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Matrix product states (MPSs), a tensor network designed for one-dimensional quantum systems, were recently
proposed for generative modeling of natural data (such as images) in terms of the “Born machine.” However,
the exponential decay of correlation in MPSs restricts its representation power heavily for modeling complex
data such as natural images. In this work, we push forward the effort of applying tensor networks to machine
learning by employing the tree tensor network (TTN), which exhibits balanced performance in expressibility
and efficient training and sampling. We design the tree tensor network to utilize the two-dimensional prior of the
natural images and develop sweeping learning and sampling algorithms which can be efficiently implemented
utilizing graphical processing units. We apply our model to random binary patterns and the binary MNIST data
sets of handwritten digits. We show that the TTN is superior to MPSs for generative modeling in keeping the
correlation of pixels in natural images, as well as giving better log-likelihood scores in standard data sets of
handwritten digits. We also compare its performance with state-of-the-art generative models such as variational
autoencoders, restricted Boltzmann machines, and PixelCNN. Finally, we discuss the future development of
tensor network states in machine learning problems.

DOI: 10.1103/PhysRevB.99.155131

I. INTRODUCTION

Generative modeling [1], which is being asked to learn a
joint probability distribution from training data and generate
new samples according to it, is a central problem in unsu-
pervised learning. Compared with discriminative modeling,
which captures only the conditional probability of the data’s
discriminative labels, generative modeling attempts to capture
the whole joint probability of the data and is therefore much
more difficult [2].

During the past decades, there have been many generative
models proposed, including those based on the probabilistic
graphic model (PGM), such as the Bayesian network [3], the
hidden Markov model [4], and restricted Boltzmann machines
(RBM) [5] and models based on neural networks such as
deep belief networks [6], variational autoencoders (VAEs)
[7], RealNVP [8], PixelCNN [9,10], and the recently very
popular generative adversarial networks [11]. Among these
generative models, two models are motivated by physics. One
is the Boltzmann machine [12], where the joint distribution
is represented by Boltzmann distribution; the other one is
the Born machine, where Born’s rule in quantum physics is
borrowed to represent the joint probability distribution of data
with the square amplitude of a wave function [13–16] and the
wave function is represented by tensor networks.
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Tensor networks (TNs) were originally designed for ef-
ficiently representing quantum many-body wave functions
[17,18], which, in general, are described by a high-order
tensor with exponential parameters. A TN applies low-rank
decompositions to the general tensor by discarding the vast
majority of unrelated long-range information to break the
so-called exponential wall of quantum many-body computa-
tion. Popular TNs include matrix product states (MPSs) [19],
tree tensor networks (TTNs) [20], the multiscale entangle-
ment renormalization ansatz [21], projected entanglement pair
states (PEPSs) [22], etc.

In recent years, researchers have begun to notice the sim-
ilarities between the tensor networks and the PGM [23,24].
Specifically, the factor graph in the PGM can be seen as
a special kind of tensor network [25]. In addition to the
structural similarities, the problems faced by the TN and
PGM are also similar. They both try to use few parameters to
approximate the probability distribution of an exponentially
large number of parameters. The reason TNs can achieve this
is attributed to the physical system’s locality. That is, most
of the entanglement entropy of the quantum states we care
about obeys the area law [26]. On the PGM side, although
the success of machine learning models based on PGM for
natural images is not completely understood, some arguments
support the idea that natural images actually have only sparse
long-range correlations, making them much less complex than
arbitrary images [13,27]. Thus, physicist-favored quantum
states and natural images may both gather only in a tiny
corner of their possible space, and the similarity between TN
and ML models may essentially result from the similarity
of the intrinsic structures of the model and data. Building
upon this similarity, various works have emerged in recent
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years that apply the concept [23,24,28,29], structure [30–32],
and algorithm [14,33,34] of the tensor networks to machine
learning.

In this work, we focus on generative modeling based on
tensor networks. On the one hand, we propose TTNs as a
direct extension to the tree-structure factor graph models.
On the other hand, a TTN works as a new tensor network
generative model, an extension of the recently proposed MPS
Born machine [14]. Compared to MPSs, TTNs exhibit natural
modeling on two-dimensional data such as natural images,
and its more favorable in the growth of the correlation length
of pixels.

In this paper we first introduce the TTN as a generative
model, then develop an efficient sweeping algorithm to learn
the model from data by minimizing the Kullback-Leibler
divergence between empirical data distribution and the model
distribution, as well as a sampling algorithm that generates
unbiased samples. We apply our TTN generative model to two
kinds of data. The first one is random binary patterns, where
the TTN model works as an associative memory trying to re-
member all the given patterns. The task is to test the expressive
power of the TTN model. The second type of data we test is
the MNIST data set of handwritten digits, a standard data set
in machine learning. Using extensive numerical experiments,
we show that the TTN has better performance than the classic
tree-structure factor graph and the MPS Born machine. In
addition, we demonstrate quantitatively the gap between the
existing tensor network generation models and state-of-the-art
machine learning generative models, pointing out the possible
future development of the tensor network generation model.

The rest of the paper is organized as follows: in Sec. II
we give a detailed description of the TTN model, a two-
dimensional structure construction, and the training and gen-
erating algorithms. In Sec. III we apply the TTN model to both
the binary random patterns and the standard binary MNIST
data set. Finally, we discuss the future of tensor networks
applied to unsupervised generative learning in Sec. IV.

II. MODELS AND ALGORITHMS

A. Data distribution and maximum-likelihood learning

Suppose we are given a set of data composed of |T | bi-
nary images, {xa|a = 1, 2, 3, . . . , |T |} ∈ {+1,−1}|T |×n, each
of which is represented by a binary vector of length n. This
defines an empirical data distribution:

π (x) = 1

|T |
|T |∑
a=1

δ(x, xa).

The task of generative modeling is to find an efficient way to
model π (x), which means finding a distribution p(x) (with
a reasonable number of parameters) which is as close as
possible to π (x). The distance between those two proba-
bilities can be define by using the Kullback-Leibler (KL)
divergence [35],

DKL(π‖p) =
∑

x

π (x) ln

(
π (x)

p(x)

)
.

We hence introduce the negative log likelihood (NLL) as the
cost function for model learning:

L = − 1

|T |
∑
x∈T

ln[p(x)] = S(π ) + DKL(π‖p), (1)

where T indicates the set of given data and |T | is the number
of training images. Due to the non-negativity of the KL di-
vergence, the last equation indicates that the NLL is bounded
below by the Shannon entropy of the data set. Moreover,
since the Shannon entropy −∑

π (x) ln π (x) is independent
of models, minimizing the NLL is equivalent to minimizing
the KL divergence.

B. Tree-structure factor graph as a generative model

The art of generative modeling is deeply related to de-
termining a good architecture when representing the best
joint probability p(x), which enhances the generalizability.
Considering the difficulty of calculating the normalization
factor of a loop graph, a loop-free PGM like a chain or a
tree is always a relatively simple starting point. Here we
take the tree-structure factor graph as an example. The un-
normalized joint probability p̃(x) in a tree-structure factor
graph is represented as

P(x) = 1

Z
p̃(x)

= 1

Z

∑
{h1,h2,...,hN−1}

f 1(h1, h2) f 2(h2, h3) · · · f 2N−2

× (hN−1, xN ).

As shown in Fig. 1(a), each block represents a random vari-
able with two states, {+1,−1}. Each purple node i is called
a visible node, whose state xi is determined by the value of
one pixel of the binary input data. Blue node hj also has
two states, but they act as hidden variables and hence are
not supposed to be observed directly. Each edge of the graph
introduces an arbitrary function f k which maps the states of
two-end-point nodes into a scalar. By combining the scalar
on all factors and summing over all possible states of hidden
variables h, one gets the non-normalized probability p̃(x) for
a given configuration of pixels x.

The learning is processed by using gradient descent to
minimize the NLL for the given data set. By denoting the
learnable parameters of the model as θ , the gradients read

−∇θL = − 1

|T |
∑
x∈T

∇θ ln p̃θ (x) + ∇θ ln Z. (2)

In general the first term in the above equation is relatively
straightforward to compute. However, computing the second
term requires summing over 2n configurations and hence is
difficult to compute in general. Fortunately, for acyclic graphs
such as the tree-structure factor graph, the second term can be
computed exactly by using the sum-product algorithm [36];
a generic message passing algorithm operates on the factor
graphs. It is a simple computational rule that by exchanging
the multiplication and summation in Z with a certain order
we can avoid the exponential problem in the brute-force
summation.

155131-2



TREE TENSOR NETWORKS FOR GENERATIVE MODELING PHYSICAL REVIEW B 99, 155131 (2019)

(a)

(b)

FIG. 1. (a) Tree-structure factor graph, where each block denotes
a random variable with a value of −1 or 1, in which the blue (purple)
block represents a hidden (visible) variable. The edge between two
blocks introduces a factor function f (k) of those two variables. By
adjusting those factor functions, the model could obtain the appro-
priate joint probability. (b) Tree tensor network, where xi denote the
value of the ith pixel of the data set. Each yellow circle denotes a
two- or three-order tensor. The edge between two tensors denotes
a share index of tensors, which is also called a virtue index in the
literature and will be contracted later. The exposed edge denotes the
so-called physical index of tensors; those indices would ultimately
be determined by the data set. For one of the given configurations of
the physical indices, the probability of the configuration is propor-
tional to the final scale value of the TTN after contracting all the
virtue indices.

It has been proved that any factor graph can be mapped
to a tensor network, whereas only a special type of tensor
network has corresponding factor graphs [25]. We take the
tree-structure graph model as an example. Let us put a matrix
M (k) in each edge k and an identity tensor δ( j) in each hidden
node h j , with the elements being written as

M (k)
ha,hb

= f k (ha, hb) (3)

and

δ
( j)
l,r,u =

{
1, l = r = u,

0, otherwise,
(4)

where each index of δ( j) corresponds to an adjacent edge of
h j and bond dimensions of those indices are identical to the
number of states of h j . One can use either QR decomposition
or singular-value decomposition (SVD) decomposition to sep-
arate M (k) into a product of two matrices as

M (k)
ha,hb

=
∑

k

A(k)
ha,k

B(k)
k,hb

. (5)

Without loss of generality, here we assume in the graph ha �
hb. The obtained matrices A and B can be absorbed into a
tensor defined on nodes,

T ( j)
l,r,u =

∑
x,y,z

B(l )
l,xB(r)

r,yδ
( j)
x,y,zA

(u)
z,u. (6)

For j = 1, we simply let the bond dimension of z, u equal 1.
Now we arrive at a specific form of TNN as shown in Fig. 1(b).
Notice that the tensor T ( j) here is just a special subset of the
general three-order tensor, which means if we use general
tensors as the building blocks of the TNN, we would get an
extension of the origin factor graph model.

Here we want to recall that the rule of the sum-product
approach in a tree-structure factor graph is, in fact, equivalent
to the tensor contraction of the TTN, with the same order that
the sum-product algorithm applies. However, notice that the
tensor contraction is much more general than the sum-product
algorithm. In the cases when the sum-product algorithm is
no longer applicable, the TN can still be approximately con-
tracted using approaches such as the tensor renormalization
group [37].

C. Tree tensor network generative model

As motivated in the last section, we treat the TTN as a di-
rect extension of the tree-structure factor graph for generative
modeling. As illustrated in Fig. 1(b), each circle represents
a tensor; each edge of the circle represents an individual
index of the tensor. The first tensor is a matrix connecting the
second and third tensors, while the remaining tensors are all
three-order tensors with three indices. The index between two
tensors is called a virtual bond, which would be contracted
hereafter. The left and right indices of the tensors in the
bottom of the TTN are respectively connected to two pixels
of the input image and hence are called physical bonds.

As we indicated in the Introduction, the TTN generative
model can also be treated as one kind of Born machine [13];
that is, the TTN represents a pure quantum state �(x), and
p(x) is induced by the square of the amplitude of the wave
function following Born’s rule,

p(x) = |�(x)|2
Z

, (7)

where Z = ∑
x |�(x)|2 is the normalization factor. In the

TTN, �(x) is represented as a contraction of the total Nt

tensors in the TTN,

�(x) =
∑
{α}

T [1]
α2,α3

Nt∏
n=2

T [n]
αn,α2n,α2n+1

. (8)

The reason we choose the quantum-inspired Born machine
instead of directly modeling a joint probability is based on a
belief that the Born machine representation is more expressive
than classical probability functions [13,31]. Meanwhile, treat-
ing the TN as a quantum state could introduce the canonical
form of the TN, which simplifies the TN contraction calcu-
lation and makes contractions more precise. For example, if
tensor T [2] fulfills

∑
α4,α5

T [2]
α2,α4,α5

T [2]
α

′
2,α4,α5

= δα2,α
′
2
, we say that

the tensor T [2] is canonical for index α2, or, more visually
speaking, upper canonical. In the TTN, there are three kinds
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of canonical forms for each tensor: upper canonical, left
canonical, and right canonical, depending on which index
was finally left. The three canonical forms are shown in the
following diagrammatic notation:

.

The line on the right side represents the identity matrix.
It is technically easy to canonicalize a tensor in the TTN.

For example, we can start from one end of the tree and use
the QR decomposition of the tensor to push the noncanonical
part of the tensor to the adjacent tensor. By repeating this
step, finally, one will push all noncanonical parts of the TTN
to just one tensor, called the central tensor, and all other
tensors are in one of the three canonical forms. Analogous
to the mixed-canonical form of MPSs, we call this form the
mixed-canonical form of the TTN.

Once the TTN is in the canonical form, many calculations
become simple, for example, the normalization factor Z fi-
nally becomes the squared norm of a tensor:

, (9)

where the orange tensor represents the noncanonical central
tensor in an arbitrary position. The direction of all the ten-
sors’ canonical forms is pointed toward the direction of the
central tensor. After all, to get the normalization Z , the only
calculation we need to do is the trace of multiplication of the
central tensor by its complex conjugate.

General tensor networks have a gauge degree of freedom
on their virtual bond. One can insert a pair of unitary matrices
UU −1 in the virtual bond without changing the final contrac-
tion results. This could damage the accuracy of the training
algorithm and brings additional computational complexity.
Fortunately, for acyclic tensor networks like the TTN, the
canonical form fixes this degree of freedom.

D. Data representations

In this work, we consider binary data, such as black and
white images, so the local dimension of the Hilbert space of
each physical bond is 2. As illustrated in Fig. 2, each index for
the lowest-layer tensors has two components, corresponding
to the two possible values of the connected pixels. The pixels
can be simply vectorized from the image to a vector, as
explored in [14] for the MPS Born machine, which we call
one-dimensional (1D) representation, as it basically does not
use any features in the two-dimensional (2D) structure of the
images.

Compared with the MPS, a significant advantage of
the TTN is that it can easily achieve the two-dimensional

(b) (c)

(a)

FIG. 2. (a) The TTN with 2D structure. Changing the 1D order
of data with the 2D order is equivalent to using the TTN with 2D
structure replacing Fig. 1(b). (b) The 1D order of data. (c) The 2D
order of data.

modeling of natural images. Figure 2(a) shows the two-
dimensional modeling of the TNN. In this architecture, each
tensor is responsible for one local area of pixels, which
greatly reduces the artificial fake long-range correlations.
Hence, we call it the 2D representation. Clearly, the 2D
representation keeps the model structure of Fig. 1, while only
requiring reshuffling the data index to proper order, as shown
in Figs. 2(b) and 2(c) [21,38].

In practice, in order to ensure that the number of input
pixels is a power of 2, we may artificially add some pixels that
are always zero. If the input data are the 1D permutation, we
add those zero pixels to the two ends of the one-dimensional
chain; if it is 2D, we add to the outermost edge of the
2D lattice. This is analogous to the “padding” operation in
convolution networks.

E. Training algorithm of the TTN

As we introduced in Sec. II A, the cost function we used
in the training is the negative log likelihood [Eq. (1)], which
is also the KL divergence between the target empirical data
distribution and the probability distribution of our model, up
to a constant.

A standard way to minimize the cost function is the
stochastic gradient descent algorithm (SGD). Unlike the tra-
ditional SGD, which updates all trainable parameters at the
same time, in the TTN we have a sweeping process; that
is, it iteratively updates each tensor based on the gradient
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of the cost function with respect to the tensor elements of a
tensor while holding other tensors unchanged. This sweeping
process can be combined with the canonicalization form of
the tensor network to simplify computations. As formulated
in Eqs. (9) and (11), after canonicalization, the whole net-
work is equivalent to one single tensor, which significantly
improves the efficiency of the sweeping process. There are
two choices for the updating scheme: a single-site update
scheme in which we update a single three-way tensor at
one time, with other tensors being held, and a two-site up-
date scheme in which we first merge two neighboring ten-
sors, then update the merged four-way tensors, with other
tensors being held. For the single-site update, the gradient
reads

∂L
∂T [k]

= Z ′

Z
− 2

|T |
∑
x∈T

� ′(x)

�(x)
, (10)

where � ′(x) and Z ′ denote the derivatives of �(x) and Z with
respect to T [k]; they are depicted as

(11)

As already noted, thanks to the tree canonicalization, compu-
tation of Z becomes straightforward.

The first step of the training is to transform the TTN con-
sisting of many random initialized tensors into the canonical
form and then push the noncanonical part onto the first tensor
to be trained, e.g., the rightmost one. Next, we use the gradient
calculated by Eqs. (10) and (11) to update corresponding
tensors:

T [k]
new = T [k] − α

∂L
∂T [k]

, (12)

where α denotes the learning rate; then we move to the next
sweeping step. To maintain the canonical form, as shown in
Algorithm 1, each time we apply a QR decomposition to
the updated tensor, we store the orthogonal matrix Q as a
new tensor and contract R to the tensor which is going to be
updated in the next step.

If we start from the rightmost tensor of the TTN, this
rule will allow us to gradually traverse the entire TTN from
right to left. Then we choose the leftmost tensor as our
starting tensor, doing the entire update again from left to
right. A complete left-right-left sweeping defines an epoch
of learning. See Algorithm 1 for the details of the training

algorithm.

Algorithm 1 Sweeping algorithm of the TTN.

Input: Tensors T [i] in the TTN. The TTN has been canonicalized
towards the rightmost tensor T [N].

Output: Updated tensor T [i]
new. The TTN will be canonicalized

towards the rightmost tensor T [N]
new .

1: Mark all tensors as “unupdated.” Set T [N] as the current tensor
T c.

2: while Exist unupdated tensors do
3: if Exists one unupdated adjacent tensor of T c, then
4: Update T c by the SGD. Mark this tensor as “updated.”
5: Set the rightmost unupdated adjacent tensors of T c as

the next T c.
6: Apply QR decomposition on the previous T c. Reshape

Q to the shape of the previous T c; save it as Tnew. Contract R to
next T c.

7: else if Exist two unupdated adjacent tensors of T c, then
8: Do 5–6.
9: end if
10: end while
11: Mark all tensors as “unupdated.”
12: Sweep from left to right.

For the two-site update, most of the procedures are the
same as those for the single-site update. The only difference
is that the tensor to be updated is a four-way tensor M[k, j]

merged by two three-way tensors. After using the gradient
of L on the merge tensor to update the merge tensor, we
apply SVD on the merge tensor to rebuild two tensors with
sizes identical to the original two tensors before merging
while pushing the noncanonical part onto the next tensor.
Each SVD step gives us a chance to change the dimension
of the bond between the current tensor and the last tensor,
making the TTN support dynamical adjustment of the number
of parameters of the model. This is the main benefit of the two-
site update scheme compared to the one-site update one. It is
also an important advantage of the tensor network compared
to traditional machine learning algorithms.

Notice that the one-site update always has lower computa-
tional complexity [O(D3)] than the two-site update [O(D5)].
In our experience, although the one-site update needs more
epochs to converge, its final convergence result is not signifi-
cantly different from the two-site update.

F. Direct sampling of the TTN generative modeling

Unlike most of the traditional generative models, the TTN
can directly calculate the partition function exactly. This gives
the TTN the ability to sample configurations directly without
needing the Markov chain, i.e., Gibbs sampling. We first
compute the marginal probability of an arbitrary pixel k:

p(xk ) =
∑

xa,∀ i �=k |�(x)|2
Z

, (13)

where the numerator in graphical notation is quite similar
to that of computing Z , with the only difference being that
the bond corresponding to xk does not contract and �(x) is

155131-5



CHENG, WANG, XIANG, AND ZHANG PHYSICAL REVIEW B 99, 155131 (2019)

2 4 16 64 256 1024
0

2

4

6

8

10

N
LL

limit
Dmax=10
Dmax=20
Dmax=30
Dmax=40
Dmax=50
Dmax=60
Dmax=70

8 16 32 64 128
System Size

0

10

20

30

40

N
LL

Limit
Dmax=10
Dmax=20
Dmax=30
Dmax=40
Dmax=50

(a () b)

FIG. 3. (a) Training the NLL of the TTN Born machine as a
function of the data size |T |; the system size is N = 16. (b) Training
the NLL of the TTN Born machine as a function of the system size
N ; the data size |T | = 50.

left as a two-dimensional vector. The square of the values
of this two-dimensional vector is the marginal probability of
xk = 0, 1. Then the conditional probability for the next pixel is
computed as

p(x j |xk ) = p(x j, xk )

p(xk )
. (14)

In diagram notation this is equivalent to using a sampled value
of xk to fix the corresponding bond of xk and keeping the
corresponding bond of x j open in contraction. The conditional
probability of Eq. (14) can be generalized to the case of
multiple fixed pixels. Equipped with all the conditional prob-
abilities, we are able to sample pixels of images one by one.

III. NUMERICAL EXPERIMENTS

A. Random data set

Remembering a specific set of random samples, i.e., as
an associative memory [39], is perhaps the hardest and least
biased task for testing the expressive power of generative
models. Since in the TTN we are able to compute the partition
function, the normalized probability of the training sample,
and the NLL exactly, we can quantify how well our model
learned from the training random samples. Generally speak-
ing, the smaller the NLL is, the more information we capture
from the training data set. Notice that the theoretical lower
bound of the NLL is ln(|T |). Thus, if the NLL is equal to
ln(|T |), it means the KL divergence is zero, indicating that
the distribution of our model is exactly the same as empirical
data distribution. That is, our model has exactly recorded the
entire training set and is able to generate samples identical to
training data with an equal probability assigned to each of the
training samples.

In Fig. 3(a), we show the NLL of the training set as a func-
tion of the number of training patterns |T |. The dashed line is
the NLL’s theoretical limit ln(|T |). As we can see, the NLL
converges to the theoretical limit when the maximum bond
dimension Dmax � |T |. In fact, a MPS or TTN with a bond
dimension equal to D could analytically encode D images
[40]. So when Dmax � |T |, TTNs have enough expressive
power to converge to the theoretical limit.

8 32 128 512 2048
System Size

0

5

10

15

20

25

N
LL

10 random patterns
MPS Dmax=10
MPS Dmax=12
TTN Dmax=10
log(10)

FIG. 4. Comparison between the TTN and MPS Born machines
trained on ten random patterns with different system sizes. As the
system size become larger, MPS can no longer reach the theoretical
limit of the NLL when Dmax equals the number of samples, while
the TTN is almost unaffected by the system size. This is because the
structure of the TTN can capture the long-range dependences better.

As noticed in the traditional theory of tensor networks,
the maximum entanglement entropy that a bond of the tensor
network can capture equals ln(D) [41]. For the random data
sets considered here, the classical Shannon entropy of the TN
approaches this value of entanglement entropy. But for more
general cases the relation between entanglement entropy and
classical Shannon entropy is not completely understood [42].

In Fig. 3(b) we plot the NLL as a function of the number of
pixels in each random pattern. The number of training patterns
|T | = 50. Figure 3(b) shows that when |Dmax| < |T |, the NLL
increases almost linearly with the number of variables in the
pattern. This is because the long-range correlations of a par-
ticular set of random patterns are dense, and the TTN does not
have enough capacity to exactly record all the information of
the random patterns. When |Dmax| � |T |, since the correlation
length of pixels in the TTN grows only logarithmically with
the size of the image, the NLL can always easily converge
to the theoretical limit regardless of how large the size of the
picture is.

This point is further illustrated in Fig. 4, where the re-
lationship between system size and training the NLL on
different models is shown. As an example, we use |T | = 10
random patterns to train both the TTN and MPS models. We
found that even at very large N , the TTN can still converge
to the NLL’s theoretical minimum once its maximum bond
dimension reaches 10. However, under the same or even
higher bond dimension (Dmax = 12), the NLL of the MPS still
fails in converging to the theoretical bound when the size is
very large. Because in the MPS the correlation length decays
exponentially fast, the information contained in the middle
bond is more saturated when the image size becomes very
large, making the maximum-likelihood training less efficient.

B. Binary MNIST data set

A standard benchmark for computer vision, especially for
generative modeling, is the handwritten digits of the MNIST
data set. The binary MNIST data set contains a training set
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FIG. 5. Training the NLL and sampling images for a |T | = 100
binarized MNIST data set. ln(|T |) is the theoretical minimum of the
NLL. The TTN exactly remembers all the information of the images
when Dmax = |T |.

of 50 000 images, a validation set of 10 000 images, and a
test set of 10 000 images. Each of them contains handwritten
digits of 28 × 28 pixels with a value of 0 or 1. In order to
facilitate comparison with other work, we directly use the
same standard binary MNIST data set that has been used in
the analysis of deep belief networks and has been widely
recognized by the machine learning community [43]. The
data set can be downloaded directly from the corresponding
website [44].

We did three experiments on the binary MNIST data set.
In the first experiment we used 100 randomly selected images
to train TTNs with different Dmax. The results are shown in
Fig. 5, where we can see that as the NLL gradually decreases,
the quality of the generated samples becomes better. The
training NLL will decrease to its theoretical minimum as Dmax

increases to |T | while the sampling image will be exactly the
same as the one in the training set.

In Fig. 6 we plot the two-site correlation function of pixels.
In each row, we randomly select three pixels, then calculate
the correlation function of the selected pixels with all other
pixels. The values of the correlations are represented by
color. The real correlations extracted from the original data
are illustrated in the top row, and correlations constructed
from the learned MPS and TTN are shown in the bottom
rows for comparison. For the TTN and MPS, Dmax is 50
and 100, respectively, which corresponds to the models with
the smallest test NLL. As we can see, in the original data
set, the correlation between pixels consists of short-range
correlation and a small number of long-range correlations.
However, the MPS model can faithfully represent the short-
range correlation of pixels, while the TTN model performs
well in both short-range and long-range correlations.

Next, we carried out experiments using the whole MNIST
data set with 50 000 training images to quantitatively compare
the performance of the TTN with existing popular machine
learning models. The performance is characterized by evalu-
ating the NLL on the 10 000 test images. We also applied the
same data set to the tree-structure factor graph and the MPS
generative model and compare using the same data set the test
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FIG. 6. Two-site correlation of pixels extracted from the original
data (first row), the MPS (second row), and the TTN model (third
row). We randomly choose three pixels at the tenth row of the images.
The Dmax of the TTN is 50; the Dmax of the MPS is 100, which
corresponds to the models with the smallest test NLL.

NLL with RBM, VAE, and PixelCNN, which currently gives
the state-of-the-art performance. Among these results, RBM
and VAE evaluate only approximately the partition function
and hence give only an approximate NLL. However, the
TTN and MPS together with PixelCNN are able to evaluate
exactly the partition function and give exact NLL values.

The results are shown in Table I, where we can see that
the test NLL obtained by the tree-structure factor graph is
175.8, and the result of the MPS is 101.45, with corresponding
Dmax = 100. For the TTN in a 1D data representation [as
depicted in Fig. 2(b)] with Dmax = 50, the test NLL already
reduces to 96.88. With the same Dmax, the TTN performed on
a 2D data representation [as depicted in Figs. 2(a) and 2(c)]
can do even better, giving a NLL around 94.25. However, we
see from Table I that when compared to the state-of-the-art
machine learning models, the tensor network models still have
a lot of space to improve: the RBM using 500 hidden neurons
and 25-step contrastive divergence could reach a NLL of
approximately 86.3, and PixelCNN with seven layers gives
a NLL around 81.3.

In Fig. 7 we draw the sampled images from the TTN
trained on 50 000 MNIST images, using the sampling

TABLE I. Test NLL of different models for the binary MNIST
data set.

Model Test NLL

Tree factor graph 175.8
MPS 101.5
TTN, 1D 96.9
TTN, 2D 94.3
RBM 86.3a [43]
VAE 84.8a [45]
PixelCNN 81.3 [10]

aApproximated NLL.
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FIG. 7. Images generated by the MPS and TTN that are trained
on |T | = 50 000 training images. (a) Part of the training images.
(b) MPS with Dmax = 100, test NLL = 101.45, (c) 1D TTN with
Dmax = 50, test NLL = 96.88, and (d) 2D TTN with Dmax = 50, test
NLL = 94.25.

algorithm described in Sec. II F, and compare them with the
images sampled from the MPS trained on the same data set.
Figure 7 shows that TTNs with 2D data representation sam-
ples are visually better looking than MPS figures, indicating
that the TTN captures global dependences better than the
MPS.

IV. CONCLUSIONS AND DISCUSSION

We have presented a generative model based on tree tensor
networks. This model is a direct extension of the matrix
product state Born machine [14] and also a generalization of
the tree-structure factor graph for generative modeling. The
TTN inherits advantages of MPSs for generative modeling,
including a tractable normalization factor, the canonical form,
and direct sampling, but overcomes the issue of exponential
decay of correlations in MPSs, making it more effective in
capturing long-range correlations and perform better for large-
size images. It is also straightforward to perform the TTN
for two-dimensional modeling of images. We have developed
efficient sweeping training algorithms for decreasing the NLL
lost function using single-site and two-site updating schemes.

We have carried out extensive experiments to test the
performance of the proposed TTN Born machine and compare
it with existing approaches. We showed that the TTN gives
a better training NLL than the MPS (with the same bond
dimension) in remembering large random patterns. For classic

MNIST handwritten digits, the TTN captures long-range de-
pendences better than the MPS and gives a much better NLL
for test images, which indicates a better generalization power.

Naturally, further development of the current work would
be to introduce the structure of the multiscale entanglement
renormalization ansatz [46,47], another type of tensor network
we can expect to have a tractable partition function while
hopefully being able to preserve better the long-range depen-
dences in the data.

We have also pointed out the gap between current genera-
tive models based on tensor networks and the state-of-the-art
machine learning models based on neural networks such as
PixelCNN. One advantage of neural-network-based models is
the better prior for the images powered by the convolution. So
an important step for tensor-network-based models to improve
further is utilizing better priors of 2D images. Along with this
direction, the PEPSs [22], which give a much better prior for
natural images, should be considered. However, notice that
this comes with the trade-off that the partition function is no
longer exactly computable. This might not be a serious prob-
lem as approximate contraction algorithms such as the tensor
renormalization group, boundary MPS, and corner transfer
matrix have proved to be efficient in contracting PEPSs for
finite-size systems. We will put this into future work.

We emphasize here that the necessity of developing gener-
ative learning algorithms based on tensor networks is mainly
motivated by the quantum machine learning field. The ma-
chine learning model based on tensor network representation
is essentially the type of model that uses a specific quantum
state to represent classical data. Research on this type of
model will pave the way for future migration of machine
learning to quantum computers [25].

On the other hand, traditional machine learning models
dealing with generative learning are closely linked to tensor
networks dealing with quantum many-body problems. Find-
ing the reason the machine learning model performs better
than the tensor network for generative learning could also
help the traditional tensor network algorithms continue to
improve.
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