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We propose that the fracton models with subsystem symmetry can be a class of toy models for the holographic
principle. The discovery of the anti–de Sitter/conformal field theory correspondence as a concrete construction
of holography and the subsequent developments including the subregion duality and Ryu-Takayanagi formula
of entanglement entropy have revolutionized our understanding of quantum gravity and provided powerful
tool sets for solving various strongly coupled quantum field theory problems. To resolve many mysteries of
holography, toy models can be very helpful. One example is the holographic tensor networks, which illuminate
the quantum-error-correcting properties of gravity in the anti–de Sitter space. In this work we discuss a classical
toy model featuring subsystem symmetries and immobile fracton excitations. We show that such a model defined
on the hyperbolic lattice satisfies some key properties of the holographic correspondence. The correct subregion
duality and Ryu-Takayanagi formula for mutual information are established for a connected boundary region.
A naively defined black hole’s entropy scales as its horizon area. We also present discussions on corrections for
more complicated boundary subregions, the possible generalizations of the model, and a comparison with the
holographic tensor networks.
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I. INTRODUCTION

The holographic principle [1,2] and anti–de
Sitter/conformal field theory (AdS/CFT) correspondence
[3,4] have profoundly improved our understanding of
quantum gravity. AdS/CFT is a duality between quantum
gravity in (d + 1)-dimensional asymptotically AdS spacetime
and a d-dimensional CFT on its boundary. It proposes a
striking conjecture that a gravitational system is equivalent
to a strongly coupled quantum field theory without gravity.
Besides unveiling some of the deepest mysteries of quantum
gravity in its subsequent developments [5–10], the AdS/CFT
correspondence also serves as a powerful tool for studying
strongly coupled quantum field theories including many-body
systems [11].

Another remarkable development in AdS/CFT is the re-
alization of the intimate relation between the geometry of
spacetime and quantum entanglement. Ryu and Takayanagi
conjectured that the entanglement entropy of a boundary
segment is measured by the area of a certain extremal covering
surface in the AdS geometry [12,13]. Their seminal idea, now
known as the Ryu-Takayanagi (RT) formula, has sparked a
series of insightful works along this direction (for example,
see review Ref. [14]).

AdS/CFT has deep connections with various condensed
matter theory problems. One example is the multiscale en-
tanglement renormalization ansatz (MERA) tensor networks.
Their structure bears considerable similarity with the renor-
malization scale represented by the radial direction of AdS
space. Such insight by Swingle [15] leads to a fruitful field
of building toy models of AdS/CFT with tensor networks
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[16–19], which in return demystify some intriguing proper-
ties of holography. For instance, the perfect tensor networks
[16,17] incorporate the quantum error correction feature of
AdS/CFT and help to clarify the conundrum of subregion
duality.

Since conformally invariant or strongly coupled systems
are common themes in many-body physics, the condensed
matter systems often sit on the CFT side when AdS/CFT
is applicable [11]. Examples of many-body systems on the
bulk side are rare [20–22]. Therefore it is desirable to seek
many-body systems that, instead of being described by some
CFT, mimic the behavior of gravity and sit on the AdS side
of holography. Studying such systems not only is of interest
to the condensed matter community, but also may provide us
insights in understanding gravity.

This work aims to show that the recently discovered fracton
models [23,24] mimic gravity and can sit on the AdS side as
a toy model of holography. The fracton phases cover several
types of exotic states in many-body systems and have attracted
much attention in the condensed matter community recently.
For example, gapped fracton topological orders have intrigu-
ing subextensive ground state degeneracy and (partially) im-
mobile excitations [25–33] (also see review Ref. [34]). The
gapless version of them is described by the rank-2 U(1) gauge
theories [35–38]. The fracton topological orders can also be
obtained by gauging the subsystem symmetries of the model
[25,39], which inspired study of fracton models protected by
subsystem symmetries as well [40,41].

In this work, we study a classical fracton model with
subsystem symmetry on the hyperbolic disk, or a spatial slice
of AdS3 spacetime. We show that such a system satisfies
the major properties of AdS/CFT, in a manner similar to
the holographic tensor networks. These properties include the
AdS-Rindler reconstruction and subregion duality, and the
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RT formula for mutual information as the classical analog
of entanglement entropy. They are satisfied exactly for a
connected boundary subregion up to lattice discretization. The
corrections for more complicated boundary subregions are
also discussed. The hyperbolic fracton model gives the proper
entropy for a naively defined black hole as well.

The paper is arranged as follows: Sec. II provides a concise
summary of the major results; Sec. III introduces the fracton
model on the Euclidean lattice and discusses various hints
implying that it could be holographic; Sec. IV presents some
essential knowledge of AdS/CFT relevant to our work, mainly
for readers not familiar with this discipline; Sec. V introduces
the fracton model on the hyperbolic lattice; Secs. VI, VII, and
VIII are the major results of this work. These sections show
that the model satisfies some major properties of AdS/CFT,
and discuss some possible deviations; Sec. IX discusses how
to generalize the classical model to three dimension and to
a quantum version; Sec. X presents a comparison of the
hyperbolic fracton model and the holographic tensor networks
to make clear what holographic properties are still beyond the
scope of current construction; finally, Sec. XI gives an outlook
on the implications and future problems related to this work.

II. SUMMARY OF THE HOLOGRAPHIC PROPERTIES
OF THE HYPERBOLIC FRACTON MODEL

In this paper we will demonstrate that the hyperbolic frac-
ton model, a classical fracton model defined on a hyperbolic
disk (a spatial slice of AdS3), satisfies several key properties of
AdS/CFT correspondence. The main results are summarized
here, with detailed proofs and discussions presented subse-
quently.

Rindler reconstruction. In the hyperbolic fracton model
defined by Eq. (20), given the state or spin configuration on a
connected boundary subregion, the bulk states within the min-
imal convex wedge of the boundary can be reconstructed. The
minimal convex wedge is essentially the entanglement wedge
on a discrete lattice, which approximates the continuous case.

Ryu-Takayanagi formula for mutual information. For a
bipartition of the boundary into two individually connected
subregions denoted A and Ac, their mutual information in
the classical model, as the classical analog of entanglement
entropy, obeys the geometric RT formula:

I (A, Ac) = kB log 2 × |γA|, (1)

where |γA| is the area of the minimal covering surface, or in
this case the geodesic on the hyperbolic disk.

Black hole entropy. A naively defined black hole in the
model has entropy proportional to the area of the black hole
horizon. Also with the presence of black hole, the available
lowest energy boundary states increase as expected.

III. FRACTON MODEL ON THE EUCLIDEAN LATTICE

A. Model

We start with a discussion of the fracton model with
subsystem symmetry on the Euclidean square lattice, as an
introduction of the major features shown in various fracton
models.

FIG. 1. The fracton model on the Euclidean lattice defined by
Eq. (3). On each center of the unit square sits an Ising spin. The right
panel shows how operator Op in Eq. (2) is defined.

Consider the square lattice with an Ising spin sitting on
the center of each square as shown in Fig. 1. For the four
spins sitting on squares sharing the same corner, we define
an operator

Op =
4∏

i=1

Sz
i , (2)

where Sz
i = ±1 are the Ising spins, and i runs over its four

spins,
The Hamiltonian of this classical Fracton model is defined

as the negative sum of such operators on all four-spin clusters,

Hcl = −
∑

p

Op. (3)

This model has a rich context in various disciplines of
physics. It is essentially a two-dimensional version of the
“plaquette model” discussed in Ref. [25]. It is also a self-dual
model with subsystem symmetries discussed in Refs. [39–41].
It is dual to an exactly solvable square-lattice eight-vertex
model [42], whose implication will be discussed in a future
work. The classical model has also been studied as a spin
glass statistical physics problem [43,44], and proposed as a
string regularization known as the gonihedric Ising model
[45–47].

In this work we will focus on the features of this classical
model, and briefly discuss its quantum version in Sec. IX.

B. Features of the fracton model

The fracton models exhibit several exotic features, regard-
ing their ground states, entanglement, and excitations. Before
elaborating these properties, it should be emphasized that the
subsystem symmetries play a crucial role. The same statement
is also true for the holographic properties of the hyperbolic
fracton model.

Feature 1: Subextensive ground state degeneracy. The
classical ground states are the spin configurations satisfying

Op = 1 (4)
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FIG. 2. Ground states for the fracton model on the Euclidean
lattice. (a) Starting from the ground state of all spins up, a new ground
state can be constructed by flipping all spins on one side of a vertical
or horizontal line of the lattice. In this figure flipping all spins in
the blue region will create another ground state. (b) By repeating
the procedure described in (a) for different lines consecutively, any
ground state can be constructed. This figure shows a ground state
constructed by two such flipping operations.

on all four-spin clusters. Under open boundary conditions the
ground state degeneracy and entropy are respectively

� = 2Lx+Ly−1, (5)

S = kB log � = kB log 2 × (Lx + Ly − 1)

∼ kB log 2 × (boundary area), (6)

where Lx, Ly are the sizes of the boundary in the x and y
directions, respectively.

To construct these ground states, we start from the obvious
ground state of the all-spin-up configuration, then perform the
operation of flipping all spins on one side of a straight line
in the x or y direction, as shown in Fig. 2(a). Since every
four-spin cluster has either zero, two, or four spins flipped, the
values of all operators Op remain invariant. The system stays
at its lowest energy, and another ground state is constructed.

By repeating such operations for different straight lines
as shown in Fig. 2(b), all ground states can be constructed
explicitly. The Shannon entropy scales with the number of
straight lines, which is the size of the boundary, hence comes
Eq. (6). Actually, this is already a hint of certain similarity
between fracton models and gravity, as we shall elaborate
later.

The subextensive ground state degeneracy should not be
confused with the subextensive ground state degeneracy of
three-dimensional fracton topological orders, even though
they are intimately related. Here the subextensive ground state
degeneracy is a direct reflection of the number of independent
subsystem symmetries that scales with the boundary size.

Feature 2: Immobile fracton excitations. The first excited
state of the model is created by flipping the sign of only
one operator Op, while keeping the others invariant. Its con-
struction is shown in Fig. 3(a): From any ground state one
can choose two intersecting lines in the x and y directions,
which split the lattice into four parts. Then flip the spins in
one quadrant of the lattice. A fracton will be created at the
intersection. In the limit of infinite lattice, such operations
become “topological” in the sense that they involve infinitely
many spins. It is easy for the readers to convince themselves

FIG. 3. Fracton excitations and their bound states. (a) A single-
fracton excitation can be created by flipping spins in the blue region
bounded by two perpendicular cuts. It is a “topological” excitation,
and not movable by any local, finite number of spin flips without
costing the system more energy. (b) A two-fracton bound state can
be created by flipping a semi-infinite line of spins in the blue region.
It is also a “topological” excitation. By local operations it can move
horizontally but not vertically. (c) A four-fracton bound state can be
created by a single spin flip. It is a local excitation, and can move
freely on the lattice by local spin flip.

that any local operation, i.e., flipping finitely many spins in
the bulk, will create more than one fracton in the system.

Furthermore, the fracton excitation is immobile in the
sense that it is impossible for a local operation to move it
without creating new fractons and costing more energy. To
move the fracton, a nonlocal operation of flipping a semi-
infinite line of spins next to the fracton is necessary.

Feature 3: Fracton bound states with enhanced mobility.
Now let us consider the bound state of two fractons, created by
a nonlocal operation of flipping a semi-infinite line of spins,
as shown in Fig. 3(b). The bound state can move in a one-
dimensional submanifold of the system: by local operations of
extending or shrinking the semi-infinite line of flipped spins,
the bound state can move along the direction of the line, but it
cannot move perpendicularly.

Finally, a four-fracton bound state can be created by a local
single spin flip as shown in Fig. 3(c), and is obviously free to
move in any direction.

The three features above are common among many fracton
models with subsystem symmetries. The behaviors of fractons
are highly generic in other types of fracton models including
the gapped fracton topological orders and gapless rank-2 U(1)
theories.

C. Hints of holography

Though the model has some exotic features, it is not obvi-
ous how it could be holographic. Here we reveal some hints
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FIG. 4. Speculated connections between different theories, where hints of the fracton holography hide. Certain rank-two gauge theories
have a gauge structure similar to that of linearized general relativity. These theories on a lattice with a proper Higgs mechanism yield various
gapped fracton models. Since gravity is holographic, this implies that a fracton model on a hyperbolic lattice may also show features of
holography, which is established in this work. The gapped fracton models can also be described by stabilizer code tensor networks, which
provides another potential venue to study them utilizing methods developed in holographic tensor networks.

suggested by properties of certain fracton models in two- and
three-dimensional Euclidean space. The overall speculated
big picture of these connections is illustrated in Fig. 4.

Subextensive ground state degeneracy. The first hint is the
entropy of the system’s ground state being proportional to its
boundary area, as already demonstrated in Eq. (6). Readers
familiar with quantum gravity and holography will recall
the same rule for a black hole, and gravitational systems in
general [2,14,48]. Indeed, in later sections the construction
of degenerate ground states, or the structure of subsystem
symmetries, is closely related to their holographic properties.

Similarity between linearized gravity and rank-2 U(1)
gauge theory. The second hint lies in the effective theories
of the gapless rank-2 U(1) symmetric tensor gauge theories
[27,30,36–38]. The gapped fracton models can usually be
obtained by Higgsing the gapless gauge freedoms. Here we do
not intend to give a self-contained account of these theories,
but will only mention the key results. More rigorous, detailed
analysis can be found in the references cited.

First let us review some facts of linearized Einstein gravity.
The metric of spacetime gμν is assumed to have only small
perturbation away from the flat spacetime,

gμν = ημν + hμν, (7)

where ημν is the Minkowski metric, and hμν is the small
perturbation. The gauge symmetry is a subset of the diffeo-
morphism invariance [36,49],

hμν → hμν + ∂μξν + ∂νξμ. (8)

It turns out that h00 and hi0 serve as Lagrangian multipli-
ers in the Lagrangian. The physical degrees of freedom are
hi j (i, j = 1, 2, 3), whose canonical conjugates we denote
as π i j . We can write down the gauge constraints and gauge
transformations for them. For the convenience of comparing
to rank-2 U(1) theories, we write them in two groups:

∂iπ
i j = T 0 j,

hi j → hi j + ∂ iξ j + ∂ jξ i, (9)

and

∂i∂ jh
i j − ∂2hi

i = T 00,

π i j → π i j + ∂ i∂ jα − δi j∂2α. (10)

Now we turn to the rank-2 U(1) theories. One version of
them has a symmetric tensorial electric field

Ei j = E ji, (11)

with associated vector charge defined as

∂iE
i j = ρ j . (12)

As a result, the corresponding gauge field has symmetry [50]

Ai j → Ai j + ∂ iλ j + ∂ jλi. (13)

If Ei j is identified as the conjugate momentum of Ai j ,
Eqs. (12) and (13) are equivalent to Eq. (9).

Since hi j and π i j are conjugate with each other, we can also
treat π i j as the gauge field and hi j as the momentum. This
is partially captured by another version of the rank-2 U(1)
theory, which has a symmetric, traceless tensorial electric
field, and associated scalar charge, defined by

Ei
i = 0, ∂iE

i j = ρ j . (14)

Its gauge freedom is

Ai j → Ai j + ∂ i∂ jλ. (15)

As Ref. [36] pointed out, the similarity between Eqs. (14)
and (15) and Eq. (10) implies some shared properties between
gravity and rank-2 U(1) theories.

Other studies have also shown connections between frac-
ton models and gravity. For example, Ref. [51] shows that
linearized gravity harbors gapless topological order. More
recently, the foliated field theory for fracton models has been
proposed and found to correspond to a singular limit of
tetradic Palatini gravity [52], indicating connections between
fracton topological order and soft hairs in gravity.

IV. BRIEF REVIEW OF THE AdS/CFT
CORRESPONDENCE

The holographic principle states that a gravitational theory
describing a region of space is equivalent to a nongravitational
theory living on its boundary. For readers unfamiliar with
holography, we present a brief summary of the essential
results relevant to this work. More thorough introductions can
be found in Refs. [53–56].
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FIG. 5. Anatomy of anti–de Sitter (AdS) spacetime. It can be
viewed as a stack of constant-negative-curvature spatial slices in
temporal direction. Each slice here is a hyperbolic disk. Note that
the temporal direction is not simply straight upward. The boundary
of the AdS spacetime, as shown on the bottom right panel, is where
a conformal field theory (CFT) lives.

A. Black hole information paradox

This profound principle was firstly motivated by the black
hole entropy. As a pure classical, exact solution to Einstein’s
equations of general relativity, a black hole should have zero
entropy. However, this violates the second law of thermody-
namics, since we lose information on whatever objects pass
the horizon when falling into the black hole. This is par-
tially resolved by the Bekenstein-Hawking black hole entropy
[57,58], which states that a black hole actually has entropy
proportional to the area of its horizon,

SBH = A

4GN
, (16)

where A is the horizon area, and GN is the Newtonian constant.
The entropy can be interpreted as counting the microstates
of a black hole. Hence Eq. (16) indicates that the number
of degrees of freedom for a black hole is proportional to its
horizon area, instead of its volume, like conventional quantum
field theories. This echoes the holographic principle, which
states that the degrees of freedom are living on the boundary
instead of in the bulk.

B. AdS/CFT correspondence

The AdS/CFT correspondence is a more concrete real-
ization of holography. It is a duality between a gravitational
theory in (d + 1)-dimensional AdS space and d-dimensional
CFT on its boundary.

An AdS space has constant negative curvature, equipped
with the metric

ds2 = R2

u2
(−dt2 + d�x2 + du2), (17)

which can be seen as AdS spatial slices stacked in the tempo-
ral direction. In Fig. 5, an AdS3 space is illustrated as a stack
of hyperbolic disks.

The first example of AdS/CFT proposed by Maddalena is
the duality between type-IIB superstring theory in the bulk

FIG. 6. Ryu-Takayanagi (RT) formula of entanglement entropy
and Rindler reconstruction. (a) RT formula for entanglement entropy.
The boundary subregion A and its complement Ac’s entanglement
entropy is proportional to the area of γA, the minimal surface in the
bulk covering A. Given boundary states on A, bulk operators in the
entanglement wedge W (A) (shaded volume) can be reconstructed.
(b), (c) An example of Rindler reconstruction. The bulk operator O
cannot be reconstructed by boundary region A, B, or C individually as
it lies outside each individual entanglement wedge (shaded volumes).
However, it is included in the entanglement wedge of A

⋃
B and so

can be reconstructed when the boundary states on both A and B are
known.

of AdS5 × S5 and large-N N = 4 super-Yang-Mills theory on
the boundary [3]. It suggests that there should be no infor-
mation loss with black holes in a gravitational system, since
it is equivalent to some nongravitational quantum physics in
which information is preserved.

C. Ryu-Takayanagi formula

The Ryu-Takayanagi formula reveals the deep connection
between the geometry of the AdS spacetime and the entangle-
ment of the boundary CFT states. Assuming that the CFT lives
on the boundary of some asymptotic AdS space, for a region
A on that boundary, there exists a corresponding minimal
codimension-1 surface γA such that (1) it is homologous to A
in the asymptotic AdS bulk; i.e., its boundary coincides with
the boundary of A, or ∂γA = ∂A; (2) its area is extremal (in our
case minimal) among all surfaces satisfying (1). The union
of A and γA encloses a volume denoted the entanglement
wedgeW (A). The Ryu-Takayanagi formula indicates that the
entanglement entropy SA of the CFT states between A and
its complement Ac is proportional to the area of γA, ignoring
higher-order bulk contributions [12,13]:

SA = Area(γA)

4GN
. (18)

This is illustrated in Fig. 6(a).

155126-5



HAN YAN PHYSICAL REVIEW B 99, 155126 (2019)

D. Subregion duality and Rindler reconstruction

Since AdS/CFT is a duality between the boundary and the
bulk physics, it is crucial to understand how much boundary
information is needed to reconstruct a bulk state or operator,
and how the state is reconstructed. It is a subtle issue in the
presence of temporal direction, which we do not intend to
discuss. Fortunately, we only work on a spatial slice of the
AdS3 spacetime like most of the tensor-network models, when
the laws of bulk reconstruction are significantly simplified:
The bulk state can be constructed from a boundary segment
A if and only if it is within the entanglement wedge W (A), as
shown in Fig. 6.

An educative example is to examine the tripartition A, B,C
of the boundary and a bulk operator O at the center of
the hyperbolic disk [Figs. 6(b) and 6(c)]. The entanglement
wedge of any single one of regions A, B, or C does not
include the bulk site, meaning O cannot be reconstructed
from these boundary states. However, the union of any two
boundary segments has an entanglement wedge that covers
O, so given states on two of the three boundary segments, O
can be reconstructed.

This example indicates the highly nontrivial entanglement
structure of the boundary states. It is captured by the quantum
error correction code [16] and realized in the perfect tensor
networks and random tensor networks [17,19].

V. HYPERBOLIC FRACTON MODEL

Given the hints of holography discussed in Sec. III C, it
is natural to consider the fracton model discussed in Sec. III
transplanted to the hyperbolic lattice. The hyperbolic lattice
is a symmetric, uniform tiling of the hyperbolic disk, which
is a spatial slice of the AdS spacetime, or a two-dimensional
space of constant negative curvature, as shown in Fig. 5.
Most features of the fracton model are preserved on the
hyperbolic lattice as we explain below. We also note that
the fracton model on a curved space has been discussed in
Refs. [28,59,60].

A. Hyperbolic lattice and the model

We will use the (5,4) tessellation of the hyperbolic disk
(Fig. 7), that is, tiling it with pentagons, and each corner of a
pentagon is shared by four pentagons in total. An Ising spin
of value ±1 is placed at the center of each pentagon in the
lattice. It is a natural generalization of the two-dimensional
fracton model on the Euclidean lattice discussed in previous
sections.

The (5,4) tessellation has the four-spin cluster for four
pentagons sharing the same corner. On the clusters we define
the operator again,

Op =
4∏

i=1

Sz
i , (19)

where i runs over four spins at the centers of the pentagons,
and Sz

i = ±1. The Hamiltonian is

H = −
∑

p

Op, (20)

FIG. 7. Hyperbolic lattice for the fracton model. (a) The lattice
as the (5,4) tessellation of the hyperbolic disk. The spins sit at the
center of the unit plaquettes (pentagons in the bulk or plaquettes on
the boundary). The red square shows four pentagons that form the
four-spin cluster interaction term Op [Eq. (19)]. (b), (c) Lattices of
different sizes. They can be obtained by adding more pentagon-edge
geodesics far from the center.

and the values of Op on different clusters are independent of
each other. The hyperbolic lattice is illustrated in Fig. 7.

When analyzing the fracton model on the Euclidean lattice,
we have used the operations of splitting the system by straight
lines very often, since it is how the subsystem symmetries
are obtained. They are essentially geodesics in Euclidean
geometry, made from the edges of the square lattice. By
construction, these lines do not overlap with any spin site, so
every spin is unambiguously on one side of the line.

On the hyperbolic disk, the geodesics become arcs on the
disk that intersect the disk boundary perpendicularly on both
ends. Thus the geodesics defined by the (5,4) tessellation, i.e.,
those formed by the edges of the pentagons, play an important
role in our analysis. They are referred to as pentagon-edge
geodesics. All other conventional geodesics are simply refer-
eed to as geodesics. The pentagon-edge geodesics are the blue
arcs in Fig. 7.

The hyperbolic lattice is infinite. To study it in a controlled
way, we need to introduce a cutoff and unambiguously define
the bulk and boundary sites. This can be achieved by removing
the infinitely many pentagon-edge geodesics far from the
center, as shown in Fig. 7. It is a common trick in AdS/CFT
that yields a finite-sized AdS space on the gravity side, and
cuts off the ultraviolet modes of the CFT.

After the cutoff, there will be finitely many pentagon-edge
geodesics remaining, whose number is denoted as Ng. They
will leave finitely many pentagons and their associated spins
in the system, which become the bulk. On the boundary there
will be 2Ng nonpentagon plaquettes, each partially bounded
by a segment of the disk boundary. We place an Ising spin
on each of them, and define them to be the boundary degrees
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of freedom. Hence Ng can be thought of as a measure of the
boundary size of the lattice. In Fig. 7, finite lattices of different
sizes are illustrated.

B. Ground states and fracton excitations

Similarly to the Euclidean fracton model, the ground states
and excitations can be explicitly constructed by simply replac-
ing the straight lines with pentagon-edge geodesics.

The ground state degeneracy and entropy for this model are
respectively

� = 2Ng+1, (21)

S = kB log � = kB log 2 × (Ng + 1)

≈ kB log 2

2
× (boundary area), (22)

as one would expect. Starting from the obvious ground state
of all spins pointing up, all the other ground states can be con-
structed by repeating the procedure of selecting a pentagon-
edge geodesic and flipping all the spins on one side of it. Since
a pentagon-edge geodesic always cuts the four-spin clusters
in a two-left-two-right manner, the value of any Op remains
invariant. Therefore the system stays in the lowest energy state
after the flipping operation. Two such examples are illustrated
in Figs. 8(a) and 8(b).

A single fracton excitation is created by flipping the sign of
one operator Op while keeping the others invariant. To do so,
choose two pentagon-edge geodesics intersecting at the target,
which divide the lattice into four parts, then flip a quadrant of
the spins. The target operator has one spin flipped, while all
the others have either zero, two, or four spins flipped. Hence
a single fracton excitation is created as shown in Fig. 8(c).
It is topological in the thermodynamics limit Ng → ∞, in
the sense that no local (i.e., finite number of) spin-flipping
operation can create a single fracton. Like the case of the
Euclidean lattice model, it is localized in the system in the
sense that no local operation can move it without creating
more fractons and costing more energy.

Similar procedures can be employed to create two-, three-,
and four-fracton bound states, which are all topological. The
two-fracton bound state is illustrated in Fig. 8(d). However,
these excitations do not have enhanced mobility in subman-
ifold like the Euclidean case. This is due to the different
geometry of hyperbolic space: roughly speaking, two parallel
geodesics do not keep their distance constant, so there is not a
well defined “x direction” for the bound states to propagate.

The first local excitation is the five-fracton bound state,
created by a single spin flip in the bulk. It can move freely on
the lattice by local spin flipping without costing more energy,
like the four-fracton bound state on the Euclidean lattice. The
five-fracton excitations are illustrated in Fig. 8(e).

VI. RINDLER RECONSTRUCTION OF THE HYPERBOLIC
FRACTON MODEL

Now we will start discussing the holographic properties
realized in the hyperbolic fracton model. The first key prop-
erty of holography realized on this model is the AdS-Rindler

FIG. 8. The degenerate ground states and fracton excitations in
the hyperbolic fracton model. (a), (b) Constructions of different
ground states by flipping all spins on one side of a chosen pentagon-
edge geodesic. The four-spin cluster highlighted in red has its
operator [Eq. (2)] value invariant. (c) A single-fracton excitation
created by flipping a quadrant of the spins divided by two intersecting
geodesics. It is a topological excitation since it involves flipping
infinitely many spins. (d) Two-fracton excitation. Unlike the case
of a Euclidean lattice, they are not movable by local operations. (e)
Five-fracton bound state created by a single spin flip. It is free to
move on the lattice.

reconstruction. In our classical, static model, its simplified
version becomes the following:

Property 1. For a given spin configuration on a connected
boundary segment, the bulk spins can be reconstructed if and
only if the minimal convex wedge of the boundary segment
covers the bulk sites.

The minimal convex wedge is basically the geodesic wedge
slightly modified due to the discretization of the hyperbolic
disk. Its precise definition will be made clear soon. This
property holds for the bulk in the ground state, and also for any
excited state if the positions of fractons within the minimal
convex wedge are given. We start with the simpler case whose
entanglement wedge is covered by exactly a pentagon-edge
geodesic, as shown in Fig. 9(c). Examining the boundary
spins, we notice that the plaquettes within the wedge next
to the boundary always contain three boundary sites and one
bulk site. Knowing that the four-spin cluster has to have
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FIG. 9. Rindler reconstruction of the hyperbolic fracton model.
(a) Before and (b) after views illustrate how the reconstruction works.
Given three sites on the boundary (green) and the value of the
four-spin cluster (red square) operator [Eq. (2)], the fourth one on the
same cluster can be reconstructed. (c) For a given boundary segment
(boundary arc in dark green), the bulk that can be reconstructed is
its minimal convex wedge, the region highlighted in green. In this
example the minimal convex wedge ends exactly on a pentagon-edge
geodesic. (d) Another example of a minimal convex wedge as the
reconstructible bulk. In this example its minimal convex chain is not
a geodesic (arc in dark green). (e) An example of Rindler reconstruc-
tion for a disconnected boundary subregion. Each connected piece
(in green or blue) individually has its own minimal convex wedge,
but the collective minimal convex wedge is bigger than the sum of
the two individual wedges. The extra segment is colored in magenta.

Op = 1 (or −1 if it is known to be a fracton), the bulk site
spin value is uniquely determined. Thus we can reconstruct all
these bulk spins neighboring the boundary spins. This process
is shown in Figs. 9(a) and 9(b).

By repeating this procedure, one can reconstruct the bulk
spins inward layer by layer, and exhaust all plaquettes within
the entanglement wedge. Such procedure comes to an end
when the wedge boundary is reached. Beyond the wedge, each
four-spin cluster contains at least two unknown spins at the
same time; thus, determining their values is impossible. This
is shown in Fig. 9(c).

A slight complication happens for a generic connected
boundary segment, whose entanglement wedge’s boundary
is not a pentagon-edge geodesic, as shown in Fig. 9(d). In

this case, the reconstructible bulk sites are within the minimal
convex wedge, defined as follows:

Definition 1. The minimal convex wedge for a boundary
segment is the bulk region delimited by a continuous chain of
the pentagon’s edges that satisfies the following: (1) the chain
is homologous to the boundary segment, i.e., shares the same
ends; (2) it is convex; (3) it contains the minimal number of
pentagon edges. The chain is named a minimal convex chain.

This definition seems to be complicated, but for a con-
nected boundary segment, it is simply the continuous geodesic
wedge extended by the pentagons partially overlapping with
it:

Property 2. The minimal convex wedge of a connected
boundary segment consists of all the bulk sites whose pen-
tagons have nonzero overlap with the geodesic wedge in the
continuous case.

It is a simple consequence of the hyperbolic disk discretiza-
tion, as the minimal bulk volume unit is a pentagon.

We also consider the case of a boundary segment consisting
of two disconnected components. In this case the entangle-
ment wedge of the joint boundary segments can be larger than
the sum of the wedges for each individual component. An
example is shown in Fig. 9(e).

We should point out that for a large subregion of the
boundary, the resulting entanglement wedge properly approx-
imates its continuous limit. However, for more complicated
situations of boundary segments close to the phase transition,
or consisting of more components, it becomes more compli-
cated. Such deviation from AdS/CFT is similar to the situ-
ation of holographic tensor networks constructed by perfect
tensors [16].

VII. MUTUAL INFORMATION OF THE HYPERBOLIC
FRACTON MODEL

The second essential property of holography realized in the
hyperbolic fracton model is the Ryu-Takayanagi formula for
entanglement entropy.

For a CFT with a gravitational dual in the AdS spacetime,
there exists a geometric bulk description for at least its static
state at low energies. For such states, the Ryu-Takayanagi
(RT) formula relates the entanglement entropy SA of a bound-
ary segment A with the area of the minimal covering surface
γA in the bulk,

SA = Area(γA)

4GN
, (23)

where GN is Newton’s constant, and Area(γA) refers to the
length of the covering curve(s). We shall show that its classical
analog holds for the fracton model.

A few corrections need to be added to make the statement
more accurate. To begin with, a classical model has no quan-
tum entanglement, so instead of the entanglement entropy,
the quantity employed here is the mutual information. The
mutual information can be viewed as the classical analog of
the entanglement entropy. Also, the minimal covering surface
should be modified to be the boundary of the minimal convex
wedge in the bulk, which we named the minimal convex chain
in the previous section.
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Second, the mutual information may receive some correc-
tions, depending on the shape of the boundary subregion and
its entanglement wedge. Here we will discuss the corrections
that appear in relatively simple boundary subregion configu-
rations. The mutual information grows linearly with the lattice
size, but these corrections stay fixed.

A. Mutual information as the classical analog
of entanglement entropy

The mutual information, as its name suggests, measures
how much information is shared between two subsystems. It
is defined as

Icl(A; B) = Ss(A) + Ss(B) − Ss(A ∪ B), (24)

where A, B are subsystems, and Ss is the Shannon entropy.
Ss(A ∪ B) is the entropy for the union of two subsystems. The
subscript “cl” is to remind us that it is a classical concept.

The mutual information is a proper classical analog of
the entanglement entropy between a bipartition of a quantum
system. To see this, replace the classical Shannon entropy Ss

with von Neumann entropy Sv for the corresponding subsys-
tem’s reduced density matrices, and note that B = Ac is the
complement of subregion A. We have its quantum version

Iqu(A; Ac) = Sv(A) + Sv(Ac) − Sv(A ∪ Ac). (25)

For a pure state

Sv(A ∪ Ac) = 0, (26)

Sv(A) = Sv(Ac), (27)

so we end up with exactly twice the entanglement entropy
between A and Ac,

Iqu(A; Ac) = 2Sv(A) = 2SA, (28)

which indicates that its classical analog Icl is the correct
choice, up to a factor of 2.

B. Mutual information for connected subregions

We start with the simple scenario when the subregion A is
connected. We will show the following:

Property 3. For both the vacuum and a given configu-
ration of fractons, the mutual information for a bipartition
of the boundary into connected subregions obeys the Ryu-
Takayanagi formula

Icl(A; Ac) ≈ kB log 2|γA|, (29)

where |γA| = Area(γA) is a shorthand notation.
To calculate Eq. (24), we just need to compute the entropies

for A, B = Ac, and the entire system individually. The entropy
of the entire system is already given in Eq. (22), which is
proportional to the number of pentagon-edge geodesics plus
one. The physics is that for each pentagon-edge geodesic
the ground state is multiplied by two, from the operation of
flipping spins on either side of the geodesic. This is shown in
Fig. 10.

The same argument applies to counting the ground state
degeneracy of any connected subregion (for disconnected

FIG. 10. Counting the entropy of a subsystem. Every pentagon-
edge geodesic crossing the system multiplies the degeneracy by
two. These new states can be explicitly constructed as illustrated by
(a) and (b), where the blue region indicates the spins being flipped.

region it can be more complicated). Due to Rindler recon-
struction, the entanglement wedge of boundary section A has
the same ground state degeneracy as A itself. In either way of
counting, the pentagon-edge geodesics of the system are those
intersecting A with one or both ends. Thus the degeneracy and
entropy for the ground states of a subregion A are

�(A) = 2Ng-A+1, (30)

Ss(A) = kB log � = kB log 2 × (Ng-A + 1), (31)

where Ng-A is the number of pentagon-edge geodesics that
cross the region.

Let us denote the minimal convex chain as γA. Depending
on the choice of subregion A, γA can overlap with a pentagon-
edge geodesics exactly, or has some “corners,” as shown in
Figs. 9(c) and 9(d).

Case 1: γA is a pentagon-edge geodesic. In the first case, we
can divide the pentagon-edge geodesics, whose total number
is Ng, into four categories:

(1) Those with both ends on A, whose number is denoted
Ng-A.

(2) Those with both ends on Ac, whose number is denoted
Ng-Ac.

(3) Those with one end on A and the other on Ac, whose
number is denoted Ng-γ .

(4) The geodesic γA. Its length is exactly |γA| = Ng-γ + 1.
These quantities satisfy the condition

Ng-A + Ng-Ac + Ng-γ + 1 = Ng. (32)

For both the ground state or any given configuration of
fracton excitations, the entropy of states in region A is

Ss(A) = (Ng-A + Ng-γ + 1)kB log 2, (33)

as argued in Eqs. (30) and (31). Similarly for region Ac,

Ss(A
c) = (Ng-Ac + Ng-γ + 1)kB log 2. (34)

Finally, the joint entropy of A and Ac is simply the entropy of
the entire system, which is

Ss(A, Ac) = (Ng + 1)kB log 2 (35)
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FIG. 11. Mutual information as a classical analog of entangle-
ment entropy obeys the Ryu-Takayanagi formula. It is measured
by the number of pentagon-edge geodesics that are shared by A
(dark green arc) and Ac (light blue arc). The subregion-crossing
pentagon-edge geodesics are highlighted in orange, whose number
is denoted Ng-γ . They are also the geodesics that intersect with the
geodesic γA, which is the minimal curve that splits A and Ac. Their
relation |γA| = Ng-γ + 1 leads to the Ryu-Takayanagi formula for
mutual information in Eq. (29).

Therefore the classical mutual information is

Icl(A; B) = Ng-γ kB log 2 ≈ kB log 2|γA|, (36)

in the limit of large Ng-γ . Here we consider the length of the
edge of the pentagon to be 1. This calculation is illustrated in
Fig. 11.

Note that here, compared to Eqs. (22) and (42), a factor of
1
2 is missing. But it is simply due to the fact that by definition
Icl is twice the entanglement entropy [Eq. (28)].

Case 2: γA is not a pentagon-edge geodesic. Now let us
consider more general situations when γA is not a pentagon-
edge geodesic. The proof is basically the same, but we just
write it down for completeness. We have the Ng pentagon-
edge geodesics now classified into three categories:

(1) Those with both ends on A, whose number is denoted
Ng-A.

(2) Those with both ends on A, whose number is denoted
Ng-A.

(3) Those with one end on A and the other on Ac, whose
number is denoted Ng-γ .

Here a geodesic that starts and ends on A is considered to
be in the first category, and vice versa for Ac. These numbers
obey the modified constraint

Ng-A + Ng-Ac + Ng-γ = Ng. (37)

The different entropies remain the same as defined in
Eqs. (33), (34), and (35). Therefore the classical mutual
information becomes

Icl(A; B) = (Ng-γ − 1)kB log 2, (38)

for large Ng-γ .
Let us denote the number of corners of γA as Ncor; then

Icl(A; B) = (Ng-γ − 1)kB log 2 ≈ kB log 2(|γA| − Ncor). (39)

FIG. 12. Possible configurations for disconnected boundary sub-
region. Here we limit ourselves to the case when the entanglement
wedges (green region) are covered by pentagon-edge geodesics
exactly. Blue arcs are pentagon-edge geodesics. Situations (a) and
(b) are possible, and (b) will cause one bit of correction to the RT
formula for the mutual information. The situation in (c) is impossible
as the four pentagon-edge geodesics cannot form a square.

Here −Ncor is a correction to the RT formula, which stays
fixed as the lattice size grows. It is, however, in some sense
“benign.” The lattice discretized minimal convex chain γA has
some sharp corners. As a consequence, its length becomes
larger than the continuous covering geodesic. The −Ncor re-
duces such deviation, resulting in a mutual information closer
to the continuous case.

C. Mutual information for disconnected subregions

The situation becomes more complicated for a subregion
with several disconnected components. Equation (24) can still
be computed for each subregion by identifying its entangle-
ment wedge and computing its entropy. Here we analyze
the possible correction to the simplest case of disconnected
subregion A.

The simplest case is defined as follows: for each compo-
nent of A, its entanglement wedge is case 1 discussed above;
i.e., it is covered by a pentagon-edge geodesic. The mutual
information can be again computed by counting the pentagon-
edge geodesics.

One issue may lead to some corrections to the mutual infor-
mation: There are geodesics starting from one component of A
and ending in another, instead of ending in Ac. This is shown
in Fig. 12. We have to consider the correction contributed by
them.

First we note that between two components, there can be
at most one pentagon-edge geodesic. That is, situations in
Fig. 12(c) do not exist. This is because there is a rectangle
formed by these pentagon-edge geodesics, whose four angles
are all π/2. Such rectangles cannot exist in the hyperbolic
space.

So we only need to take care of the case with one pentagon-
edge geodesic between the two components. Note that it still
goes through the entanglement wedge of Ac and contributes
one unit of entropy to SAc . So it contributes one unit of
mutual information, but two units of the length of the minimal
covering chain. Therefore, the final correction is one unit:

Icl(A; Ac) = (Ng-γ − 1)kB log 2 ≈ kB log 2(|γA| − NA-A),
(40)
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FIG. 13. A naive black hole in the hyperbolic fracton model.
There is no geometrical change of the hyperbolic disk, but some bulk
sites are hidden behind the horizon, and not accessible by observers.
The horizon is the solid black line. The pentagon-edge geodesics
crossing the black hole are highlighted in orange.

where NA-A denotes the number of geodesics starting from one
component of A and ending in another.

As the boundary subregion becomes more complicated,
more corrections will enter the mutual information. In particu-
lar, for configurations close to the phase transition of entangle-
ment entropy, the deviation can be big. Similar issues with the
holographic tensor networks are fixed by the random tensors
[19]. It remains an open question on how the modifications of
the hyperbolic fracton model will amend such issue and yield
the exact RT formula for arbitrary boundary bipartition.

VIII. NAIVE BLACK HOLES IN THE HYPERBOLIC
FRACTON MODEL

The black hole in this model has its entropy proportional
to its horizon. Here we consider a very naive black hole
constructed by simply cutting out some bulk pentagons in-
cluded in a closed convex, but leaving the rest of the lattice
unchanged. The spins of the pentagon inside the black hole,
and all interactions associated with them, are considered hid-
den behind the horizon. An example is illustrated in Fig. 13.
Our approach is adapted from Ref. [16], in which a black
hole is constructed by removing some bulk tensors in the
holographic tensor network. Though there is no change of
geometry outside the horizon, this approach does show some
resemblance to a black hole in an asymptotic AdS geometry,
as we demonstrate below.

The horizon size of the black hole is approximately

horizon area = NBH, (41)

where NBH are the semi-infinite pentagon-edge geodesics
extended from the black hole, highlighted in orange in Fig. 13.
They used to be NBH/2 complete geodesics.

The black hole entropy has several interpretations, includ-
ing the entropy for its microstates, or its entanglement entropy
with the outside. Here we use the definition proposed by
Witten [4], tailored for our model:

FIG. 14. Building block of 3D classical fracton model [Eq. (44)].
The spins sit at the centers of the cube, and eight cubes sharing
the same corner are used to construct the operator O in Eq. (43).
The subsystem symmetry is flipping a line of spins in the x, y, or z
direction.

Definition 2. The black hole entropy is the boundary or bulk
ground state Shannon entropy increase from introducing the
black hole.

This is a rather simple calculation: since NBH/2 pentagon-
edge geodesics are cut into two pieces, the system has ef-
fectively NBH/2 more pentagon-edge geodesics for the topo-
logical spin-flipping operations to create new ground states.
Therefore we have the following:

Property 4. The black hole entropy is

SBH = kB log 2

2
NBH = kB log 2

2
× (horizon area), (42)

which has the proper scaling behavior.
The appearance of a black hole means the boundary ground

state degeneracy grows, similarly to the Hilbert space enlarge-
ment discussed in Ref. [16]. This is expected as only a very
small portion of the boundary states corresponds to the pure
AdS geometry, and most states correspond to some black hole
state in the bulk.

IX. GENERALIZATIONS: HIGHER DIMENSION
AND QUANTUM VERSION

Two important questions naturally follow the major results
of this work: how to generalize the model to higher dimension,
and whether there is a quantum version of the model. Both
answers are positive, as we explain below.

A. Three-dimensional generalization

The three-dimensional generalization of our model is a
cubic Ising model with eight spin interaction terms.

In this model, each Ising spin sits at the center of the cube
of the lattice, as shown in Fig. 14. The operator Oc is

Oc =
8∏

i=1

Sz
i , (43)
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FIG. 15. Subsystem symmetry of the fracton model [Eq. (44)] in
AdS3 space. The spherical surfaces (red and blue) in this representa-
tion are actually “flat” in the AdS3 space. The two surfaces split the
entire AdS3 lattice into four parts. Flipping spins in one part of the
AdS3 lattice does not change the system’s energy, and is a subsystem
symmetry.

where i runs over 8 cubes sharing the same corner, which
forms the cube of the dual lattice. The Hamiltonian is again

Hcl = −
∑

c

Oc, (44)

where c runs over all eight spin operators.
This classical model has the subsystem symmetries of

flipping all spins on a line in the x, y, or z direction. An
equivalent way to view them is to have two perpendicularly
intersecting planes. The two planes divide the lattice into four
parts, and flipping one quadrant of the spins leaves the energy
invariant. This way has a more straightforward adaptation to
the AdS3 lattice.

This model has a natural generalization to the AdS3 space.
We do not need to visualize the entire lattice, which is rather
difficult. Instead we can focus on the subsystem symmetries,
and it would be sufficient to demonstrate the holographic
properties.

In its AdS3 lattice, the original 2D planes become spherical
surfaces that intersect the boundary of AdS3 perpendicularly.
These intersecting 2D hypersurfaces form cells for the spins
to sit in. All eight cells will share the same corner since three
spherical surfaces intersect at the same point, which can be
used to build the same Hamiltonian for each local 8-spin
cluster.

Each geodesic is now determined by two intersecting
spherical surfaces, and they split the entire lattice into four
parts as shown in Fig. 15, in analogy to each geodesic splitting
the AdS2 lattice into two parts. Flipping spins in one of the
four parts keeps the energy of the system invariant, which is
the subsystem symmetry in AdS3 space. Again the number
of independent subsystem symmetries is proportional to the
number of geodesics, hence the boundary area.

The Rindler reconstruction and RT formula for mutual
information holds as a consequence of the structure of the
subsystem symmetries.

FIG. 16. An example of subregions A, B with nonvanishing mu-
tual information.

B. Quantum model with a transverse field

Next let us make some remarks on the quantum version
of the model. The simplest case is to introduce a constant
transverse field. For a small transverse field, we can assume
that there will be a unique quantum ground state as the
superposition of (almost) all classical ground states. The
superposition does not necessarily have to have equal weight
or phase.

The boundary state is then defined as a mixed state by
tracing out all degrees of freedom in the bulk, and such mixed
state can be viewed as an ensemble of all classical ground
states on the boundary with a certain probability distribution.
Assuming the probability distribution (or weight of the su-
perposition) to be close to even among all classical states
for a small transverse field, the entanglement entropy/mutual
information will still obey the Ryu-Takayanagi formula up to
some correction. If a bulk spin is fixed by hand to be up or
down in the model, it can be reconstructed by looking at any
element from the ensemble on a region whose entanglement
wedge covers the bulk site. It is not too different from the
classical model in the sense that on the boundary one always
works with a classical ensemble.

We have to point out that this is an interesting difference
from the large-N limit of gravity/CFT duality. There, the bulk
is semiclassical and the boundary is quantum, which is the
opposite of our construction. Whether such difference has any
profound meaning is to be studied in the future.

X. COMPARISON WITH THE HOLOGRAPHIC
TENSOR NETWORKS

A key question emerging from this work is, what features
of gravity can be captured by the fracton models, and what
cannot? To pave the way to the answer, it is useful to compare
our model with holographic tensor networks regarding their
holographic properties. These models are, after all, not exactly
quantum gravity, so some properties of AdS/CFT duality are
still not captured. Clarifying them can be helpful for future
investigations and improvements.

Holographic tensor networks are a type of toy mod-
els of holography. They are built by tensors with special
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properties, and uniformly tiled on the discrete hyperbolic
lattice. Two representatives are the perfect tensors and the ran-
dom tensors. Essentially, these tensors saturate the upper bond
of entanglement between any bipartition of their legs. This
guarantees that the bulk information is not lost when “pushed”
toward the boundary. It is closely related to the quantum-error-
correcting properties of gravity, which manifest in the Rindler
reconstruction and the RT formula for the entanglement
entropy.

Let us focus on the holographic state defined by the tensor
networks, i.e., simply a quantum state on the boundary with-
out bulk inputs. For the holographic state, we care about the
boundary state’s entanglement properties, mainly the Renyi
entropy for connected or disconnected subregions. The exact
RT formula for any disconnected subregion is realized in the
random tensor network in its large-N limit [19]. The hyper-
bolic fracton model, however, suffers from various corrections
as we explained in previous sections.

Both the tensor network model and the hyperbolic fracton
model have a trivial n dependence for the nth Renyi entropy.
More fundamentally this is due to the fact that the entangle-
ment spectrum is always flat in such models. In contrast, the
CFT has a nontrivial n dependence and a nonflat entanglement
spectrum [61,62]. A related issue is that the boundary state de-
fined by the holographic code cannot be the ground state of a
local Hamiltonian. Refinement of such undesirable properties
will be an important progress.

Finally we point out an issue for the hyperbolic fracton
model that does not exist in the tenser-network models. Let
us consider two small boundary subregions denoted A and
B, and examine their mutual information when A and B are
far apart. The two subregions should not have any mutual
information according to AdS/CFT, which is the case in the
tensor-network models. In the hyperbolic fracton model, this
is also true for most choices of A and B. However, there will
be one bit of mutual information when A and B cover the
two ends of the same pentagon-edge geodesic. Such choice
is illustrated in Fig. 16.

Such issue has to do with the subsystem symmetry being
“rigid”; that is, the pentagon-edge geodesics are fixed in the
model.

The ground states of most gapped fracton models ac-
tually have a stabilizer map description as discussed in
Refs. [23,31,33,63,64]. Many of the holographic tensor net-
works are also built from “perfect” stabilizer tensors, although
the construction is different. The “perfect” stabilizer tensor
may lend us some insight on how to modify the hyper-
bolic fracton model for improved realization of AdS/CFT
properties.

XI. OUTLOOK

Modern physics has witnessed increasing interactions be-
tween high-energy theory, many-body physics, and quantum
information. This work adds another example at this trisec-
tion, by elaborating the holographic properties of a classical
fracton model. After an introduction of the fracton model
accompanied by a discussion of various hints of its simi-
larity with gravity, we demonstrate that when defined on a
hyperbolic disk, it satisfies some key properties of AdS/CFT,

including the Rindler reconstruction/subregion duality and
the RT formula for its mutual information. A naively de-
fined black hole in this model also has the correct entropy.
Some generalizations and comparisons with tensor-network
toy models are also discussed.

This work expands the scope of application of hologra-
phy in condensed matter physics. Not only can one study
a strongly coupled/critical system as the CFT side of
AdS/CFT; there are also states of matter that exhibit meaning-
ful physics on the AdS side. In particular, it may be interesting
to examine other fracton models in AdS space, and classify
them by their holographic properties.

A long-term ambition we initiate with this work is to
concretely understand what exactly are the similarities and
differences between various fracton models and quantum
gravity. In return it may help us study how quantum gravity
or related many-body models can perform quantum error
correction encoding, which is one of the most intriguing
quantum information aspect questions of gravity. We may
be able to partially achieve this by quantitatively examining
the speculated web of connections in Fig. 4. Some works on
fracton models [64] suggest that studying a quantum, lattice
version of Higgsed linearized general relativity (or a higher-
rank gauge theory) and constructing the tensor-network rep-
resentation of its ground state are possible. A reasonable
approach could be to explore its connections to holographic
tensor networks discussed in Refs. [16,19].

Some questions remain open even for the classical model,
especially concerning the subregion duality and mutual in-
formation for more complicated, disconnected boundary
segments.

The higher-rank gauge theory is also interesting in its own
right, and it remains to be understood whether it is holographic
without being Higgsed into gapped fracton models, at both the
classical and quantum level. A recent development has already
shown that some versions of the theory can be consistently
defined on a constant-curvature manifold [59,65].

Another direction for future investigation is to study
other gapped fracton models protected by different types
of subsystem symmetries, or the fracton topological orders
obtained by gauging these symmetries. It is desirable to
know what are the necessary and sufficient conditions for a
model to be holographic, and also construct some of them
explicitly.

To conclude, certain fracton models give rise to some
interesting physics that mimics general relativity. In this work
we point out the holographic aspect of this, and hope fur-
ther investigation could provide useful insight for both the
condensed-matter and high-energy-theory communities.
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