t5

2g system with a
honeycomb lattice structure.
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APPENDIX A: CLUSTER PERTURBATION THEORY

With the help of the exact diagonalization method based
on the Lanczos algorithm [70], we calculate the ground state
|�G〉 with its energy EG for the t5

2g electron configuration in
the six-site cluster under the open boundary conditions. Let
Eh

n (Ee
n ) and |�h

n 〉 (|�e
n〉) be the nth eigenvalue and eigenstate

of the cluster with the total number of electrons being one less
(more) than that of the ground state. The cluster single-particle
Green’s function is given as

G′
lη,l ′η′ (ζ ; μc) =

∑
m

Qe
lηm

(
Qe

lη′m

)∗

ζ − εe
m − μc

+
∑

n

Qh
lηn

(
Qh

l ′η′n

)∗

ζ − εh
n − μc

,

(A1)
where ζ is complex frequency, εe

m = Ee
m − EG, εh

n = EG −
Eh

n , Qe
lηm = 〈�G|clη|�e

m〉, and Qh
lηn = 〈�h

n |clη|�G〉 [71,72].
clη is the annihilation operator at site l in the cluster and η

denotes both spin and orbital degrees of freedom. The chemi-
cal potential μc for the cluster is given as μc = (Ee

0 − Eh
0 )/2,

where Eh
0 and Ee

0 are the minimum energy among Eh
n and

Ee
n , respectively. Therefore the Fermi energy is located in the

middle of the lowest one-electron and highest one-hole addi-
tional energy bands. Using the band Lanczos method [73], we
calculate εe

m, εh
n , Qe

lηm, and Qh
lηn to obtain G′

lη,l ′η′ (ζ ; μc).
In the CPT [74], the lattice single-particle Green’s function

G(ζ , K) of the supercell composed of the clusters is calcu-
lated as

G−1(ζ , K) = G′−1(ζ ; μc) − V(K), (A2)

where G′(ζ ; μc) is the cluster Green’s function given in
Eq. (A1) and V(K) is the Fourier transformation of the
intercluster hopping matrix. Here, K is the momentum in
the Brillouin zone of the supercell. Note that the lattice
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FIG. 10. Spectral functions A(ω, k) for the same U and θ values
used to obtain the energy dispersions of the topological Hamiltonian
HT(k) in Fig. 8. The corresponding U and θ values are indicated in
each figure. We set that λ = 1.6t and t2 = t ′

2 = t3 = 
tr = JH = 0.
The Fermi energy is located at ω = 0.

single-particle Green’s function evaluated from the CPT
sometimes fails to describe the total number of electrons
correctly even when the cluster Green’s function gives the
correct number. This always happens when the electron-hole
symmetry of V(K) is broken. To overcome this difficulty, here
we adopt the VCA [75] with the chemical potential μ of the
cluster treated as a variational parameter. In this treatment, the
cluster Green’s function is calculated in Eq. (A1) with μc re-
placed with μ. The additional term (μ − μc)I is also added in
V(K) in order that the replacement of the chemical potential
does not change the overall Hamiltonian. Thus Eq. (A2) is
modified as

G−1(ζ , K) = G′−1(ζ ; μ) − Vμ(K), (A3)

where Vμ(K) = V(K) + (μ − μc)I.
The chemical potential μ is determined so as to satisfy

the stationary condition of the grand potential function �(μ),
i.e., ∂�/∂μ|μ=μ∗ = 0, under the condition that the average
number of electrons per site is 5. Here, the grand potential
function �(μ) at the zero temperature is given as

�(μ) = �′(μ) + 1

2

∫
BZ

d2KtrVμ(K)

−
∫ ∞

0

dx

x

∫
BZ

d2K ln | det[I − Vμ(K)G′(ix, μ)]|,
(A4)

where �′(μ) = EG − μNt is the grand potential function of
the cluster, Nt is the total number of electrons in the cluster
(i.e., Nt = 30 for the six-site cluster), and

∫
BZ d2K · · · refers

to the integration of the momentum K over the Brillouin zone
of the supercell.
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FIG. 11. [(a) and (b)] Spectral functions A(k, ω) of the interact-
ing system and [(c) and (d)] energy dispersions of the topological
Hamiltonian HT(k) for θ = 10◦ and 178◦ indicated in the figures.
We set that U = 0.8t, λ = 1.6t , and t2 = t ′

2 = t3 = 
tr = JH = 0.
These parameters are in the hatched areas of the topological phase
diagram shown in Fig. 7(a).

Note that the lattice single-particle Green’s function
G(ζ , K) is given in terms of the supercell momentum K. In
general, the symmetry of the supercell can be different from
that of the original honeycomb lattice. Therefore, in order
to obtain the single-particle Green’s function G(ζ , k) at the
momentum k in terms of the original honeycomb lattice, we
periodize the Green’s function as

Gη jη
′
j′
(ζ , k) = 1

3

∑
l,l ′

δ j,l2δ j′,l ′2 Glη,l ′η′ (ζ , K)eik·(rl −rl′ ), (A5)

where η j in the left hand side is referred to as state η at the
jth ( j = 0, 1) base in the unit cell of the original honeycomb
lattice, and l2 is the remainder after dividing l by 2 (i.e.,
l2 = l mod 2). rl is the lattice vector of the unit cell of
the honeycomb lattice within the cluster that contains site
l(= 0, 1, . . . , 5). The supercell momentum K that corre-
sponds to the momentum k can be obtained by properly
subtracting from k a reciprocal lattice vector ks of the super-
cell. Finally, the periodized spectral function A(k, ω) can be
evaluated as

A(k, ω) = − 1

π

∑
j,η

ImGη j ,η j (ω + iδ, k), (A6)

where ω is real frequency and δ is the broadening parameter
taken as δ = 0.008t in our calculations.

APPENDIX B: SPECTRAL FUNCTIONS

Figure 10 shows the spectral functions calculated from
Eq. (A6) for the same parameters used to obtain the
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energy dispersions of the topological Hamiltonian HT(k) in
Fig. 8. When θ = 30◦, we can observe that, as U increases,
subbands with weak intensity appear inside the main bands
with dominant intensity. On the other hand, when |t ′

1| > |t1|
as in the case of θ = 120◦, the overall shapes of spectral
functions near the Fermi energy resemble those for the Kane-
Mele-Hubbard model with a finite SOC (see Refs. [40,44]).
In this case, as shown in Figs. 10(g)–10(i), the conduction and
valence bands around the K and K ′ points are split into two
subbands, each of which exhibits similar spectral weight.

APPENDIX C: BREAKDOWN OF THE
TOPOLOGICAL HAMILTONIAN

We find that the topological Hamiltonian HT(k) obtained
in our calculations is sometimes broken down for the par-
ticular parameter regions specially when t1 is predominant.

For example, the topological Hamiltonian for θ = 10◦ and
U = 0.8t shown in Fig. 11(c) does not preserve the IS and
TRS as it should. The topological Hamiltonian for θ = 178◦
and U = 0.8t shown in Fig. 11(d) exhibits several singular-
ities, although it preserves the correct symmetry. In these
cases, the Z2 topological invariant based on the topological
Hamiltonian is not well defined. One possibility of these kinds
of breakdown is due to the failure of precise numerical cal-
culations. We have found that the convergence of the ground
state for these parameters as in Fig. 11(c) is much poorer than
that for other parameters. On the other hand, the convergence
of the ground state for the parameters such as the case in
Fig. 11(d) is almost similar to that for other parameters where
the topological Hamiltonian is well defined. Thus, in this case,
the numerical error for the calculation of the ground state does
not seem serious. To resolve these difficulties, more precise
numerical analysis is required.
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