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Phase diagram of the half-filled ionic Hubbard model in the limit of strong correlations
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We investigate the ionic Hubbard model (IHM) at half-filling in the limit of strong correlations and large
ionic potential. The low-energy effective Hamiltonian in this limit, obtained by a similarity transformation, is
a modified t-J model with effective second-neighbor hopping terms. We explore the possibilities of d-wave
pairing and extended s-wave pairing superconducting (SC) phases on a two-dimensional square lattice at zero
temperature within a Gutzwiller projected renormalized mean-field theory. In the sector of solutions that forbid
spin-ordering, the system shows a finite nonzero d-wave as well as extended s-wave pairing amplitude for � ∼
U � t . The width of the superconducting phase in U − � regime shrinks with increase in U and �, though
the extended s-wave pairing phase is higher in energy than the d-wave pairing superconducting phase. But in a
spin-resolved renormalized mean-field calculation, which allows for an antiferromagnetic (AF) order along with
the d-wave or extended s-wave pairing, the SC phase is no longer viable and the system shows a direct transition
from an AF ordered phase to a paramagnetic band insulator. Except for a thin sliver of a half-metallic AF phase
close to the AF transition point, most of the AF ordered phase is a Mott insulator. We benchmarked the AF Mott
insulator to band insulator transition within the Gutzwiller projected renormalized mean-field theory against the
dynamical mean-field theory solved using continuous time quantum Monte Carlo. Our work suggests that the
ground-state phase diagram of the IHM at half-filling in the limit of extreme correlations does not have any SC
phase. The SC phase seen in the paramagnetic sector is a metastable phase, being higher in energy than the AF
Mott insulator phase.
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I. INTRODUCTION

Doping a strongly correlated Mott insulator (MI) away
from commensurate filling results in a superconducting
phase [1] as known from high Tc cuprates and the recently
discovered superconductivity in magic-angle twisted bilayer
graphene [2]. The minimal model to describe this physics is
the strongly correlated Hubbard model, which at half-filling
maps onto an effective Heisenberg model having an AF
insulating ground state and doping holes or electrons into this
system results in a superconducting state.

In this work, we study a variant of the Hubbard model,
known as the ionic Hubbard model (IHM), which is basically
the Hubbard model defined on a bipartite lattice with an addi-
tional staggered potential �. The physics of IHM is governed
by the competition between the staggered potential � and
the Hubbard U [3–6]. At half-filling, in the large U limit,
the system is a MI, while for large �, the system is a band
insulator (BI) due to doubling of the unit cell. The physics of
the intermediate regime in which U ∼ �, straddling the two
insulating phases, has been of interest to the condensed matter
community. In this work we focus on the limit when U ∼ �

but both are much larger than the hopping amplitude t , that is,
U ∼ � � t and explore the possibility of a superconducting
phase in this limit of the IHM at half-filling.

The IHM has been realized for ultracold fermions on an
optical honeycomb lattice [7]. Due to recent developments in
layered materials and heterostructures, it is indeed possible
to think of many scenarios where the IHM can be used as a

minimal model to understand the qualitative physics. Some
of these examples are graphene on h-BN substrate where due
to the difference in energy of B and N sites, electrons in
the graphene sheet also feel a staggered potential. Also for a
bilayer graphene in the presence of a transverse electric field,
a potential difference is induced between the two layers [8],
which plays the role of the staggered potential. Interactions
are inevitably present in all real materials.

The IHM has been studied in various dimensions by a
variety of numerical and analytical tools [3–6,9–19]. In one-
dimension [3–5,9] it has been shown to have a spontaneously
dimerized phase which separates the weakly coupled BI from
the strong coupling MI. In higher dimensions (d > 1), this
model has been mostly studied in the weak to intermedi-
ate coupling regime for � ∼ t by many groups using the
dynamical mean-field theory (DMFT) [6,10,12,13,15–17],
determinantal quantum Monte Carlo [18,19], and coherent
potential approximation [14]. The solution of the DMFT
self-consistent equations for intermediate strength of U and
� ∼ t , in the paramagnetic sector at half-filling at zero tem-
perature shows an intervening correlation induced metallic
phase [6,12,14,18,19]. When one allows for spontaneous
spin-symmetry breaking the transition from paramagnetic BI
to antiferromagnetic (AF) insulator preempts the formation
of the parametallic phase [11,13], except, as shown in a
recent paper coauthored by two of us [15] using DMFT
with iterated perturbation theory (IPT) as the impurity solver,
for a sliver of a half-metallic AF phase. Upon doping the
IHM in the intermediate coupling regime for � ∼ t , one
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gets a broad ferrimangetic half-metal phase [15] sandwiched
between a weakly correlated PM metal for small U and
a strongly correlated metal for large U . Recently the IHM
was solved at half-filling within DMFT using continuous
time Monte Carlo (CTQMC) as an impurity solver [16,17].
In the large U limit U � (�, t ) it maps onto an effec-
tive Heisenberg model with the spin-exchange coupling J̃ =
t2U/(U 2 − �2) [16,17]. At any finite T , for � ∼ t , as U
increases, first the magnetic order turns on via a first-order
phase transition followed up by a continuous transition back
to the PM phase. There is a line of tricritical point Ttcp that
separates the two surfaces of first and second-order phase
transitions [17].

In this paper we study the half-filled IHM in the limit where
both the Hubbard U and the staggered potential � are much
larger than the hopping amplitude. Cluster DMFT studies in
this limit [11] demonstrated a direct transition between the
AF MI and the BI as � is increased for a fixed large value
of U . Recently this limit has been explored using slave-boson
mean-field theory [20], which demonstrated a transition from
MI to BI as � increases followed up by a transition to a broad
superconducting phase as � is increased further. Clearly there
is no clear consensus on the phase diagram of the IHM in
this limit. To develop some understanding of the IHM in this
limit, here we solve it using a Gutzwiller projected renormal-
ized mean-field theory as well as using the DMFT+CTQMC
technique. Below we summarize our main findings from this
analysis.

The IHM we study is on a two-dimensional (2D) square
lattice, at zero temperature. We find that within a spin-
symmetric Gutzwiller projected mean-field theory, the d-wave
pairing does indeed turn on for a small range of � ∼ U
sandwiched between a paramagnetic MI and a BI. Though
the extended s-wave pairing amplitude is also nonzero for a
small � range, it is always a little higher in energy than the
d-wave superconducting phase. But in a generic calculation,
where the system is allowed to have phases with broken spin
symmetry as well, the AF Mott insulating phase wins over
the superconducting phase, and the system does not have any
stable superconducting ground state. There occurs a transition
from the AF MI to the paramagnetic BI, with a thin half-
metallic phase intervening between the two insulators close
to the transition point. This phase diagram shows consistency
with the earlier analysis [6,17] in weak to intermediate U
and � regime, where a metallic phase is observed within a
spin-symmetric calculation; however, once spin-ordering is
allowed for, the AF MI preempts the formation of metal,
except for a thin half-metallic phase close to the transition
between the MI and the BI. Hence, there is a continuity in
the phase diagram along the U ∼ � line as U increases.
Surprisingly, the phase diagram obtained from the Gutzwiller
projected mean-field calculation differs from the one obtained
from the slave boson mean-field theory calculation [20],
where a broad SC phase appears beyond the BI phase as �

increases. We have benchmarked the AF transition point ob-
tained within the Gutzwiller projected mean-field theory cal-
culation against the DMFT+CTQMC calculation which has
earlier been shown to capture the correct strongly correlated
limit of IHM [16,17] within a mean-field description of the
AF order.

The rest of this paper is organized as follows. In Sec. II,
we describe the model, the low-energy Hilbert space which is
relevant to the limit U ∼ � � t , and the effective low-energy
Hamiltonian, obtained using a similarity transformation. Fur-
thermore, we describe the Gutzwiller approximation used to
solve this low-energy Hamiltonian. In Sec. III, we briefly
describe the Gutzwiller projected renormalized mean-field
theory (RMFT) for the AF phase and then benchmark our
results against the DMFT+CTQMC calculations. In Sec. IV,
we describe the spin-symmetric RMFT calculation which
allows for superconducting pairing amplitude followed up by
the generic RMFT calculation where we include the pairing
amplitude as well as the magnetic order. In Sec. V we con-
clude and summarize.

II. MODEL AND METHOD: LOW-ENERGY EFFECTIVE
HAMILTONIAN AND GUTZWILLER APPROXIMATION

The IHM is described on a bipartite lattice by the Hamilto-
nian

H = −t
∑

〈i, j〉,σ
(c†

iσ c jσ + h.c.) − �

2

∑
i∈A

n̂i + �

2

∑
i∈B

n̂i

+U
∑

i

n̂i↑n̂i↓ − U

2

∑
i

n̂i. (1)

Here t is the nearest-neighbor hopping amplitude, � is the
staggered one-body potential, and U is the onsite Hubbard
repulsion. At half-filling, corresponding to (〈n̂A〉 + 〈n̂B〉)/2 =
1, the Hamiltonian is particle-hole symmetric, with μ = U/2.

In the limit U ∼ � � t , the t = 0 model can be thought
of as the unperturbed model and the hopping can be treated
perturbatively. For t = 0 and U ∼ �, from the energies as-
sociated with all possible configurations at each site, it is
easy to see that holes on the A sublattice are energetically
expensive and doublons are energetically unfavorable on the
B sites. Hence, holes on A and doublons on B sublattice
get eliminated from the low-energy Hilbert space. As shown
in a work coauthored by two of us [21], the effective low-
energy Hamiltonian in the limit U ∼ � � t , obtained by a
similarity transformation which eliminates processes which
interconnect the high- and low-energy sectors of the Hilbert
space is given by

Heff = H0 + Ht,low + Hd + Htr + Hex. (2)

Here Ht,low is the hopping process in the low-energy Hilbert
space. As an effect of projection of holes and doublons from
A and B sublattice, respectively, many of the nearest-neighbor
hopping processes between sites of sublattice A and B, where
either the initial or the final state has holes on A sublattice
and/or doublons on B sublattice, belong to the high-energy
sector of the Hilbert space and hence get projected out from
low-energy Hamiltonian. But interestingly, in the half-filled
IHM there are hopping processes which belong only to the
low-energy Hilbert space, e.g., |dA0B〉 ⇔ | ↑A↓B〉. This is in
contrast to the half-filled Hubbard model [22], where hopping
is completely projected out of the low-energy Hilbert space.
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Hence, we have the following expression for Ht,low

Ht,low = −t
∑
〈i j〉,σ

[c̃†
iAσ

˜̃c jBσ + ˜̃c†
jBσ c̃iAσ ]

= −t
∑
〈i j〉,σ

P[c†
iAσ

c jBσ + H.c.]P . (3)

Here P is the projection operator that projects out holes
from sublattice A and doublons from sublattice B. The new
fermionic operators in the projected Hilbert space are defined
as

c̃†
Aσ

≡ η(σ )X d←σ̄
A = c†

Aσ
n̂Aσ̄ , (4)

˜̃c†
Bσ ≡ X σ←0

B = c†
Bσ (1 − n̂Bσ̄ ). (5)

A second-order hopping process starting from and return-
ing to the sector of states with single occupancies on two
neighboring sites, where the first hopping results in a virtual
hole on A and a doublon on B, results in an effective spin-
exchange process Hex given by

Hex = −J1

∑
〈i j〉,σ

[c̃iAσ̄ c̃†
iAσ̄

˜̃c†
jBσ̄

˜̃c jBσ̄ − c̃iAσ c̃†
iAσ̄

˜̃c†
jBσ

˜̃c jBσ̄ ]

= 2J1

∑
〈i j〉

P (SiA.S jB − (2 − n̂iA)n̂ jB/4)P, (6)

with J1 = t2

U+�
. There are dimer processes Hd where an

electron from an A site hops to an empty B site, and then hops
back to the same A site, creating a virtual state with a hole on
the A site. In another dimer process, an electron with spin σ

from a doubly occupied A site hops to a B site which has σ̄

and then hops back to A site, resulting in a virtual state with a
doublon on the B site. Both these processes are of order t2/�

and can be written as

Hd = − t2

�

∑
σ,〈i j〉

[c̃iAσ̄ c̃†
iAσ̄

˜̃c jBσ
˜̃c†

jBσ + c̃†
iAσ

c̃iAσ
˜̃c†

jBσ̄
˜̃c jBσ̄ ]

= − t2

�

∑
〈i j〉,σ

P[(1 − n̂iAσ̄ )(1 − n̂ jB) + (n̂iA − 1)n̂ jBσ̄ ]P .

(7)

Trimer terms, leading to Htr, correspond to the hopping
of a doublon or a hole from a site on the A(B) sublattice to
its second-neighbor site in the same sublattice via a two hop
process. Effectively, there is a doublon hopping which is intra-
A sublattice, where as the hole hopping is intra-B sublattice.
In terms of projected operators, these are represented as

Htr = − t2

�

∑
σ,〈i jk〉

(c̃†
kAσ

˜̃c†
jBσ̄

˜̃c jBσ̄ c̃iAσ + c̃iAσ̄
˜̃c†

jBσ̄
˜̃c jBσ c̃†

kAσ
)

− t2

�

∑
σ,〈 jil〉

( ˜̃clBσ c̃iAσ̄ c̃†
iAσ̄

˜̃c†
jBσ + ˜̃c†

jBσ c̃iAσ c̃†
iAσ̄

˜̃clBσ̄ )

= − t2

�

∑
σ,〈i jk〉

P (c†
kAσ

n̂ jBσ̄ ciAσ + ciAσ̄ c†
jBσ̄ c jBσ c†

kAσ
)P

− t2

�

∑
σ,〈 jil〉

P (clBσ [(1 − n̂iAσ̄ )c†
jBσ + c†

iAσ
ciAσ̄ c†

jBσ̄ ])P .

(8)

TABLE I. Gutzwiller factors for various terms in Heff at half-
filling in the antiferromnagnetically ordered phase [21].

Gutzwiller factors Expressions

gtσ
2δ

1 + δ + σms

gs
4

(1 + δ)2 − m2
s

g1 1

g2
4δ

(1 + δ)2 − m2
s

The effective low-energy Hamiltonian mentioned above can-
not be solved using regular perturbation theory because the
projected fermionic operators c̃A and ˜̃cB do not satisfy the
standard anticommutation relations of canonical fermions
and hence Wick’s theorem cannot be applied. The possi-
ble approaches to solve Heff are either fully numerical, like
variational Monte Carlo (VMC) [23], where the projection
constraints can be handled exactly in each configuration but is
computationally very expensive, or one can use the Gutzwiller
approximation in the same spirit as it is used for doublon
projection in the t-J model [24–27]. Within the Gutzwiller
approximation, the effect of projection is treated approxi-
mately by renormalizing the coefficients of the various terms
in Heff by corresponding Gutzwiller factors and calculating
the expectation value of the renormalized Hamiltonian in the
unprojected basis. The Gutzwiller factors, for the half-filled
IHM in the limit U ∼ � � t , for the hole projection from the
A sublattice and the doublon projection from the B sublattice
have been calculated in an earlier work coauthored by two
of us [21]. The renormalized Hamiltonian obtained is of the
form,

H̃ = H0 − t
∑
σ,〈i j〉

gtσ [c†
iAσ

c jBσ + c†
jBσ ciAσ ]

− g1
t2

�

∑
〈i j〉,σ

[(1 − n̂iAσ̄ )(1 − n̂ jB) + (n̂iA − 1)n̂ jBσ̄ ]

− t2

�

∑
σ,〈i jk〉

[(gtσ c†
kAσ

n̂ jBσ̄ ciAσ + g2ciAσ̄ c†
jBσ̄ c jBσ c†

kAσ
)

+ H.c.]

− t2

�

∑
σ,〈 jil〉

[(gtσ clBσ (1 − n̂iAσ̄ )c†
jBσ

+ g2clBσ c†
iAσ

ciAσ̄ c†
jBσ̄ ) + H.c.]

+ 2J1

∑
〈i, j〉

[gsSiA · S jB − 1/4(2 − n̂iA)n̂ jB]. (9)

Here gtσ , g1, gs, and g2 are the Gutzwiller renormalization
factors. The factors for various processes in Heff were cal-
culated under the approximation that the local densities be-
fore and after the projection are the same. Table I provides
expressions for the various Gutzwiller factors in terms of
the mean-field quantities, namely, δ = (nA − nB)/2, the den-
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sity difference between the two sublattices, and ms = (mA −
mB)/2, the staggered magnetization in the symmetry broken
antiferromagnetic phase.

Note that for ms = 0, the expressions for gt and gs become
similar to that of the familiar hole-doped t-J model with δ in
IHM playing the role of doping in t-J model [25], although
the projection constraints in the two situations are completely
different.

H0, the unperturbed part of the Hamiltonian in the pro-
jected space is equivalent to H0 = ∑

i
(U−�

2 )[n̂iA↑n̂iA↓ + (1 −
n̂iB↑)(1 − n̂iB↓)]. To see this, consider first the A sublat-
tice, where holes are not allowed in the low-energy Hilbert
space. The unperturbed Hamiltonian can be written as H0,A =
Ph[U (1 − n̂A↑)(1 − n̂A↓) + (U−�

2 )n̂A]Ph. Since holes are
projected out, only the second term survives under the pro-
jection. Using the completeness relation in the hole projected
Hilbert space, n̂A↑(1 − n̂A↓) + n̂A↓(1 − n̂A↑) + n̂A↑n̂A↓ = 1,
one can show that Phn̂APh ≡ (1 + n̂A↑n̂A↓). Similarly, on the
B sublattice where doublons are not energetically favourable
H0,B = Pd [Un̂B↑n̂B↓ − (U−�

2 )n̂B]Pd where only the second
term survives. Using the completeness relation on the B
sublattice, H0,B = (U−�

2 )[(1 − n̂B↑)(1 − n̂B↓) − 1].
We have solved the renormalized low-energy effective

Hamiltonian within a mean-field theory. Before we go into
details of this renormalized mean-field theory (RMFT) and
the phase diagram obtained from it, below we first benchmark
the results obtained from RMFT against DMFT+CTQMC.

III. BENCHMARKING THE RENORMALIZED
HAMILTONIAN AND GUTZWILLER APPROXIMATION

The Gutzwiller approximation for the projection of dou-
blons done for the hole-doped t-J model has shown qualita-
tive and quantitative consistency with results obtained from
VMC [26]. Hence, we expect that the Gutzwiller approx-
imation for the projection of holes and doublons from A
and B sublattice sites, respectively, will also capture the
physics qualitatively correctly. To check the validity of this
expectation, in this section we compare the results obtained
within RMFT against those obtained from DMFT+CTQMC.
DMFT+CTQMC has been shown to capture the physics of
strong correlations and the projection correctly in the limit
U � �, t as demonstrated by the correct dependence of Neel
temperature for the AF order as a function of � [16,17].

However, within a single site DMFT, we cannot explore the
possibility of d-wave or extended s-wave superconductivity.
Hence, our comparison of the results of RMFT with the
DMFT+CTQMC calculations is without including the super-
conducting pairing amplitude as a mean field. To be precise,
we give nonzero expectation values only to (a) the staggered
magnetization ms ≡ (mA − mB)/2 where mα = 〈c†

iα↑ciα↑ −
c†

iα↓ciα↓〉, (b) the density difference between two sublattices
δ = 〈(n̂A − n̂B)〉/2, (c) the intersublattice Fock shift χAB,σ =
〈c†

iAσ
c jBσ 〉, and (d) the intrasublattice Fock shifts χαα,σ =

〈c†
iασ c jασ + H.c.〉. Here α is the sublattice index and σ is

the spin index. The mean-field quadratic Hamiltonian can be

written as

HMF =
∑
k,σ

{h1σ (k)[c†
kAσ

ckAσ − c†
kBσ

ckBσ ]

+ h2σ (k)[c†
kAσ

ckBσ + H.c.]}, (10)

where

h1σ (k) = U − �

2

(
1 + δ − σms

2

)
− t2

�

[
4(1 − 2δ)

+ gt σ̄ (2χBBσ̄ + 4χBBxyσ̄ ) + gtσ
1 − δ + σms

2
γ

′
k

]

− 2t2

U + �
gsσms + 2t2

U + �
(1 − δ)

h2σ (k) =
[

− tgtσ − t2

�
(−2χABσ + 6g2χABσ̄ )

− t2

U + �

[
gs

(
1

2
χABσ + χABσ̄

)
+ 1

2
χABσ

]]
γk.

(11)

Here, k ≡ (kx, ky) is the dimensionless wave-vector
inside the Brillouin Zone of the square lattice, γk =
2[cos (kx ) + cos (ky)] and γ

′
k = 2[cos (2kx ) + cos (2ky)] +

4[cos (kx + ky) + cos (kx − ky)].
The mean-field Hamiltonian HMF can be diagonalized

using standard canonical transformation ckAσ = αkσ dk1σ +
βkσ dk2σ and ckBσ = αkσ dk2σ − βkσ dk1σ , where α and β are
fixed such that the off-diagonal part of Hamiltonian written in
terms of the d operators vanishes. This results in 2α2

kσ = [1 −
h1σ (k)/Eσ (k)] and 2β2

kσ = [1 + h1σ (k)/Eσ (k)] with Eσ (k) =√
h1σ (k)2 + h2σ (k)2.
At half-filling, the magnetizations on the A and B sub-

lattices are equal and opposite to each other owing to the
particle-hole symmetry. Hence, ms = (mA − mB)/2 = mA.
Self-consistent equations for the various mean-field order
parameters are

ms = 〈n̂iA↑〉 − 〈n̂iA↓〉 = 1

N

∑
k

(α2
k↑ − α2

k↓),

δ = 1

2N

∑
kσ

(α2
kσ − β2

kσ ),

χABσ = − 1

4N

∑
k

γkαkσ βkσ ,

χBBσ = 1

N

∑
k

[cos (2kx ) + cos (2ky)]β2
kσ ,

χBBxyσ = 1

N

∑
k

2β2
kσ cos (kx ) cos (ky). (12)

The DMFT is done using CTMQC as an impurity solver using
the hybridization expansion method, details of which can be
found in our earlier work [17]. Below we compare the stag-
gered magnetization and the density difference obtained from
the RMFT at T = 0 for a half-filled IHM on the 2D square
lattice with those obtained from the DMFT+CTQMC at β =
50/t where β is the inverse temperature. Figure 1 shows
good qualitative consistency between the Gutzwiller projected
RMFT and the DMFT+CTQMC calculations. The transition
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FIG. 1. Staggered magnetization ms and the density difference δ

vs � for U = 12t and 20t . Blue circles show the data obtained in
a DMFT+CTQMC calculation and the red data points are obtained
within a Gutzwiller projected RMFT calculation, respectively.

in both the calculations is first-order, as reflected in the jump
in the magnetization at the transition point. Furthermore, the
consistency between the RMFT and DMFT+CTQMC calcu-
lations improves for larger values of U and �, as expected.
For large values of U and �, where the doublon density on
B sublattice and the hole density on A sublattice within the
CTQMC calculations become really small (less than 0.01 or
so, as shown in Fig. 2), then even quantitative consistency is
seen between the two calculations at least deep in the ordered
state or away from the transition point in the disordered state,
as shown in the lower right panel of Fig. 1. In contrast, in
slave boson mean-field calculations [20] in the same limit
one obtains the staggered magnetization transition point at
∼15.8t for U = 20t and also the value of ms is much smaller
as compared to what is obtained within the RMFT or the
DMFT+CTQMC calculations.

We have also calculated the density of holes hA = 〈(1 −
n̂A↑)(1 − n̂A↓)〉 and doublons dA = 〈n̂A↑n̂A↓〉 on A sublattice
within DMFT+CTQMC. Due to the p-h symmetry at half-
filling, hA = 〈n̂B↑n̂B↓〉 = dB and hB = dA. Figure 2 shows the
density of holes and doublons on the A sublattice. As shown,
sublattice A has negligible fraction of holes for U ∼ � �
12t . The density of holes decreases as U increases and also
for a fixed U � 8t , as � increases hA decreases becoming
eventually less than one percent. This explains why a better
consistency is observed at higher values of U and � between
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FIG. 2. Hole occupancy and double occupancy on A sites as a
function of � obtained from the DMFT+CTQMC calculation for
the IHM at half-filling on a 2D square lattice.

the DMFT+CTQMC calculation and the Gutzwiller projected
RMFT theory, where holes from A sublattice and doublons
from B sublattice have been fully projected out in the process
of obtaining the low-energy Hamiltonian.

IV. PHASE DIAGRAM WITHIN RENORMALIZED
MEAN-FIELD THEORY

In this section, we provide details of two versions of the
Gutzwiller projected RMFT calculations for the low-energy
Hamiltonian in Eq. (9) allowing for the presence of a su-
perconducting order parameter. One is the spin-symmetric
calculation where we do allow for a d-wave (or extended s-
wave) pairing amplitude to have nonzero expectation value but
nα↑ = nα↓ is imposed. The other is a less restricted calculation
where we allow for superconductivity as well as symmetry
breaking in the spin sector.

Our solution of the mean-field Hamiltonian involves a two
step transformation. The Hamiltonian obtained after the first
step of the transformation has both interband and intra-band
pairing terms. The results presented below are obtained by
ignoring the interband pairing term, as it is smaller than
the gap between the two bands at most of the points in the
Brillouin zone, whence the second step of the transformation
can be done analytically. Details of these calculations are
given in Appendix A. In Appendix B, we have shown a
comparison of these results with the calculations where the
interband pairing term is kept, in which case the mean-field
Hamiltonian needs to be diagonalized numerically. As shown
in Appendix B, at zero temperature, the contribution of the
interband pairing term is negligible for most of the physical
quantities of interest. Hence, to obtain the zero temperature
phase diagram it is a reasonably good approximation to ignore
the interband pairing terms.

A. Results from spin-symmetric RMFT

In the spin-symmetric RMFT, along with the mean fields
mentioned earlier, we allow for a nonzero value of the
superconducting pairing amplitude �AB(i, j) = 〈c†

iA↑c†
jB↓ −

c†
iA↓c†

jB↑〉 looking for d-wave and extended s-wave pairing in
the U ∼ � � t limit of the half-filled IHM on a 2D square lat-
tice. For d-wave pairing �AB(i, i ± x) = �d = −�AB(i, i ±
y) while for the extended s-wave �AB(i, i ± x) = �AB(i, i ±
y) = �s. This implies �AB(k) = 2�d [cos(kx ) − cos(ky)] for
the d-wave pairing while for the extended s-wave �AB(k) =
2�s[cos(kx ) + cos(ky)]. We impose the spin symmetry
〈n̂i↑〉 = 〈n̂i↓〉, which further implies that all the intersublattice
and intrasublattice Fock shifts are spin-independent. Details
of the mean-field calculations are given in Appendix A.

Figure 3 shows the pairing amplitude with the d-wave and
the extended s-wave symmetry as a function of � for four
values of U . Both the pairing amplitudes are nonzero for a
finite range of � close to but less than U . For most of U values
of interest, the range of � over which the extended s-wave
pairing appears is much smaller than the � range over which
the d-wave pairing amplitude is nonzero. Note that though
the pairing amplitude �d,s remains nonzero for values of �

smaller than the range shown in Fig. 3, the density difference
δ becomes close to zero for these smaller values of �. This,
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FIG. 3. The superconducting pairing amplitude for d-wave and
extended s-wave symmetry vs � obtained from spin-symmetric
RMFT. The pink curves shows the d-wave order parameter φd vs
� while the green data points represent the extended s-wave order
parameter φs. Different panels show results for different values of
U ranging from U = 8t to U = 20t . The extended s-wave pairing
is observed for a smaller � regime while there is nonzero d-wave
pairing amplitude for a comparatively broader range of �.

as shown below, results in a vanishing SC order parameter for
these smaller values of �.

Figure 4 further shows the comparison of the ground-state
energies for the self-consistent solutions with d-wave pairing
and extended s-wave pairing. For almost the entire � regime
where extended s-wave superconductivity is seen, the ground-
state energy of the extended s-wave superconducting phase is
higher than that of the d-wave superconducting phase, making
the latter the stable phase in the spin-symmetric calculation.

The superconducting order parameter φd and φs for the
d-wave and extended s-wave channel, respectively, is defined
as φ2

d,s = g2
t limr→∞〈c†

i↑c†
j↓ci+r↑c j+r↓〉. For a given U , though
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FIG. 4. Ground-state energy, EGS vs � for extended s-wave
pairing and d-wave pairing. For � ranges where the extended s-
wave pairing amplitude is nonzero, the ground-state energy for the
extended s-wave solution is higher than the ground-state energy for
the d-wave pairing superconducting phase.
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FIG. 5. Gutzwiller renormalization factor gt and the density dif-
ference δ vs � for the d-wave pairing SC phase. With increase in �,
the density difference between two sublattices increases, which re-
sults in enhanced coherent hopping of singlets. Gapd is the antinodal
gap for the d-wave SC which, in contrast to the SC order parameter
φd , decreases monotonically with increase in �.

the pairing amplitude is larger for smaller values of �, be-
cause the probability for formation of a singlet is larger for
smaller �, these singlets can hop around coherently only
when there are sufficient number of doublons on A sublattice
and holes on B sublattice. This can happen only when nA is
sufficiently larger than and nB is sufficiently smaller than the
average density of one. This is exactly what is indicated in
the definition of the SC order parameter φd,s, where gt is the
Gutzwiller renormalization parameter for the kinetic energy.
Figure 5 shows the behavior of Gutzwiller factor gt as a func-
tion of � for d-wave pairing SC. For a given U , the density
difference δ between two sublattices increases with increase
in �. This enhances the hopping between two sublattices
through increase of gt . However, the pairing amplitude �AB

decreases with increase in �, resulting in a dome shaped non
monotonic behavior of φ as a function of � as shown in Fig. 3.

Figure 5 also shows the antinodal gap Gapd = h3(0, π ) for
the d-wave SC, which is also the energy scale at which coher-
ence peaks appear in the single particle density of states. Here
h3(k) is the off-diagonal part of the mean-field Hamiltonian
as shown in Appendix A. The antinodal gap monotonically
decreases with increase in � as both the pairing amplitude �d

and the dominating Gutzwiller factor gs involved in h3(k) are
monotonically decreasing functions of �.

The superconducting phase is sandwiched between two
insulating phases. For � < �1, where the SC order param-
eter φ becomes nonzero first, the system is a paramagnetic
MI with the gap in the single particle spectrum increasing
monotonically with U . SC survives for �1 < � < �2, and
for � > �2 the system goes into a trivial BI phase. The range
in � for which the system shows the SC phase decreases with
increases in U . Note that the range of � for which the system
shows the SC phase in this spin-symmetric RMFT is much
smaller than what is obtained using SBMFT [20].

B. Results from spin-asymmetric RMFT

In the last section we showed that the half-filled IHM in
the limit U ∼ � � t has a d-wave superconducting phase on
a 2D square lattice, provided the system is constrained to have
spin symmetry. In this section, we carry out a less restricted
calculation allowing for symmetry breaking in the spin sector
as well and explore the fate of the SC phase in competition
with the magnetic order in the system. Thus, we give nonzero
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FIG. 6. The staggered magnetization ms, the density difference δ between the two sublattices and the d-wave and extended s-wave pairing
amplitudes from the spin-asymmetric calculation vs �. The pairing amplitude remains vanishingly small for both the symmetries considered.
Thus, the AF order is energetically more stable than the SC order in the spin-asymmetric calculation.

values to the AF order ms as well as to the superconducting
pairing amplitude �AB along with other mean fields like δ

and the Fock shifts. The mean-field Hamiltonian is then a
4 × 4 matrix for each allowed wave-vector k and requires a
canonical transformation followed up by a Bogoliubov trans-
formation to diagonalize it. Details of the mean-field Hamilto-
nian, the transformations and the self-consistent equations for
various order parameters are given in Appendices A and B.

Figure 6 shows the staggered magnetization ms, the density
difference between the two sublattices δ and the pairing ampli-
tude with d-wave and extended s-wave symmetry for U = 8t
and U = 20t . Comparing with Fig. 3, we see that, for a fixed
U , as � decreases from a large value the development of AF
order preempts the formation of SC order, and hence the SC
phase does not appear either with d-wave or extended s-wave
symmetry. The system undergoes a direct transition from an
AF MI into a paramagnetic insulator with possibility of only
a thin half-metallic phase near the transition point, which we
will discuss in a little while. Thus, though the recent SBMFT
treatment of the half-filled IHM for U ∼ � � t showed a
broad SC phase, our Gutzwiller projected RMFT suggests that
the system has only a metastable d-wave SC phase, which is
hidden under the AF ordered phase. The SC phase is likely to
get stablised only if the AF order is frustrated somehow.

Figure 7 shows the average single particle density of
states (DOS) ρσ (ω) = 1/2

∑
α ρασ (ω). The spin-resolved

sublattice single particle DOS is defined as ρασ (ω) =
− 1

π

∑
k Im Gασ (k, ω+), where α represents the sublattice A

or B and σ is the spin index. Note that the Green’s func-
tion in the projected Hilbert space is related to the Green’s
function G0

ασ (k, ω) in the unprojected space with appropriate
Gutzwiller factor such that Gασ (k, ω) = gtσ G0

ασ (k, ω) [27].
As shown in Fig. 7, for � = 18t , ρσ (ω) is spin-asymmetric
with the gap in the down spin DOS being more than that in
the up spin DOS. As we increase �, the gaps in both channels
as well as the asymmetry in the DOS for up and down
spin channels decrease. Finally, at a particular � the gaps in
both the channels become equal to each other, even though

ρ↑ �= ρ↓, as is suggested by Fig. 7(b). After this the asym-
metry in the up- and down-spin channel opens up again but
now the gap in the up spin channel is more than that in the
down-spin channel [see Fig. 8(d)]. As shown in Fig. 7(c), there
is a sliver of � for which ρ↓(ω = 0) is nonzero indicating the
metallic behavior of the down-spin electrons while ρ↑(ω =
0) is still zero with a small gap around ω = 0. This is the
half-metallic point. With a further finite increment in � the
system makes a transition at � = �c to the band insulating
phase with full spin symmetry in the DOS.

Figure 8 shows that this behavior of the gaps in the single
particle excitation spectrum for the up and down-spin chan-
nels is similar for various values of U . For � < U , the gaps
are spin-asymmetric with the gap in the down-spin channel
being more than that in the up-spin channel until at some
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FIG. 7. The single particle DOS for U = 20t . (a) At � = 18t ,
the system has spin asymmetry with gap↓ > gap↑. (b) Very near
to � = 19.6t , the gaps are equal in both the spin channels but
ρ↑ �= ρ↓.(c) At � = 19.82t , the system is a half-metal with down
spin electrons conducting and up spin electrons insulating. (d) At
� = 21t , the gaps are spin-symmetric with ρ↑ = ρ↓.
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FIG. 8. The gap in the single particle excitation spectrum for the
up and down-spin channels. For small �, where the system has AF
order, gap↓ > gap↑. On increasing �, the gaps become equal and
after that, gap↑ > gap↓. Inset shows existence of a half-metallic state
where gap↓ = 0. On further increase in �, there is a transition to the
paramagnetic BI phase, where the gaps are equal for the two spin
components and increase with �.

� < �c, the gaps cross and become equal. Post this crossing
point, for � still below the transition point �c, the gap in the
up-spin sector is more than that in the down-spin sector. There
occurs a point where gap in the down-spin channel diminishes
to zero (less than 0.001 within our numerical calculations of
the self-consistent mean-field equations), whereas there is a
finite gap in the up-spin channel as shown in the inset. This
indicates a half-metallic point within the AF phase but close
to the transition into the BI phase. After the transition, for
� > �c, the system is in the spin-symmetric band-insulating
phase where gap↑ = gap↓.

Some insights into the nature of half-metal phase can be
gleaned by looking at the spin-resolved densities on A and
B sites, shown in Fig. 9. For a given U , for smaller values
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FIG. 9. Spin-resolved densities on A and B sublattices as a
function of � for U = 8t . �HM shows the half-metallic point and
�PM is the point where AFM order is lost and the system enters into
the paramegnetic (PM) phase.
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FIG. 10. Complete phase diagram of the IHM in the U ∼ � � t
limit at half-filling on a two-dimensional square lattice, obtained
within the Gutzwiller projected RMFT analysis. The system shows
only one first-order transition from an AF ordered phase to a para-
magnetic insulating phase. Most of the AF ordered phase is a MI.
Inside the AF phase, there is a metastable d-wave SC phase. Very
close to the transition line between AF and the paramagnetic BI, the
system shows a line of AF ordered half-metallic phase.

of �, when the system is in an AF ordered Mott insulating
phase, the density of up electrons on A sites, nA↑, decreases
with increase in �, while its density on B sites, nB↑, increases
with increase in �, as shown in Fig. 9. Thus, the density
difference for the up-spin electrons δ↑ = nA↑ − nB↑ decreases
with increase in �. However, the density of down-spins on the
A sites, nA↓, increases while nB↓ decreases as � increases,
which implies that the density difference for the down-spin
electrons δ↓ = nB↓ − nA↓ also decreases as � increases. Note
that δ = (δ↑ − δ↓)/2, still increases as � increases. At �HM,
nA↓ = nB↓ leading to the metallic nature of the down-spin
electrons while the up-spin electrons continue to show density
modulation on A and B sublattices, with nA↑ > nB↑, and
continue to show a gap in the single particle density of states.
Thus, the half-metal phase can be visualized as the density
modulation of up-spin electrons only, while the AF ordered
insulating state has density modulations for both the up- and
the down-spin electrons.

Figure 10 shows the complete phase diagram of the IHM
at half-filling in the U ∼ � � t limit on a 2D square lattice
obtained within the Gutzwiller projected RMFT. The system
undergoes a first-order transition from an AF ordered state
into the paramagnetic BI phase which is shown by the red line.
Most of the AF phase is also Mott insulating in nature except
for the thin half-metallic sliver close to the transition line,
inside the AF phase. Therefore, at the parameter values along
this sliver there will be spin polarized conductivity in the sys-
tem at half-filling. Inside the AF phase, over the limited region
shown, there also exists a metastable d-wave SC phase though
the AF order is stabler than the SC order. Therefore, there is no
stable superconducting phase in the IHM at half-filling in U ∼
� � t regime within the Gutzwiller projected RMFT. This is
in contrast to Ref. [20], where a robust extended s-wave SC
phase is obtained within slave boson mean-field theory.
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The phase diagram we have obtained here using Gutzwiller
projected RMFT in the limit U ∼ � � t is adiabatically con-
nected to the phase diagram obtained within DMFT (solved
using CTQMC and iterative perturbative theory (IPT) as an
impurity solver), for intermediate ranges of U and � [17],
where also a direct transition between AF MI and the param-
agnetic insulator is obtained except for a sliver of half-metallic
phase. It is also consistent with the phase diagram obtained
from cluster DMFT [11] where results were shown upto large
values of U and � and a direct transition between the MI and
the paramagnetic BI is obtained.

V. CONCLUSIONS

In summary, in this paper we have studied the IHM at
half-filling in the limit U ∼ � � t . The low-energy effective
Hamiltonian in this limit is defined on a projected Hilbert
space where holes are projected out from one sublattice and
the doublons are projected out from the other sublattice. Since
the projected fermionic operators on either sublattice do not
satisfy the algebra of canonical fermions, Wick’s theorem
does not hold for these operators, and hence the effective
low-energy Hamiltonian cannot be solved using standard per-
turbation theory. We implemented the Gutzwiller projection
approximately by renormalizing the coefficients of the various
terms in the effective Hamiltonian and solved the renormal-
ized Hamiltonian within a mean-field theory. On a 2D square
lattice, we showed that the system has a d-wave superconduct-
ing phase sandwiched between a paramagnetic MI and a BI,
provided the spin symmetry is enforced. But in a more general
RMFT where the spin-symmetry breaking is allowed, the AF
order wins over the d-wave superconductivity. The system
undergoes a transition from an AF MI to a paramagnetic BI
with a thin sliver of a half-metallic phase in between, inside
the AF insulating region.

It is surprising that though the Gutzwiller projected
RMFT finds only a metastable SC phase, that too over a
limited regime in the �-U plane, slave boson mean-field
theory (SBMFT) on the other hand shows a broad stable
SC region [20]. The RMFT treatment of the IHM gives AF
order and the AF transition point which show consistency,
both qualitatively and quantitatively, with the results obtained
within DMFT+CTQMC; the latter has been earlier shown
to capture the correct physics of strong correlations and
Gutzwiller projection in the limit U � �, t [16,17]. Hence,
we expect that our RMFT results yield the correct strong
correlation physics in the limit U ∼ � � t . Furthermore, our
study based on Gutzwiller projected RMFT is consistent with
CDMFT study of IHM [11]. Also the phase diagram within
the RMFT is adiabatically continuous with the phase diagram
obtained within DMFT (using IPT as well as CTQMC as
impurity solver) for the weak to intermediate values of U and
� [17].

It will be interesting to explore the possibility of the
explicit addition of a term to the IHM which can frustrate the
AF order and can stabilize the SC phase. We hope to do this in
future work. The IHM has recently been implemented in the
context of ultracold atoms [7] where the relative strengths of
U and � can be tuned controllably. It will be really interesting
to study this system in the limit U ∼ � � t and to look for
the superconducting phase experimentally.
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APPENDIX A

In this Appendix, we provide details of the renormalized
mean-field theory where both the SC order and the magnetic
order are allowed. We diagonalize the mean-field Hamiltonian
using a two step transformation. After the first step of the
transformation, the effective Hamiltonian obtained has both
interband and intraband pairing terms. The interband pairing
terms are much smaller than the gap between the two bands
for most of the points on the Brilluion zone and should not
contribute significantly at zero temperature. Hence, we ignore
the interband pairing terms which allows us to carry out the
second step of the transformation also analytically. Below, we
provide details of these transformations and the self-consistent
equations obtained for various order parameters. We also
give results for the intersublattice and intrasublattice Fock
shifts calculated within this mean-field theory which were not
presented in the section on results.

1. Details of the renormalized mean-field theory

The mean-field quadratic Hamiltonian, where we have
allowed for nearest-neighbor spin-singlet pairing as well as
spin-ordering, is as follows:

H =
∑

k

(c†
kA↑ c−kA↓ c†

kB↑ c−kB↓)

⎛
⎜⎝

h1↑(k) 0 h2↑(k) −h3(k)
0 −h1↓(k) −h3(k) −h2↓(k)

h2↑(k) −h3(k) −h1↑(k) 0
−h3(k) −h2↓(k) 0 h1↓(k)

⎞
⎟⎠

⎛
⎜⎜⎝

ckA↑
c†
−kA↓
ckB↑

c†
−kB↓

⎞
⎟⎟⎠.

(A1)

The expressions for h1σ (k) and h2σ (k) are the same as given
in Sec. III. For the d-wave symmetry the expression for h3(k)
is

h3(k) =
[

4t2

�
(1 − g2) + 4t2

U + �

(
3gs

4
− 1

4

)

− 2t2

�
(gt↓ + gt↑)

]
�AB

2
[cos (kx ) − cos (ky)].

For the extended s-wave symmetry the expression is

h3(k) =
[

4t2

�
(1 + 3g2) + 4t2

U + �

(
3gs

4
− 1

4

)

+ 6t2

�
(gt↓ + gt↑)

]
�AB

2
[cos (kx ) + cos (ky)].

As mentioned earlier, here we need to do a two step
canonical transformation to diagonalize the Hamiltonian.
The first set of transformations are the same as mentioned
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in Sec. III. We neglect the interband pairing terms from the
Hamiltonian obtained after the first set of transformations and
perform a regular two band Bogoluibov transformation which
is given by

dk1↑ = uk1 f1k + vk1 f †
2k,

d†
−k1↓ = −vk1 f1k + uk1 f †

2k,

dk2↑ = uk2 f3k + vk2 f †
4k,

d†
−k2↓ = −vk2 f3k + uk2 f †

4k . (A2)

Here,

u2
k1 = v2

k2 = 1

2

[
1 + ω↑ + ω↓√

(ω↑ + ω↓)2 + 4ν2

]

and

u2
k2 = v2

k1 = 1

2

[
1 − ω↑ + ω↓√

(ω↑ + ω↓)2 + 4ν2

]
,

where ωσ = h1σ (k)(α2
kσ − β2

kσ ) − 2h2σ (k)αkσ βkσ and ν =
−h3(k)(αk↑βk↓ + αk↓βk↑).

The self-consistent equations for various order parameters
are given below:

�AB = 〈c†
iA↑c†

jB↓〉 − 〈c†
iA↓c†

jB↑〉

= 1

N

∑
k

(αk↓βk↑uk2vk2 − αk↑βk↓uk1vk1)γsc(k), (A3)

with γsc(k) = cos (kx ) ± cos (ky). The plus sign is for the
extended s-wave symmetry while the minus sign is for the
d-wave symmetry in the pairing amplitude.

The magnetization on the A sublattice is equal and opposite
to the magnetization on the B sublattice owing to particle-
hole symmetry of the Hamiltonian at half-filling. Hence, the
staggered magnetization ms = (mA − mB)/2 = mA:

ms =〈n̂A↑ − n̂A↓〉

= 1

N

∑
k

[(
α2

k↑ − α2
k↓

)
v2

k1 + (
β2

k↑ − β2
k↓

)
v2

k2

]
. (A4)

The density difference between A and B sublattices, also equal
to the doublon density on the A sublattice and the hole density

on the B sublattice, is given by

δ =〈n̂A〉 − 〈n̂B〉
2

= 1

2N

∑
kσ

[
α2

kσ

(
v2

k1 − v2
k2

) + β2
kσ

(
v2

k2 − v2
k1

)]
. (A5)

χABσ , defined below, gives the intersublattice Fock shift which
comes from the mean-field decomposition of the exchange
term and the trimer terms in the low-energy effective Hamil-
tonian in Eq. (9):

χABσ = 〈c†
iAσ

c jBσ 〉

= 1

4N

∑
k

αkσ βkσ

(
v2

k2 − v2
k1

)
γk. (A6)

Similarly, χBBσ and χBBxyσ represent second-neighbor hop-
pings within the B sublattice obtained by the mean-field
decomposition of the trimer terms and are given by

χBBσ = 〈c†
iBσ c jBσ + H.c.〉 j = i ± 2x or i ± 2y

= 1

N

∑
k

[cos 2kx + cos 2ky]
(
α2

kσv2
k2 + β2

kσv2
k1

)
, (A7)

χBBxyσ = 〈c†
iBσ c jBσ + H.c.〉 j = i ± x± y

= 1

N

∑
k

2 cos (kx ) cos (ky)
(
α2

kσv2
k2 + β2

kσv2
k1

)
.

(A8)

The spin-symmetric RMFT can be obtained from the generic
equations, described above, by imposing the spin symmetry.

2. Results for Fock Shifts

Figure 11 shows the variation of the inter- and intrasub-
lattice Fock shifts as a function of � for U = 20t . The
intersublattice Fock shift first increases with increase in �

with χAB↓ > χAB↑, reaches a maximum near the AF transition
point, and then decreases with increase in � in the paramag-
netic phase. This is because in the AF ordered regime, the
density difference between the two sublattices is very near
to zero but increases slowly with increasing � due to the
presence of some doublons on the A sublattice and holes on

 0.04

 0.08

 0.12

 0.16

 0.2

 0.24

 16  18  20  22  24  26

χ A
B

Δ

(a)

U=20
χAB↑
χAB↓

-0.04

-0.02

0

 0.02

 0.04

 16  18  20  22  24  26

χ B
B

Δ

(b)

U=20

χBB↑
χBB↓

-0.16

-0.12

-0.08

-0.04

0

 0.04

 0.08

 0.12

 16  18  20  22  24  26

χ B
B

xy

Δ

(c)
U=20

χBBxy↑
χBBxy↓

FIG. 11. Inter- and intrasublattice Fock shifts obtained from the generic RMFT which allows for spin-symmetry breaking. Panel (a) shows
inter sublattice Fock shifts χABσ vs � while panel (b) shows intra sublattice Fock shift χBBσ along the 2x or 2y bond. Panel (c) shows intra
sublattice Fock shift χBBxyσ . Effects due to the phase transitions from the AF-MI to the paramagnetic BI phase (see Fig. 6) are clearly present
here as well.
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the B sublattice. χAB in both the spin channels increase due to
the increased hopping probability. But beyond the magnetic
transition point, densities of doublons on the A sublattice
and holes on the B sublattice increase quite rapidly, resulting
in an increasing charge density wave insulating behavior
with increasing �; hence, χAB in the paramagnetic regime
decreases with increase in �. This is shown in Fig. 11(a).
Figure 11(b) shows the intrasublattice Fock shift on the B
sublattice, with two B sites separated by next-neighbor spac-
ings in either the x or y direction on the square lattice. While
χBB↑ initially increases and then decreases in the magnetically
ordered phase, χBB↓ decreases and then increases and finally
the two become equal to each other in the paramagnetic phase.
Figure 11(c) shows the behavior of χBBxy with � which is the
B sublattice Fock shift for the two B sites separated by one
unit spacing along the x direction and one unit spacing along
the y direction. It shows a behavior qualitatively similar to
χBB.

APPENDIX B

In this Appendix, we provide details of the full numerical
diagonalization of the mean-field Hamiltonian. We also show
a comparison of the results of this calculation with our earlier
calculations where interband terms were ignored. The com-
parison shows that the interband terms have a very weak effect
on all physical quantities of interest at zero temperature. Thus,
the phase-diagram we have obtained remains the same, both
qualitatively and quantitatively, even in this full numerical
calculation. In the following discussion, we will refer to these
calculations as the calculations with interband pairing terms
and without the interband pairing terms.

We diagonalize the mean-field Hamiltonian by a transfor-
mation:⎛

⎜⎜⎜⎝
ckA↑
ckB↑

c†
−kA↓

c†
−kB↓

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

u1k↑ u2k↑ v1k↑ v2k↑
u3k↑ u4k↑ v3k↑ v4k↑

−v1k↓ −v2k↓ u1k↓ u2k↓
−v3k↓ −v4k↓ u3k↓ u4k↓

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

f1k

f3k

f †
2k

f †
4k

⎞
⎟⎟⎟⎠

.
After the transformation, the diagonalized Hamiltonian is

assumed to have the form H = ∑
k,α=1,4 Eα (k) f †

αk fαk + const.
We calculate the commutators of the fermionic ckA,B operators
with the mean-field Hamiltonian and the diagonalized Hamil-
tonian and equate the coefficients of the Bogoluibov operators
fαk for α = 1, 4 to obtain the eigenvalue equations. Finally
we solve the eigenvalue equations numerically for every k
value in the Brillouin zone to get the eigenvectors and obtain
various physical quantities using the following self-consistent
equations:

χABσ = 1

4N

∑
k

(v1kσ v3kσ + v2kσ v4kσ )γk,

χBBσ = 1

N

∑
k

(
v2

3kσ + v2
4kσ

)
[cos (2kx ) + cos (2ky)],

χBBxyσ = 1

N

∑
k

(
v2

3kσ + v2
4kσ

)
[2 cos (kx ) cos (ky)],
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FIG. 12. The staggered magnetization ms and the density differ-
ence δ as functions of � for U = 20t . The top left panel shows the
data for d-wave pairing and the bottom left panel for the extended
s-wave case. Right panels show the pairing amplitudes for the
d-wave and extended s-wave pairing for U = 20. As shown, the
effect of including inter band pairing in the spin-asymmetric case
is negligible.

δ = 1

2N

∑
k,σ

(
v2

1kσ + v2
2kσ − v2

3kσ − v2
4kσ

)
,

ms = 1

N

∑
k

(
v2

1k↑ − v2
1k↓ + v2

2k↑ − v2
2k↓

)
,

�d,s = 1

N

∑
k

(v1k↑u3k↓ + v2k↑u4k↓)γsc(k).

1. Comparison of results

We first compare the results of the two calculations with
and without interband pairing terms for the case where mag-
netic order is allowed along with the SC order. As shown in
Fig. 12, the staggered magnetization and the density differ-
ence in the two calculations are exactly the same. The pairing
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FIG. 13. The left panel shows the d-wave pairing amplitude for
U = 20t in the spin-symmetric calculation. There is a small change
in the d-wave pairing amplitude due to the interband pairing terms
which lead to a small enhancement of the pairing amplitude. The
right panel shows the pairing amplitude for the extended s-wave
symmetry. Interband pairing terms have an even weaker effect on
the extended s-wave pairing amplitude than on the d-wave pairing
amplitude.
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amplitudes for the d-wave and the extended s-wave pairing
are shown in right panels of Fig. 12. Superconductivity does
not turn on even in the calculations with interband pairing and
the pairing amplitude for both the d-wave and the extended
s-wave symmetry remains zero.

We have also compared the results for the case where the
spin symmetry is enforced and only the SC order is allowed.
In this case, the transformation used to diagonalize the mean-
field Hamiltonian gets simplified due to the smaller number

of variables involved. Here, due to spin symmetry vik↑ = vik↓
and uik↑ = uik↓ for i = 1, 4. Figure 13 shows the d-wave
pairing amplitude as a function of � for the calculations with
and without interband pairing terms. There is a weak effect of
the interband pairing term on the d-wave pairing amplitude
though the range in � over which �d remains nonzero is
more or less same in the two calculations. The effect of the
interband pairing on the extended s-wave pairing amplitude is
even weaker as shown in the right panel of Fig. 13.
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