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We present a detailed study of the imaginary and real parts of the spin susceptibility of silicene which can be
generalized to other buckled honeycomb structures. We find that while the off-diagonal components are nonzero
in individual valleys, they add up to zero upon including contributions from both the valleys. We investigate the
interplay of the spin-orbit interaction and an external electric field applied perpendicular to the substrate and find
that although the xx and yy components of the susceptibility are identical, they differ from the zz component.
The external electric field plays an important role in modifying the allowed intersubband regions. In the dynamic
limit, the real part of the susceptibility exhibits log divergence, the position of which can be tuned by the electric
field and therefore has implications for spin-collective excitations. The effect of the electric field on the static
part of the susceptibility and its consequence for the long distance decay of the spin susceptibility have been
explored.
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I. INTRODUCTION

Spin-orbit (SO) interaction is one of the key ingredients in
a spintronics device required for controlling and manipulating
the spin degrees of freedom of an electron via the electric
field [1,2]. In this regard, enormous progress has already been
made in the study of semiconductor based spintronics de-
vices [1,3]. Recently the possibility of graphene and other 2D
materials, in particular silicene and germanene [4], topologi-
cal insulators [5,6], Weyl semimetals [7–9], along with mono-
layer transition metal dichalcogenides such as MoS2 [10]
with intrinsic and extrinsic SO coupling, have garnered wide
attention from the fundamental physics point of view as well
as for their potential for spintronics applications.

The low energy effective theory of many of these new
materials is governed by the Dirac physics. In graphene, due
to the relatively small mass of carbon atoms the SO coupling
is very weak therefore the physics is effectively described by
the massless Dirac theory. The conduction and valance bands
meet at the two inequivalent Dirac points, called the K and K′
points, which is where the Fermi energy also lies. On the other
hand, due to the higher mass of silicon atoms SO coupling in
silicene is appreciable (∼3.9 meV) [11–13]. Unlike graphene
which is completely planar, silicene has a buckled honeycomb
sublattice structure resulting in the explicit breaking of inver-
sion symmetry [14]. An electric field applied perpendicular
to the silicene surface leads to a staggered potential which
in combination with the SO term determines the gap in the
energy spectrum. Consequently, electric field can be used
as a control parameter to drive silicene from a trivial band
insulator phase to symmetry protected topological phase (e.g.,
spin Hall insulator [15,16]). At the critical point the band gap
closes [17,18] and silicene enters into a valley-spin polarized
metallic state [19–21]. These features in the energy spectrum
provide the possibility for detecting quantum, anomalous, and
valley hall effects in silicene [19,22,23].

Useful insights into the electronic properties of materials
are obtained by studying their charge response function or the

charge polarization operator. It yields information regarding
the single particle and collective excitations which are crucial
for understanding the static and dynamical properties of many
body systems [24,25]. While the modifications to the response
function due to the SO coupling in 2DEG with parabolic
dispersion have been investigated in great detail [26,27], it
is only recently that similar studies on the charge response
function of materials with Dirac-like dispersion have been
made [5–9,28–35]. There have also been studies on the spin
response of the SO coupled 2D electron system and of the
helical surface states of a 3D topological insulator [5,36–39].
By considering the dynamical spin susceptibility of the SO
coupled 2D electron system the existence of spin-collective
excitations was established [39], moreover, the surface states
of a 3D topological insulator, described by the Dirac spec-
trum, have been predicted to host hybridized spin-charge cou-
pled plasmons [5]. On the other hand, the modifications to the
static spin susceptibility due to the SO terms yield additional
interaction terms like Dzyaloshinskii-Moriya and Ising terms
besides the usual isotropic Rudermann-Kittel-Kasuya-Yosida
(RKKY) interaction term [40–42].

Experimental measurements of spin susceptibility are rou-
tinely performed via nuclear resonance and electron spin res-
onance techniques, which yield Knight-shift and g-factor val-
ues, respectively [43–45]. In addition, studies of Shubnikov-
de Haas oscillations in high-mobility Si-MOS samples [46]
and AlAs quantum wells [47,48] have yielded important infor-
mation related to correlation effects on the spin susceptibility
in these systems. Moreover a scattering cross section obtained
in a neutron scattering experiment reveals the structure factor
which is directly proportional to the imaginary part of the
susceptibility [49]. Recently, Raman spectroscopy techniques
were used to reveal the collective spin excitations of the chiral
surface states of the three-dimensional topological insulator
Bi2Se3 [50].

Recent theoretical studies of the charge polarization func-
tion of silicene have predicted the existence of charge
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collective excitation with a
√

q dispersion at small
q [20,51,52]. However, the study of spin collective modes in
silicene and other buckled honeycomb lattice is an ongoing
and challenging work. As a first step towards the better
understanding of the role of spin-orbit interaction in silicene
we study in detail the spin susceptibility in the noninteracting
limit. We find that the interplay of inversion symmetric spin-
orbit term and the inversion breaking electric field term is
responsible for different spin-susceptibility value for the diag-
onal zz component as compared to the xx and yy components.
We discuss in detail the allowed single-particle transitions
and the regions in the (q, ω) plane where the imaginary part
of the susceptibility is nonzero. The role of electric field in
extending the allowed regions for particle-hole excitations is
examined. We calculate the real part of susceptibility, with
particular emphasis on the dynamic and static limits. We show
that the real part of spin susceptibility exhibits log divergence
in the dynamic limit (in the xx and yy channels) and discuss
its significance with regard to the spin-collective modes. The
static part of the spin susceptibility exhibits Kohn anomaly;
interestingly the nature of this anomaly and the momentums
at which this happens can be controlled by electric field. The
consequence of it for the long distance decay behavior of the
spin susceptibility has been studied.

Our paper is organized as follows: In Sec. II we provide a
general description of our model along with the low energy
effective Hamiltonian of silicene. In Sec. III we define the
spin-susceptibility operator. In Sec. IV we obtain the contri-
butions to the imaginary part of the spin susceptibility arising
from different transition scenarios. In Sec. V the real part
of the spin susceptibility in the dynamical and static limits
have been calculated. A summary of the results is provided in
Sec. VI.

II. MODEL

The tight binding Hamiltonian of 2D silicene is given by

H = −t
∑
〈i, j〉α

ĉ†
iα ĉ jα + i

λSO

3
√

3

∑
〈〈i, j〉〉αβ

νi j ĉ
†
iασ̂ αβ

z ĉ jβ

+ l
∑

iα

ζiE
i
z ĉ†

iα ĉiα − μ
∑

iα

ĉ†
iα ĉiα , (1)

where the first term represents the nearest-neighbor hopping
on the honeycomb lattice, and the second term represents the
effective SO term which couples next-nearest-neighbor sites.
The coupling parameter is denoted by λSO, σ̂z is the Pauli
spin matrix, and νi j = ẑ · (�di × �d j )/|�di × �d j | with �di and �d j

being the bonds between the two next-nearest-neighbor sites.
The third term represents the staggered sublattice potential,
where ζi = ±1 for the A(B) sites and 2l is the separation
between the A and B sublattices in the z direction, Ez is an
applied electric field perpendicular to the plane and μ is the
chemical potential. For silicene t = 1.6 eV, λSO = 3.9 meV,
and l = 0.23 Å [14,19,53]. The Hamiltonian receives an ad-
ditional contribution due to the Rashba SO term, however, the
magnitude of this term (λR = 0.7 meV) is almost an order of
magnitude less than λSO. Moreover, near the Dirac points the
Rashba term is given by the linear ∼λRk term which can be
neglected when describing the low-energy physics [19,53].

FIG. 1. Energy spectrum near the K and K′ points. The arrows
indicate the orientation of the spin in the respective band.

We note that germanene which has a buckled structure is
also described by the Hamiltonian given in Eq. (1), with t =
1.3 eV, λSO = 43 meV, and l = 0.33 Å [4,14,19,53]; here
also the Rashba term can be neglected when describing the
low energy physics.

The low-energy effective Hamiltonian about the two in-
equivalent Dirac points Kη (where η = ±1) in the basis
(ψA↑, ψB↑, ψA↓, ψB↓) acquires the form

Hη = h̄vF (kx(Î ⊗ τ̂x ) − ηky(Î ⊗ τ̂y))

− ηλSOσ̂z ⊗ τ̂z + lEZ (Î ⊗ τ̂z ), (2)

where the Pauli matrix τ̂ acts on the sublattice basis and
η is the valley index. Henceforth, we will set vF = 1 and
h̄ = 1. The spin-orbit term generates the Kane-Mele mass
term σ̂z ⊗ τ̂z which is time-reversal symmetric and does not
break the inversion symmetry; on the other hand the electric
field term Î ⊗ τ̂z breaks inversion symmetry. Interestingly,
in the presence of only one of the terms, either the spin-
orbit or the electric field term, the upper and lower bands in
each of the valleys are doubly degenerate. However, in the
presence of both the terms the band degeneracy is lifted and
the spectrum is given by εkηβ

= α
√

k2 + 
2
η,β , where α = ±1

and the inequivalent gaps for spins β = ±1 are given by

η,β = |lEz − ηβλSO|. In Fig. 1 we plot the energy spectrum
near the K, K′ points, where the energy gaps are labeled as

1/2 = |lEz ∓ λSO|. Since spin is a good quantum number
we identify the bands having 
1 gap in the K (K′) valley
with up-spin (down-spin) and similarly the 
2 gap in the
K (K′) valley with down-spin (up-spin). The strength of the
gap can be tuned by external electric field, in particular, for
the critical field Ec

z = λSO/l the Hamiltonian exhibits gapless
modes. For convenience, the bands are labeled as follows:
upper and lower bands with band gap 
1/2 as u
1/2 and l
1/2 ,
respectively.

III. GENERALIZED SUSCEPTIBILITY

The noninteracting generalized susceptibility in the Mat-
subara formalism is given by [39]

χi j (q, ωn) = −
∫

P
Tr[σ̂i ĜP σ̂ j ĜP+Q], (3)
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where Tr denotes trace over spin and sublattice degrees of
freedom, i, j = 0, x, y, z, P = ( �p,�n), and Q = (�q, ωn). Note
that the polarization function/operator is related to the suscep-
tibility via the relation, �i j (q, ωn) = −χi j (q, ωn). In the rest
of the text we will be using the two terms interchangeably.

The corresponding zero temperature Matsubara Green’s
function used in the above equation has the following form

Ĝp = 1

4

∑
β,α=±1

[
(Î + βσ̂z ) ⊗ (Î − α

( �pβ · �τ)/Epβ

)]
(
i�n + αEpβ

) , (4)

where α = ±1 represents lower and upper bands, respectively,
�pηβ = pxê1 + ηpyê2 + 
η,β ê3, and Epηβ

= |εpηβ
|. Following

the usual procedure for frequency summation, followed by
the analytical continuation iω → ω + i0+, the polarization
function of the η valley acquires the form,

�
η
i j (q, ω) = −1

4

∫
d2 p

(2π )2

∑
α, α′=±1
β, β ′=±1

[
Fβ,β ′

i, j · Sα,α′,β,β ′
p,p+q

]

× nF
(− αEpηβ

)− nF
(− α′E(p+q)ηβ′

)
(
αEpηβ

− α′E(p+q)ηβ′ − ω − i0+) , (5)

where the prefactors are Fβ,β ′
i, j = [δi j (1 − ββ ′) + iεiz j (β −

β ′) + 2ββ ′δizδ jz] with (i, j) ∈ (x, y, z), Fβ,β ′
0, j = Fβ,β ′

j,0 =
(β + β ′)δz j , and Fβ,β ′

0,0 = (1 + ββ ′). The form factor is
given by

Sα,α′,β,β ′
p,p+q =

[
1 + αα′ �pηβ · ( �p + �q)ηβ ′

Epηβ
E(p+q)ηβ′

]
. (6)

The full polarization function is given by the sum,
�i j (q, ω) = �+

i j (q, ω) + �−
i j (q, ω). We note that the off-

diagonal components, �
η

0z(q, ω) and �η
xy(q, ω), are nonzero

in individual valleys, however, they add up to zero upon
including contributions from both the valleys. This could
be understood in the following way: for �±

xy the allowed
transitions are between 
1 to 
2, and vice versa. Focusing
only on the 
1 → 
2 (or 
2 → 
1) transition, all terms in
the expression of �±

xy remain the same except the i(β ′ − β )
term which has opposite signs for the two valleys, thus the
cancellation. Similar arguments hold for the vanishing of
�±

0z term after including contributions from both the valleys.
On the other hand, the diagonal components obtain equal
contributions from both the valleys.

In the following two sections we present in detail the imag-
inary and real part of spin susceptibility and its characteristic
behavior with respect to the external electric field.

IV. IMAGINARY PART OF SUSCEPTIBILITY

We will next focus our attention on the imaginary part of
the generalized susceptibility, in particular those arising from
χxx and χyy (both of which yield the identical result). The
charge susceptibility χ00 result has already been discussed
in the literature [20,31,32,52,54] and the χzz result follows
trivially from those of the χ00. The imaginary part of the spin
susceptibility is nonzero in regions where the particle-hole ex-
citations are allowed. For χxx and χyy, the contribution to their
imaginary parts are obtained by particle transition between
bands with opposite spin sectors (
2/1 → 
1/2) following
the relation ββ ′ = −1, and these could be due to both the
transitions between upper bands or from lower to upper band.

On the other hand, χzz obtains contribution from spin-
conserving transitions, i.e., 
1/2 → 
1/2. As discussed ear-
lier, in the presence of both the Kane-Mele mass term and
electric field, the band degeneracy is lifted resulting in two
inequivalent gaps 
1 �= 
2, therefore χzz obtains different
contributions from the other two diagonal terms.

The calculations presented here are for the K valley; the
contribution from the K′ valley is identical. We discuss in de-
tail the allowed single-particle transitions for all three possible
cases and the regions in the (q, ω) plane where the imaginary
part of the susceptibility is nonzero.

A. Imaginary part of χxx/yy

In the next two subsections, we will separately obtain
contributions arising from 
2/1 → 
1/2 transitions, which
when combined together give full contribution to χxx and χyy

from the K valley.

1. (�2 → �1) transition

The transition from u
2 to u
1 is allowed for particles with
energy ε in the range: max[μ − ω,
2] < ε < μ. The angular
integration of Eq. (5) (with α = α′ = −1) yields

Im�uu
21(q, ω) = −Re

⎡
⎣ 1√

q2 − ω2

∫ Ux

Lx

dx

8π

(x − ω1)2 − γ0√
x2 − ξ 2

21

⎤
⎦,

where γ0 = q2 + 
2
d , ω1 = ω(γ21 − 1), ξ21 =√

q2γ 2
21 + 4q2
2

2/(q2 − ω2), γ21 = 1 − 
s
d/(q2 − ω2),
along with the redefined parameter 
s = 
2 + 
1 and

d = 
2 − 
1. Performing the integration by taking
the limits of integration to be Ux = 2μ + ωγ21 and
Lx = 2max[μ − ω,
2] + ωγ21, we obtain

Im�uu
21(q, ω) = − 1

4π

1√
q2 − ω2

×
{

Guu
21(2μ + ωγ21) − Guu

21(2 max[μ − ω,
2] + ωγ21) :1A

Guu
21(2μ + ωγ21

)− Guu
21

(
ξ21) :2A

}
,

where

Guu
21(x) = 1

4

{[−2q2 − 2
2
d + ξ 2

21 + 2(ωγ21 − ω)2
]

log
(√

x2 − ξ 2
21 + x

)+ [x − 4(ωγ21 − ω)
]√

x2 − ξ 2
21

}
. (7)
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FIG. 2. Shaded regions in the figure indicate nonzero contribu-
tions to the imaginary part of the polarization function due to the

2 → 
1 transition. 1A and 2A regions denote contributions from
the transitions u
2 to u
1 , whereas 1B, 2B, and 3B denote contribu-
tions from l
2 to u
1 . Here μ′ = √

k2
F1

+ 
2
2 , kF1 = √

μ2 − 
2
1 , and

kF2 = √
μ2 − 
2

2 .

The regions in the (q, ω) plane where Im�uu
21(q, ω) is nonzero

are [see Fig. 2]:

1A : ω < μ − F
(
kF1 ,
2

)
2A : ±μ ∓ F

(
kF1(2) ,
2(1)

)
< ω < −μ + F

(− kF2 ,
1
)
,

where F (x, y) =
√

(q − x)2 + y2. The allowed regions for
particle-hole (p-h) excitation in the (q, ω) plane can be ob-

tained via kinematic consideration (see the ω < q region in
Fig. 2). For example, in the scenario being discussed, the
minimum momentum required for p-h generation is kF1 − kF2 ;
this involves the collinear transition of a particle from the
Fermi level of u
2 to the Fermi level of u
1 without a change
in energy. Indeed, the particle’s energy need not change for
the transition from the Fermi level of one band to the Fermi
level of the other band, thus the maximum momentum change
for such a process is kF2 + kF1 . For a given momentum q >

kF1 − kF2 , the energy upper bound for a transition from u
2 to
u
1 is ωmax =

√
(kF2 + q)2 + 
2

1 − μ. The process involves
a particle getting excited from the Fermi level of u
2 to
an unoccupied level of u
1 with the final direction being
the same as the initial one. On the other hand the lower
boundary (for q > kF1 + kF2 ) is set by transition involving
backscattering of a particle from the Fermi level of u
2 to
u
1 (with momentum change q − kF2 ) which requires ωmin =√

(kF2 − q)2 + 
2
1 − μ.

A lower, l
2 , to upper band u
1 transition requires the
particle to have energy ε in the range: μ − ω < ε < −
2.
Performing the angular integration of Eq. (5) yields

Im�lu
21(q,w) = −Re

⎡
⎣ 1√

ω2 − q2

∫ Ux

Lx

dx

8π

γ0 − (x + w1)2√
ξ 2

21 − x2

⎤
⎦,

where the limits of integration are Ux = 2(ω − μ) − ωγ21 and
Lx = 2
2 − ωγ21. Integrating the above equation we obtain
the following result:

Im�lu
21(q, ω) = − 1

4π

1√
ω2 − q2

×

⎧⎪⎨
⎪⎩

Glu
21(2(ω − μ) − ωγ21) − Glu

21(−ξ21) :1B

Glu
21(ξ21) − Glu

21(−ξ21) :2B

Glu
21(ξ21) − Glu

21(−ξ21) :3B

⎫⎪⎬
⎪⎭,

where

Glu
21(x) = 1

4

{[
2q2 + 2
2

d − ξ 2
21 − 2(ωγ21 − ω)2

]
tan−1

(
x√

ξ 2
21 − x2

)
+ [x − 4(ωγ21 − ω)]

√
ξ 2

21 − x2

}
. (8)

The nonzero regions in the (q, ω) plane are described by
the following equations

1B : μ + F
(
kF1 ,
2

)
< ω < μ + F

(− kF1 ,
2
)

2B : ω > μ + F
(− kF1 ,
2

)
3B :

√
q2 + 
2

s < ω < μ + F
(
kF1 ,
2

)
.

Unlike the transitions involving only the upper bands, q =
0 particle-hole transitions are now allowed for all frequencies
ω > μ +

√
k2

F1
+ 
2

2 (see the ω > q region in Fig. 2). As
q is increased, the threshold frequency given by ω = μ +√

(kF1 − q)2 + 
2
2 exhibits a downturn; these are realized by

processes involving a particle with momentum p < kF1 mov-
ing to the upper Fermi level while maintaining its initial direc-

tion. For the above process, the minimum allowed frequency
ω = μ + 
2 is reached for q = kF1 , where the transitioning
particle originally had momentum p = 0. Increasing q further,
the threshold frequency exhibits an upturn. The process now
involves a particle from l
2 moving to the upper Fermi level by
changing its initial direction. A further increase in q changes
the threshold frequency to ω = √q2 + 
2

s and is obtained by
minimizing

√
(p − q)2 + 
2

2 +
√

p2 + 
2
1 with respect to p.

Combining Im�uu
21 and Im�lu

21 yields the contribution to
the imaginary part of the polarization operator from the
2 → 1 processes represented as Im�21. In Fig. 3 we have
plotted Im�21 as a function of ω for two values of q. The
frequencies for which Im�21 vanishes represent regions for
which single p-h excitations are forbidden. For l
2 → u
1

transition (rightmost curves of Fig. 3), the threshold behavior
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FIG. 3. Plotted are Im�21 vs ω, where Im�21 is obtained by
adding the contributions Im�uu

21 and Im�lu
21. The two different q

values lie in the range: kF1 − kF2 < q = 1.25μ < kF1 + kF2 and kF1 +
kF2 < q = 2.25μ. The corresponding q values are represented by the
red and black dashed vertical lines in Fig. 2. Here and in subsequent
plots ω and � are in units of μ.

exhibits contrasting features depending on whether q is lesser
or greater than (
s +

√
μ2 − 
2

2 )/
1 (the value at which
ω = √q2 + 
2

s and ω = μ +
√

(q − kF1 )2 + 
2
2 curves inter-

sect). For q values greater than q∗ = (
s +
√

μ2 − 
2
2 )/
1

the threshold behavior exhibits a step jump (shown by the
black curve) to a finite value given by q2
1
2/


3
s , whereas

for lesser values of q it vanishes with the derivative acquiring a
square-root singularity at ω = μ +

√
(q − kF1 )2 + 
2

2 (shown
by the red curve). On the other hand, for u
2 to u
1 transition,
the threshold behavior at the upper edge of region 2A vanishes,
while the derivative diverges again with square-root singular-
ity. Moreover, inside the allowed regions the plot exhibits a
weak kink at various boundaries.

2. (�1 → �2) transition

Similar to the earlier discussed upper band transitions,
the transition from u
1 to u
2 are allowed for particles with
energy ε in the range: max[μ − ω,
1] < ε < μ. The major
difference is that now the particle-hole transitions are allowed
even for ω > q regions, albeit the phase space is much smaller
than the phase space for the dominant ω < q regions [see the
lower part of the (q, ω) plane in Fig. 4].

FIG. 4. Regions in the (q, ω) plane where 
1 → 
2 transitions
contribute to the imaginary part of the polarization function. Ã and
B̃ regions denote contributions from u
1 to u
2 and l
1 to u
2

transitions, respectively. Here μ′′ = √
k2

F2
+ 
2

1 .

The maximum allowed frequency for such a tran-
sition is given by ωmax = max[μ −

√
(kF2 − q)2 + 
2

1 ,√
(kF1 + q)2 + 
2

2 − μ]. The first term in the square bracket
is the energy μ −

√
(kF2 − q)2 + 
2

1 required for a collinear
transition of a particle from u
1 to the Fermi level of u
2 .
These transitions serve as the upper bound for frequency
at small momentum transfer. The second frequency term√

(kF1 + q)2 + 
2
2 − μ is due to the collinear transition of a

particle to u
2 originating from the Fermi level of u
1 . The
lower bound of frequency for the u
1 to u
2 transition include√

(kF1 − q)2 + 
2
2 − μ (collinear transition from the Fermi

level of the first band to the second band with the reduced mo-
mentum of the final particle) for momentum exchanges which
lie between 0 < q < kF1 − kF2. In the range kF1 − kF2 < q <

kF1 + kF2 the transition can take place without change in the
energy of the particle. While in the range kF1 + kF2 < q the
minimum energy required is

√
(kF1 − q)2 + 
2

2 − μ, which
involves a transition from the Fermi level of the first band
to a higher energy level of the second band with the final
momentum reversing its direction.

The contribution to the imaginary part of the polarization
function is as follows:

Im�uu
12(q, ω) = − 1

4π

1√
|q2 − ω2| ×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Guu
12(2μ + ωγ12) − Guu

12(2max[μ − ω,
1] + ωγ12) :1Ã

Guu
12(2μ + ωγ12) − Guu

12(ξ12) :2Ã

Ḡuu
12(2μ + ωγ12) − Ḡuu

12(2max[μ − ω,
1] + ωγ12) :3Ã

Ḡuu
12(ξ12) − Ḡuu

12(2max[μ − ω,
1] + ωγ12) :4Ã

Ḡuu
12(2μ + ωγ12) − Ḡuu

12(−ξ12) :5Ã

Ḡuu
12(ξ12) − Ḡuu

12(−ξ12) :6Ã

Ḡuu
12(2μ + ωγ12) − Ḡuu

12(−ξ12) :7Ã

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

where γ12 = 1 + 
s
d/(q2 − ω2), ξ12 =
√

q2γ 2
12 + 4q2
2

1/(q2 − ω2) and

Guu
12(x) = 1

4

{[− 2q2 − 2
2
d + ξ 2

12 + 2(ωγ12 − ω)2
]

log
(√

x2 − ξ 2
12 + x

)+ [x − 4(ωγ12 − ω)]
√

x2 − ξ 2
12

}
, (9)

155122-5



SURAJIT SARKAR AND SUHAS GANGADHARAIAH PHYSICAL REVIEW B 99, 155122 (2019)

Ḡuu
12(x) = 1

4

{[−2q2 − 2
2
d + ξ 2

12 + 2(ωγ12 − ω)2] tan−1

(
x√

ξ 2
12 − x2

)
− [x − 4(ωγ12 − ω)]

√
ξ 2

12 − x2

}
. (10)

The different allowed regions in the (q, ω) plane for the u
1 to u
2 transition (Fig. 4) are as follows,

1Ã : ω < μ − F
(
kF2 ,
1

)
,

2Ã : ±μ ∓ F
(
kF2(1) ,
1(2)

)
< ω < −μ + F

(− kF1 ,
2
)
,

3Ã : ω > q; & ω < μ − F
(
kF2 ,
1

)
; & ω > μ − F

(− kF2 ,
1
)
; & ω < −μ + F

(− kF1 ,
2
)
,

4Ã : ω > q; & ω < μ − F
(
kF2 ,
1

)
; & ω > μ − F

(− kF2 ,
1
)
; & ω > −μ + F

(− kF1 ,
2
)
,

5Ã : ω > q; & ω < −μ + F
(− kF1 ,
2

)
; & ω > −μ + F

(
kF1 ,
2

)
; & ω < μ − F

(− kF2 ,
1
)
,

6Ã : ω < μ − F
(− kF2 ,
1

)
; & ω > −μ + F

(− kF1 ,
2
)
,

7Ã : ω > q; & ω > μ − F
(
kF2 ,
1

)
; & w < −μ + F

(− kF1 ,
2
)
,

A lower band l
1 to upper band u
2 transition requires the particle to have energy ε in the range: μ − ω < ε < −
1. The
derivation of the threshold frequencies is very similar as for the case of l
2 to u
1 transition and are obtained by simply
exchanging the indices 1 � 2. The threshold frequency for small q has the form ω = μ +

√
(kF2 − q)2 + 
2

1 which changes
to ω =

√
q2 + 
2

s at the point of intersection of the two curves. The contribution to the imaginary part of the polarization
function is obtained to be:

Im�lu
12(q, ω) = − 1

4π

1√
ω2 − q2

×

⎧⎪⎨
⎪⎩

Glu
12(2(ω − μ) − ωγ12) − Glu

12(−ξ12) :1B̃

Glu
12(ξ12) − Glu

12(−ξ12) :2B̃

Glu
12(ξ12) − Glu

12(−ξ12) :3B̃

⎫⎪⎬
⎪⎭,

where,

Glu
12(x) = 1

4

⎧⎨
⎩[2q2 + 2
2

d − ξ 2
12 − 2(ωγ12 − ω)2

]
tan−1

⎛
⎝ x√

ξ 2
12 − x2

⎞
⎠+ [x − 4(ωγ12 − ω)]

√
ξ 2

12 − x2

⎫⎬
⎭. (11)

The nonzero regions in the (q, ω) plane (Fig. 4) are

1B̃ : μ + F
(
kF2 ,
1

)
< ω < μ + F

(− kF2 ,
1
)

2B̃ : ω > μ + F
(− kF2 ,
1

)
3B̃ :

√
q2 + (
2 + 
1)2 < ω < μ + F

(
kF2 ,
1

)
.

Figure 5 shows Im�12 = Im�uu
12 + Im�lu

12 plotted as a func-
tion of ω for three different values of q. The behavior for
l
1 → u
2 (rightmost curves of Fig. 5) transition is similar to
those considered in Fig. 3. In this case, the main change is in
the position of q value given by q∗ = (
s +

√
μ2 − 
2

1 )/
2

which separates the two threshold behaviors. As before, for
q values greater than it, the threshold behavior exhibits a
step jump to the same finite value q2
1
2/


3
s (shown by

the black curve), whereas for lesser q values the derivative
at the threshold diverges (shown by the red curve). Also,
for u
1 to u
2 transition, the threshold behavior at the upper
edge vanishes everywhere, while the derivative diverges with
square-root singularity. For the additional region shown in
the inset, at small ω and q < kF1 − kF2 , the threshold behav-
ior at both the edges exhibits square-root divergence of the
derivatives. It turns out that in this region the real part of
the polarization operator exhibits singular features, details of
which are provided in Sec. V. Finally to conclude this section,
Im�xx/yy is given by Im�xx/yy = Im�21 + Im�12. It is worth
mentioning that in the absence of electric field 
1 = 
2,
therefore Im�12 and Im�21 will be identical.

B. Imaginary part of χzz

For completeness we will discuss the result corresponding
to the case of intra- and interband transitions within the same

FIG. 5. Plotted are Im�12 vs ω, where Im�12 = Im�uu
12 +

Im�lu
12. Here we have chosen q values to be q = 0.95μ and 2.25μ,

and they lie in the following range: kF1 − kF2 < 0.95μ < kF1 + kF2

and kF1 + kF2 < q = 2.25μ (the q values are depicted by the red and
black dashed vertical lines in Fig. 4, respectively). The features are
very similar to those shown in Fig. 3, except here the discontinuities
in the slopes are more pronounced. In the inset we plot for q =
0.05μ, where 0.05μ < kF1 − kF2 ; this additional feature is unique to

1 → 
2 transitions.
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gap, i.e., 
i → 
i where i ∈ {1, 2} (results can alternatively
be obtained from the calculations of the charge susceptibil-
ity [31]). These give contributions to only Im�zz and as before

they arise due to u
i → u
i and l
i → u
i transitions. The
contribution to the imaginary part of the polarization function
from the u
i → u
i transitions is as follows,

Im�uu
ii (q, ω) = − 1

4π

1√
q2 − ω2

×
{

Guu
(
2μ + ω

)− Guu
(
2max[μ − ω,
i] + ω

)
:1A′

Guu
(
2μ + ω

)− Guu
(
ξ
)

:2A′

}
,

where ξ =
√

q2 + 4q2
2
i /(q2 − ω2), and Guu(x) = 1

4 {[ξ 2 − 2q2] log(
√

x2 − ξ 2 + x) + x
√

x2 − ξ 2}. (12)

The allowed regions for the transitions are (see Fig. 6)

1A′ : ω < μ − F
(
kFi ,
i

)
2A′ : ±μ ∓ F

(
kFi ,
i

)
< ω < −μ + F

(− kFi ,
i
)
.

Unlike the earlier two cases, the transitions within the same band allow the creation of particle-hole pairs having ω = 0 and
infinitesimally small momentum q.

The contribution from l
i → u
i transitions is

Im�lu
ii (q, ω) = − 1

4π

1√
ω2 − q2

×

⎧⎪⎨
⎪⎩

Glu(ω − 2μ) − Glu(−ξ ) :1B′

Glu(ξ ) − Glu(−ξ ) :2B′

Glu(ξ ) − Glu(−ξ ) :3B′

⎫⎪⎬
⎪⎭,

where

Glu(x) = 1

4

[
(2q2 − ξ 2) tan−1

(
x√

ξ 2 − x2

)
+ x
√

x2 − ξ 2

]

(13)

and the allowed regions in the (q, ω) plane are (see Fig. 6)

1B′ : μ + F
(
kFi ,
i

)
< ω < μ + F

(− kFi ,
i
)

2B′ : ω > μ + F
(− kFi ,
i

)
3B′ : ω >

(
2kFi

)
; &

√
q2 + (2
i )2 < ω < μ + F

(
kFi ,
i

)
.

Thus the K-valley contribution to Im�zz is given by∑2
i=1(Im�lu

ii + Im�uu
ii ); identical contribution arises from the

other valley. As an additional remark, we would like to point

FIG. 6. The A′ regions denote contributions from u
i → u
i ,
whereas B′ denote those from l
i → u
i . Note kFi = √μ2 − 
2

i .

out that in the scenario of vanishing electric field, the zz com-
ponent obtains identical contribution to xx/yy components.

V. REAL PART OF SPIN SUSCEPTIBILITY

The real part of spin susceptibility is evaluated from Eq. (5),
where some of the parts have been calculated with the help of
Kramers-Kronig technique and the rest via direct integration.
The Reχxx and Reχyy are identical and obtain contributions
from transitions involving 
1 → 
2 and vice versa, while

i → 
i (i = 1, 2) transitions yield contributions to Reχzz.
Details of the calculation are provided in the Appendix. In the
following two subsections we will limit our discussion to the
case of dynamic and static susceptibility.

A. Dynamic limit: q = 0

It is easy to show that for finite frequencies and q = 0,
Reχzz(q = 0, ω) vanishes identically due to the Fermi-
distribution terms in (5) (for α = α′) and form factor (6)
(for α = −α′). In contrast, Reχxx(0, ω) and Reχyy(0, ω) are
in general nonzero and exhibit interesting behavior in re-
gions where the corresponding imaginary part vanishes. In
the following, we will take a closer look into the different
contributions to the real part of the susceptibility. As before,
we will discuss the susceptibility in terms of the polarization
operator which differs by a sign.

The noninteracting real part of the polarization operator
(the xx and yy components) is split into three parts labeled
as Re�a, Re�b, and Re�c (details of the decomposition and
their derivation are given in Appendix 3). The first part, Re�a,
is independent of μ and takes on the value

Re �a(ω) = − 
2
d

4πω

{
log

[

s + ω

|
s − ω|
](

1 − 
2
s

ω2

)
+ 2
s

ω

}
,
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where 
d = 
2 − 
1 and 
s = 
1 + 
2. The second term, Re�b, is nonzero for μ > 
1 and obtains contribution from the
integrals containing nF (

√
p2 + 
2

1 − μ) and nF (
√

(p + q)2 + 
2
1 − μ) terms and is given by

Re�b(ω) = − 1

4π

{

2

d

(

2

s − ω2
)

2ω3

(
log

[(−
d
s − 2μω + ω2
)(−
d
s + 2ω
1 + ω2

)
(−
d
s + 2μω + ω2

)(−
d
s − 2ω
1 + ω2
)
])

− 2
d
s(μ − 
1)

ω2

}
. (14)

The third term denoted as Re�c obtains contribution from the integrals containing nF (
√

p2 + 
2
2 − μ) and

nF (
√

(p + q)2 + 
2
2 − μ) terms and exhibits log divergence. It has the following form,

Re �c(ω) = − 1

4π

{

2

d

(

2

s − ω2
)

2ω3

(
log

[(

d
s − 2μω + ω2

)(

d
s + 2ω
2 + ω2

)
(

d
s + 2μω + ω2

)(

d
s − 2ω
2 + ω2

)
])

+ 2
d
s(μ − 
2)

ω2

}
. (15)

Combining all the contributions, Re�(ω) = Re�a(ω) + Re�b(ω) + Re�c(ω), we obtain the following compact expression,

Re�(ω) = 
2
d

(
ω2 − 
2

s

)
8πω3

L(w), (16)

where

L(w) = log

[
(ω2 − 2μω)2 − 
2

d

2
s

(ω2 + 2μω)2 − 
2
d


2
s

]
.

For ω > 0, the real part of the susceptibility has singularities
at the following four frequencies, ω =

√
μ2 ± 
d
s + μ,

ω =
√

μ2 + 
d
s − μ, and ω = μ −
√

μ2 − 
d
s. Except
for the frequency ω =

√
μ2 + 
d
s + μ which is deep in

the particle-hole excitation spectrum, the remaining three
frequencies are exactly at the threshold of the particle-hole
region, i.e., the imaginary part of the susceptibility van-
ishes in the regions 0 < ω <

√
μ2 + 
d
s − μ and μ −√

μ2 − 
d
s < ω <
√

μ2 − 
d
s + μ.
As will be discussed shortly, two of the singularities,

one at ωL =
√

μ2 + 
d
s − μ and the other at ωU =√
μ2 − 
d
s + μ, are important from the point of view of

spin-collective excitations. The origin of the log divergence at
ωL can be attributed specifically to the integral

I ∝
∫

pd p

8π

⎡
⎣
⎛
⎝1 + p2 + 
1
2√

p2 + 
2
1

√
p2 + 
2

2

⎞
⎠

×
�
(√

μ2 − 
2
1 − p

)
w +

√
p2 + 
2

1 −
√

p2 + 
2
2

⎤
⎥⎦. (17)

Moreover, from the corresponding imaginary part of the inte-
gral it can be deduced that the processes responsible for the
contribution involve upper-band transitions from u
1 → u
2

(see Fig. 7). Similarly, the log divergence at ωU (correspond-
ing to the upper threshold for the single particle excitation) is
due to the integral

I ∝
∫

pd p

8π

⎡
⎣
⎛
⎝1 − p2 + 
1
2√

p2 + 
2
1

√
p2 + 
2

2

⎞
⎠

×
�
(√

μ2 − 
2
2 − p

)
w −

√
p2 + 
2

1 −
√

p2 + 
2
2

⎤
⎥⎦, (18)

where the contributions again arise from 
1 → 
2 transition,
however, l
1 and u
2 now correspond to the lower and upper
bands, respectively.

Turning on weak electron-electron interaction by includ-
ing the Hubbard term V = u∗ ∫ dxρ↑ρ↓ yields perturbative
corrections to the susceptibility for all frequencies, except
near the frequencies corresponding to log singularities. At the
nth order in interaction, the ladder diagram contributes the
strongest singularity with (n + 1)th power of the original log
singularity. Therefore, the susceptibility for frequencies near
the log singularities is described by taking into consideration
interactions to all orders. This entails summing up the ladder
series of the diagram yielding a modified form for the spin sus-
ceptibility. Similar to approaches obtained within the frame-
work of a molecular field or random phase approximation
(RPA), this implies the spin susceptibility gets renormalized
by the term 1/(1 + uχ (ω)) [55,56]. Interestingly, for frequen-
cies slightly lower than ωU and ωL, χ (ω) is purely real and

FIG. 7. The dotted line denotes 1/u, while the blue curve rep-
resents −Re�(ω). The collective excitation pole (near the lower
threshold) is given by the frequency at which they intersect. The red
line corresponds to the imaginary part of the polarization function,
where its boundaries are ωL = √μ2 − 
2

1 + 
2
2 − μ and ω̃L = μ −√

μ2 + 
2
1 − 
2

2.
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FIG. 8. The dashed-dotted line denotes the pole position as a
function of perpendicular electric field EZ for fixed interaction
u = 0.5, while the blue and red solid curves correspond to the
behavior of two lower threshold frequency ωL and ω̃L with electric
field, where in between the imaginary part of polarization function is
nonzero.

negative. This, coupled with the presence of log singularity at
ωU and ωL implies that a pole structure develops (irrespective
of how weak the interaction might be), the solution of which
corresponds to the spin-collective excitation frequency.

Solving the pole equations yields two solutions close to
the threshold frequencies (see Fig. 7 for solution near the
lower threshold) given by

ω1 = ωL − 2μ(μ′ − μ)(μ′ − μ′′ − 2μ)(μ′ + μ′′ − 2μ)

μ′(μ′ − μ′′)(μ′ + μ′′)

× exp

[
8π (μ′ − μ)3

u
[
(μ′ − μ)2 − 
2

s

]

d

]
, (19)

and a solution just below the upper threshold,

ω2 = ωU − 2μ(μ + μ′′)(μ′ − μ′′ − 2μ)(μ′ + μ′′ + 2μ)

μ′′(μ′ − μ′′)(μ′ + μ′′)

× exp
[ 8π (μ′ − μ)3

u
[
(μ′ − μ)2 − 
2

s

]

d

]
, (20)

where μ′ =
√

μ2 + 
d
s and μ′′ =
√

μ2 − 
d
s. We note
that in the absence of external electric field the two gaps 
1

and 
2 are identical, therefore the Re�(ω) vanishes identi-
cally and no pole solutions are possible. In Fig. 8 we show
the explicit dependence of the threshold frequencies ωL and
ω̃L and the lower pole position on the perpendicular electric
field EZ . For nonzero electric field, the slope of ωL and ω̃L

are 2EZ/
√

μ2 ± 4EZλSO, respectively, therefore the width of
the real region given by ω̃L − ωL grows wider with increasing
electric field. At the same time the slope of pole position for a
fixed interaction u is even lesser than the slope of ωL therefore
the width between the pole position and ωL also increases.

While the above discussion hints at the possibility of
collective excitations it turns out that the presence of the
sublattice degrees of freedom complicates the analysis. The
pole equation has its structure modified due to the presence
of τi type of terms in the Green’s function. Even though
�xx has only σx on either ends of the polarization bubble,
the vertex corrected (due to electron-electron interactions)

spin susceptibility acquires contributions from all τi’s. For
example, the lowest order vertex term ∝ u

∫
ĜP+QσxĜP has

τ dependence arising due to the Green’s function. In terms
of the vertex term � the interacting susceptibility, �int

xx , is
given by

�int
xx =

∫
P

Tr
[
σxĜP�0

xĜP+Q
]
, (21)

where � satisfies the equation:

�
β
j = σ jτβ − u

∫
ĜP�

β
j ĜP+Q, (22)

where we will use {1, 2, 3} interchangeably for {x, y, z}. For
the Hubbard-type interaction, � will be a function of Q only
and can be expressed as a linear combination of σkτγ (where
k, γ = 0 · · 3) [39]. We express �

β
j as

�
β
j = σkτγ M[4k+γ ]

[4 j+β], (23)

(where there is a summation on k and γ indices and the 16×16
matrix M is a function of only Q) in Eq. (22) and obtain(

σkτγ + u
∫

ĜPσkτγ ĜP+Q

)
M[4k+γ ]

[4 j+β] = σ jτβ. (24)

Multiplying both sides of Eq. (24) with σmτν and taking the
trace yields

(δm,kδν,γ + u

4
�̃

[4m+ν]
[4k+γ ] )M

[4k+γ ]
[4 j+β] = δm, jδν,β, (25)

where �̃ is the generalized noninteracting susceptibility
matrix whose elements are defined as �̃

[4m+ν]
[4 j+β] =

Tr[
∫

P σmτνĜPσ jτβĜP+Q]. The matrix M derived from
Eqs. (24) and (25) is given by M = (I + u�̃/4)−1. Thus
�int

xx acquires the form

�int
xx =

∫
P

Tr
[
σxĜPσkτγ M[4k+γ ]

[4] ĜP+Q
]
. (26)

We find that many of the elements of �̃(ω) matrix
exhibit ultraviolet divergence. We will illustrate one such
example; consider the �̃55 element given by �̃55(ω) =
Tr[
∫

P σ1τ1ĜPσ1τ1ĜP+Q]. Here the terms independent of the
chemical potential, i.e.,

I± ∝
∫

pd p

(
1 + 
1
2

E1(p)E2(p)

)
1

E1(p) + E2(p) ± ω
, (27)

obtain divergent contributions from the upper limit due to
the Dirac spectrum and necessitate one to consider nonlinear
terms arising from the exact energy spectrum. The divergence
of Eq. (16) is expected to be altered in the interacting version
�int

xx = ∫P Tr[σxĜP�0
xĜP+Q], however, we expect the collec-

tive excitations to survive.

B. Static limit: ω = 0

Following earlier discussion, the components of spin sus-
ceptibility that yield nonvanishing contributions are Re�zz

and Re�xx/yy. Re�zz can be conveniently decomposed into
the sum of Re�zz−1 + Re�zz−2 which are the contributions
from transitions involving 
i → 
i(i = 1, 2). For q < 2kFi ,
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Re�zz−i is a constant. Subtracting the constant part we obtain

δRe�zz−i =
⎡
⎣μ

√
q2 − (2kFi

)2
4πq

−
(
q2 − 4
2

i

)
8πq

× tan−1

⎛
⎝
√

q2 − (2kFi

)2
2μ

⎞
⎠
⎤
⎦�
(
q − 2kFi

)
. (28)

The above expression is identical to the charge susceptibility
case [20,31,32,52,54]. For large distances the zz component
of the spin susceptibility is given by

χzz−i(r) ∼
∫

dq
√

q
cos(rq − π/4)√

r
δ�zz−i(q). (29)

Taking into consideration that the first derivative of Re�zz−i

diverges at 2kFi as

Reδ�′
zz−i ≈ 
2

i

πμ
√

2kFi

1√
q − 2kFi

, (30)

the integral reduces to

χi(r) ∼
∫

dq
√

q sin(rq − π/4)

r3/2
√

q − 2kFi

. (31)

Thus one can deduce from simple power counting argu-
ments that at large distances the zz component of the spin-
susceptibility decays as 1/r2 and the contribution to exchange
interaction is oscillatory with two wavelengths given by π/kF1

and π/kF2 . For electric field strength equal to Ec
z = λSO/l ,


1 = 0 and therefore the first derivative of Re�zz−1 vanishes.
It is the second derivative which diverges at 2kF1 as Re�′′

zz−1 ≈
−(1/8π

√
kFi )/

√
q − 2kFi that determines the long distance

behavior of Reχzz−1. The susceptibility now acquires a faster
1/r3 decay. For μ > 
2 this behavior will be masked by
the slower 1/r2 decay arising due to Reχzz−2, however for
μ < 
2, only the 1/r3 term will survive.

Next consider the behavior of Re�xx/yy (details of the
derivation are given in Appendix 2). The terms which are
independent of the chemical potential yield regular contribu-
tions for all values of q given by

Re �a(q) = −
2
d + q2

4πq3

{[
q2 − 
2

s

]
tan−1

(
q


s

)
+ q
s

}
.

(32)

While from the integrals containing nF (
√

p2 + 
2
1 − μ) we

obtain

Re�b(q) =
⎧⎨
⎩

−μ−
1

2π
− sgn(q2+
2

2−
2
1 )

4πq [Y (μ) − Y (
1)], for q < kF1 − kF2 or q > kF1 + kF2 ,

−μ−
1

2π
− sgn(q2+
2

2−
2
1 )

4πq [Y (ξ ) − Y (
1)], for kF1 − kF2 < q < kF1 + kF2 ,

⎫⎬
⎭ (33)

where

Y (x) =
{

−2x
√

ξ 2 − x2 − tan−1

(
x√

ξ 2 − x2

)[
q2 − 2 ξ 2 + 
2

d

]}
. (34)

The remaining term arising from the integrals containing nF (
√

p2 + 
2
2 − μ) denoted by Re�c(q) is obtained by simply

changing 
1 to 
2 and vice versa in Eq. (33). The derivatives of both Re�b(q) and Re�c(q) diverge at qd = kF1 − kF2 and
qs = kF1 + kF2 (see Fig. 9). However, combining them together we find that the divergence at qd is canceled and that Re�xx/yy is
constant for q < qs, while the divergence at qs remains. Removing the constant part, the full expression for the static susceptibility
is given by

δRe�xx/yy(q) =
⎡
⎣μ

√(
q2 − q2

s

)(
q2 − q2

d

)
2πq2

−
(
q2 + 
2

d

)(
q2 − 
2

s

)
4πq3

tan−1

⎛
⎝
√(

q2 − q2
s

)(
q2 − q2

d

)
2μq

⎞
⎠
⎤
⎦�(q − kF1 − kF2 ).

The derivative of the polarization operator has a square-root
singularity at q = qs given by

δRe�′
xx/yy(q) ≈ −

√
kF1 kF2

[(
q2 + 
2

d

)(
q2 − 
2

s

)− 4μ2q2
s

]
4
√

2πμq7/2
s

√
q − qs

,

therefore the real space decay exhibits 1/r2 power-law depen-
dence at large distances while the oscillatory wavelength is
now given by 2π/qs = 2π/(kF1 + kF2 ). Rather interestingly,
for the xx and yy parts of the spin susceptibility, unless both
the gaps are equal (
1 = 
2), closing of one of the gaps does
not lead to vanishing of the singular behavior of the derivative
at kF1 + kF2 . Thus the 1/r2 power-law dependence at large
distances is maintained irrespective of the tuning of the gaps
by the electric field.

The real space analysis thus far yields the behavior of
spin-spin correlation function between spins that are widely
separated from each other and are delocalized on few sites.
The calculation of spin correlations thus entails disregarding
intervalley scattering and taking the trace of the sublattice
degrees of freedom. In contrast, the behavior of spin cor-
relations between two impurity spins that are localized on
specific sites of the lattice is given by a different version
of static spin susceptibility that also yields the Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction between the two
localized spins (see [42,57] for a detailed analysis for the
case of silicene). Due to the short-range nature of interactions
between the localized impurities and itinerant electrons, an
intervalley scattering of the electrons via large 2K momentum
exchange is allowed leading to additional contributions to
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FIG. 9. Here we consider the contributions to
Re�xx/yy(q, ω = 0). As in Appendix 2, we split the full integral
into Re�a, Re�b, and Re�c and examine their behavior. The
contribution from Re�a is smooth and continuous. The sharp
features of Re�b and Re�c at kF1 − kF2 come with opposite sign,
however, the kinklike features at kF1 + kF2 have the same sign and
when all three contributions are combined the features at kF1 + kF2

are enhanced while those at kF1 − kF2 cancel exactly.

the spin susceptibility. Moreover, the position of the spin
impurities (whether the two spins are on A-A/B-B sites or
A-B sites) also crucially determines the behavior of spin
correlations. In what follows, we will briefly discuss the
differences and similarities between the results arising from
these two different scenarios.

The effective interaction between two magnetic impurities
�Si and �S j (localized at sites �Ri and �Rj , respectively) is given
by HRKKY = −J2χ cd

αβSα
i Sβ

j [41,58], where there is a repeated
summation on only the spin indices α, β = x, y, z; the indices
c, d refer to the A or B sites and J is the interaction term
between the magnetic impurity and itinerant electrons. The
spin-susceptibility matrix has the form

χα,β (Ri j ) = 1

h̄

∫ ∞

0
Tr[σαG(i, j; τ )σβG( j, i; −τ )]dτ, (35)

where the trace is only over the spin degrees of free-
dom [41,58]. The Green’s function is a 4×4 matrix,

G(i, j; ±τ ) = ∓
∑

n

ψn( j)ψ†
n (i)e∓ε̃nτ�(±ε̃n), (36)

where n ∈ {η, p, s} is a summation on valley, momentum, and
spin degrees of freedom, ε̃n = εn − μ, and the wave functions
in the basis ψn = (ψA↑, ψB↑, ψA↓, ψB↓)T are given by

ψ(η,p,↑) = ei(ηK+p)Ri√
2εη↑(εη↑ + ν
η↑)

⎡
⎢⎣

pe−iηθ

νεη↑ + 
η↑
0
0

⎤
⎥⎦, (37)

and

ψ(η,p,↓) = ei(ηK+p)Ri√
2εη↓(εη↓ + ν
η↓)

⎡
⎢⎣

0
0

pe−iηθ

νεη↓ + 
η↓

⎤
⎥⎦, (38)

where ν = ±1 represents conduction/valence band, respec-
tively.

Let us for example consider χAA
xx and χAA

xy which are
obtained from the following integrals

χAA
xx =

∫ ∞

0

(
gAA

↑↑ ḡAA
↓↓ + gAA

↓↓ ḡAA
↑↑
)
dτ/h̄ (39)

and

χAA
xy = −i

∫ ∞

0

(
gAA

↑↑ ḡAA
↓↓ − gAA

↓↓ ḡAA
↑↑
)
dτ/h̄, (40)

where gAA
ss = eμτ

∑
η eiη �K .�Ri jAη,s and

Aη,s = − a2

4π

∫
p3d p�(εηs − μ)

εηs(εηs + 
ηs)
J0(p| �Ri j |)e−εηsτ . (41)

Similarly ḡAA
ss = e−μτ

∑
η e−iη �K .�Ri j Āη,s, where

Āη,s = a2

4π

∫ ∑
ν

p3d p�(μ − νεηs)

εηs(εηs + ν
ηs)
J0(p| �Ri j |)eνεηsτ .

Taking the product

gAA
↑↑ ḡAA

↓↓ =
∑
η,η′

ei(η−η′ ) �K .�Ri jAη,↑Āη′,↓, (42)

and

gAA
↓↓ ḡAA

↑↑ =
∑
η,η′

ei(η−η′ ) �K .�Ri jAη,↓Āη′,↑, (43)

we identify that the contributions can be classified into intra-
(η = η′) and intervalley (η = −η′) terms. While for χAA

xx the
intraterms add up, they cancel identically for χAA

xy . Similar
cancellation holds for χAB

xy . This result is consistent with
our earlier result (which takes into consideration only the
intraterms) regarding the vanishing of χxy term when con-
tributions from the valleys are added together. However due
to the intervalley scattering processes, χAB

xy and χAA
xy ob-

tain additional nonvanishing contributions. Another important
difference is that, besides the oscillatory dependence with
wave number 2π/(kF1 + kF2 ) due to the intravalley process,
the intervalley processes yield additional oscillatory depen-
dence on �R arising from terms of the type ei2η �K .�Ri jAη,↑Ā−η,↓
[see Eq. (42)].

VI. SUMMARY

In this paper, we have presented a detailed study of the spin
susceptibility for silicene that can be generalized to other
buckled honeycomb structured materials, e.g., germanene and
stanene which also exhibit an electric field tunable band
gap. We find that the simultaneous presence of the inversion
symmetric Kane-Mele mass term σ̂z ⊗ τ̂z and the inversion
symmetry breaking electric field term Î ⊗ τ̂z are responsible
for features in the spin susceptibility which are otherwise
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absent even if one of the terms is turned off. The two terms
conspire to break the band degeneracy at each of the valleys
and therefore, while the xx and yy components of the spin
susceptibility are identical, the zz component is different. The
xx and yy components obtain contributions from only those
electronic transitions for which the spins are flipped, while
the zz component obtains contributions from spin conserving
processes. Although the off-diagonal components of the spin
susceptibility, 0z and xy, are nonzero in individual valleys,
adding the contributions from the valleys leads to cancellation.

The study of the imaginary part of spin susceptibility
reveals regions in the (q, ω) plane where the single-particle
excitations are allowed. We find that the threshold behavior
for the lower- to upper-band transition is especially interesting
since its behavior changes upon increasing the value of q.
For q values smaller than a special momentum q∗ (as defined
in the main text) the threshold behavior exhibits a square-
root singularity in its derivative, whereas for q > q∗ the
susceptibility acquires a finite jump. We have investigated the
role of electric field EZ in extending the allowed regions for
particle-hole transitions. Electric field is also responsible for
yielding differing contributions for the 
1 → 
2 transitions
as compared to those from the 
2 → 
1 transitions.

We have studied the real part of spin susceptibility, with
particular emphasis on the dynamic and static limits. In the
dynamic limit, we show that the real part of spin susceptibility
exhibits log divergence. The origin of divergence at low fre-
quencies can be traced to the u
1 → u
2 transitions, whereas

those at high frequencies can be attributed to l
1 → u
2 tran-
sitions. We explore the significance of the divergence for spin-
collective excitations and the dependence of the excitations on
the external electric field. Interestingly, these excitations are
absent if either the spin-orbit term or the electric field term is
absent.

The study of the static part of the spin susceptibility reveals
Kohn anomaly at kF1 + kF2 for the xx/yy components of the
spin susceptibility, whereas for the zz component the anomaly
is present at 2kF1 and 2kF2 . At generic electric field strengths
the first derivative of the spin susceptibility has a square
root singularity, consequently, the long-distance signature of
the Kohn anomaly is revealed as 1/r2 decay of the spin
susceptibility. However, when the field strength is tuned to
Ec

z , the gap 
1 vanishes leading to a rather dramatic effect
on the behavior of the spin susceptibility in the zz channel.
The Kohn anomaly at 2kF1 is modified and results in a 1/r3

decay in the spin susceptibility. This decay feature becomes
prominent when the chemical potential is in between the 
1

and 
2 gap.
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APPENDIX

1. Derivation of Re �xx/yy(q, ω)

We will integrate the terms of Eq. (5) by first obtaining the contribution from 
1 → 
2 transition by taking β = +1 and
β ′ = −1 (for all possible values of α, α′ for the K valley). We divide the real part of polarization operator �(q,w) as follows,

A1 = −1

2

∫
d2 p

(2π )2

(
1 + �p1 · ( �p + �q)2

E1(p) · E2(p + q)

)[
nF [E1(p)]

−E1(p) + E2(p + q) − ω
− nF [E2(p + q)]

−E1(p) + E2(p + q) − ω

]

A2 = −1

2

∫
d2 p

(2π )2

(
1 − �p1 · ( �p + �q)2

E1(p) · E2(p + q)

)[
1

+E1(p) + E2(p + q) − ω
− nF [E2(p + q)]

+E1(p) + E2(p + q) − ω

]

A3 = −1

2

∫
d2 p

(2π )2

(
1 − �p1 · ( �p + �q)2

E1(p) · E2(p + q)

)[
nF [E1(p)]

−E1(p) − E2(p + q) − ω
− 1

−E1(p) − E2(p + q) − ω

]
,

where F 1,−1
xx/yy = 2, �p1/2 = pxê1 + ηpyê2 + 
1/2ê3, E1(p) =

√
p2 + 
2

1 , and E2(p) =
√

p2 + 
2
2 .

The first term of A2 and the second term of A3 yield terms that are independent of μ; we combine them together and represent
it as �12−a. Im�12−a is given by

Im �12−a(q, ω) = − 1
16�

(
ω2 − q2 − 
2

s

)
Y(q, ω), (A1)

where

Y(q, ω) = 1√
ω2 − q2

{[
q2 + 2
2

d

]+
[

2q2
(

2

1 + 
2
2

)− 2(
s
d )2

ω2 − q2

]
−
[

3q2(
s
d )2

(ω2 − q2)2

]}
. (A2)

We use the above result to calculate Re�12−a via the Kramers-Kronig relation:

Re �12−a(q, ω) = 1

π
P
∫ ∞

−∞
dω′ Im �12−a(q, ω′)

(ω′ − ω)
sgn(ω′) = − 1

16π
P

(∫ ∞

γ

dω′ Y(q, ω′)
(ω′ − ω)

−
∫ −γ

−∞
dω′ Y(q, ω′)

(ω′ − ω)

)

= − 1

16π
(�(q − ω) f (q, ω) + �(ω − q)g(q, ω)). (A3)
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The first integral is performed with the aid of the following variable change ω′ to x, where they are related via ω′=q(1+x2)/
(1 − x2). Similar transformation is used for the second integral.

For q > ω, the result of the integration is f (q, ω) which is expressed as a sum of three parts, f (q, ω) = f1(q, ω) + f2(q, ω) +
f3(q, ω) [corresponding to the square brackets of Y (q, ω)] and they are given by

f1(q, ω) = (q2 + 2
2
d

){ 2

(q + ω)

[
1

β̃1
tan−1

(
x

β̃1

)]
+ (ω → −ω)

}1

tan[γ ′/2]

f2(q, ω) = [2q2
(

2

1 + 
2
2

)− 2(
s
d )2
]{ 1

2(q + ω)q2

[
x − 1

β̃1
2
x

−
(
β̃1

2 + 1
)2

β̃1
3 tan−1

(
x

β̃1

)]
+ (ω → −ω)

}1

tan[γ ′/2]

f3(q, ω) =
{−3(
s
d )2

8(q + ω)q2

[
x3

3
− x
(
β̃1

2 + 4
)+ 4β̃1

2 + 1

β̃1
4
x

− 1

3β̃1
2
x3

+
(
β̃1

2 + 1
)4

β̃1
5 tan−1

(
x

β̃1

)]
+ (ω → −ω)

}1

tan[γ ′/2]

.

While for ω > q regions, the result is expressed in terms of g(q, ω), whereas before it is expressed as the sum of three parts,
g(q, ω) = g1(q, ω) + g2(q, ω) + g3(q, ω), which are given by

g1(q, ω) = (q2 + 2
2
d

){ −2

(q + ω)

[
1

β̃2
ln

(
x + β̃2

|x − β̃2|
)]

+ (ω → −ω)

}1

tan[γ ′/2]

g2(q, ω) = [2q2
(

2

1 + 
2
2

)− 2(
s
d )2
]{ −1

2(q + ω)q2

[
− x − 1

β̃2
2
x

+
(
β̃2

2 − 1
)2

β̃2
3 ln

(
x + β̃2

|x − β̃2|
)]

+ (ω → −ω)

}1

tan[γ ′/2]

g3(q, ω) =
{

3(
s
d )2

8(q + ω)q2

[
− x3

3
− x
(
β̃2

2 − 4
)+ 4β̃2

2 − 1

β̃2
4
x

− 1

3β̃2
2
x3

+
(
β̃2

2 − 1
)4

β̃2
5 ln

(
x + β̃2

|x − β̃2|
)]

+ (ω → −ω)

}1

tan[γ ′/2]

,

(A4)

where γ = √q2 + 
2
s , γ ′ = cos−1[q/γ ], β̃1

2 = (q − ω)/(q + ω), β̃2
2 = (ω − q)/(q + ω), and (ω → −ω) represent similar

terms with sign of ω changed.
As a next step, nF [E1(p)] terms from A1 and A3 are combined together and labeled as Re�12−b:

Re �12−b = −
∫

d2 p

(2π )2
nF [E1(p)]

{
E1(p) + ω

[E2(p + q)]2 − [E1(p) + ω]2
+
[ �p1 · ( �p + �q)2

E1(p)

]
1

[E2(p + q)]2 − [E1(p) + ω]2

}

= − 1

4π

⎧⎨
⎩
∫ μ


1

dE1√
ω2 − q2

⎡
⎣((2E1 + ω)2 − q2 − 
2

d

)
sgn[αb − E1]√

(2E1 + ωγb)2 − q2γ 2
b + 4q2
2

1
ω2−q2

⎤
⎦+ (μ − 
1)

⎫⎬
⎭

′

,

where γb = ( ω2−q2−
s
d

ω2−q2 ), αb = ( q2+
s
d −ω2

2ω
), and we have used

∫ 2π

0 dφ/(a + b cos φ) = 2π Sgn[a]/
√

a2 − b2 to perform the
angular integration. Due to the sgn function the result of the integration depends on the value of αb with respect to the upper and
lower limits; we obtain:

(i) αb > μ ⇒ Re �12−b = − 1

4π
�
[

1√
ω2 − q2

{Fb(2μ + ωγb) − Fb(2
1 + ωγb)} + (μ − 
1)

]

(ii) μ > αb > 
1 ⇒ Re �12−b = − 1

4π
�
[

1√
ω2 − q2

{Fb(2μ + ωγb) + Fb(2
1 + ωγb) − 2Fb(2αb + ωγb)}
]

(iii) αb < 
1 ⇒ Re �12−b = + 1

4π
�
[

1√
ω2 − q2

{Fb(2μ + ωγb) − Fb(2
1 + ωγb)} + (μ − 
1)

]
, (A5)

where � represents the real part of the corresponding function and

Fb(x) = 1
2

[(
ξ 2

b − 2
2
d − 2q2 + 2(ωγb − ω)2

)
log
(√

x2 − ξ 2
b + x

)+ (x − 4(ωγb − ω))
√

x2 − ξ 2
b

]

and ξb =
√

q2γ 2
b − 4q2
2

1
ω2−q2 .
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Finally the terms corresponding to nF [E2(p + q)] from A1 and A2 are combined together into Re �12−c:

Re �12−c =
∫

d2 p

(2π )2
nF [E2(p)]

{
ω − E2(p)

[E1(p + q)]2 − [E2(p) − ω]2
−
[

( �p + �q)1 · �p2

E2(p)

]
1

[E1(p + q)]2 − [E2(p) − ω]2

}

= − 1

4π

⎧⎨
⎩
∫ μ


2

dE2√
ω2 − q2

⎡
⎣((2E2 − ω)2 − q2 − 
2

d

)
Sgn[E2 − αc]√

(2E2 − ωγc)2 − q2γ 2
c + 4q2
2

2
ω2−q2

⎤
⎦+ (μ − 
2)

⎫⎬
⎭,

where γc = ( ω2−q2+
s
d

ω2−q2 ) and αc = ( ω2−q2+
s
d

2ω
). As before, due to the sgn function, the integral yields three different results

depending on the value of αc. They are

(i) αc > μ ⇒ Re �12−c = + 1

4π
�
[

1√
ω2 − q2

{Fc(2μ − ωγc) − Fc(2
2 − ωγc)} + (μ − 
2)

]

(ii) μ > αc > 
2 ⇒ Re �12−c = − 1

4π
�
[

1√
ω2 − q2

{Fc(2μ − ωγc) + Fc(2
2 − ωγc) − 2Fc(2αc − ωγc)}
]

(iii) αc < 
2 ⇒ Re �12−c = − 1

4π
�
[

1√
ω2 − q2

{Fc(2μ − ωγc) − Fc(2
2 − ωγc)} + (μ − 
2)

]
, (A6)

where

Fc(x) = 1
2

[(
ξ 2

c − 2
2
d − 2q2 + 2(ωγc − ω)2) log

(√
x2 − ξ 2

c + x
)+ (x + 4(ωγc − ω))

√
x2 − ξ 2

c

]
,

and ξc =
√

q2γ 2
c − 4q2
2

2
ω2−q2 .

Similar to the earlier derivation we will next integrate the terms of Eq. (5) by considering the contributions from 
2 → 
1

transition by considering β = −1 and β ′ = +1 (in the case of K valley), for all possible values of α and α′. As before, we divide
the real part of polarization operator �(q,w) as follows,

B1 = −1

2

∫
d2 p

(2π )2

(
1 + �p2 · ( �p + �q)1

E2(p) · E1(p + q)

)[
nF [E2(p)]

−E2(p) + E1(p + q) − ω
− nF [E1(p + q)]

−E2(p) + E1(p + q) − ω

]

B2 = −1

2

∫
d2 p

(2π )2

(
1 − �p2 · ( �p + �q)1

E2(p) · E1(p + q)

)[
1

+E2(p) + E1(p + q) − ω
− nF [E1(p + q)]

+E2(p) + E1(p + q) − ω

]

B3 = −1

2

∫
d2 p

(2π )2

(
1 − �p2 · ( �p + �q)1

E2(p) · E1(p + q)

)[
nF [E2(p)]

−E2(p) − E1(p + q) − ω
− 1

−E2(p) − E1(p + q) − ω

]
,

The first term of B2 and the second term of B3 yield terms that are independent of μ; we combine them together and represent
it as Re �21−a. Performing the following change of variables p + q → p and p → −p it is easy to show that Re�21−a(q, ω) =
Re�12−a(q, ω). The combined contribution represented as Re�a is thus given by Re�a = Re�21−a(q, ω) + Re�12−a(q, ω).

Similar to the evaluation of Re �12−b, we combine terms corresponding to nF [E1(p + q)] from B1 and B2 and denote the
contributions as Re �21−b. A change of variables as above yields

Re �21−b(q, ω) = −
∫

d2 p

(2π )2
nF [E1(p)]

{
E1(p) − ω

[E2(p + q)]2 − [E1(p) − ω]2
+
[ �p1 · ( �p + �q)2

E1(p)

]
1

[E2(p + q)]2 − [E1(p) − ω]2

}
,

thus Re �21−b(q, ω) = Re �12−b(q,−ω). The total contribution is Re �b(q, ω) = Re �12−b(q, ω) + Re �21−b(q, ω). Follow-
ing essentially the same arguments we obtain Re �21−c(q, ω) = Re �12−c(q,−ω), thus Re �c(q, ω) = Re �12−c(q, ω) +
Re �21−c(q, ω). Therefore, the full result for Re�xx/yy is

Re�xx/yy(q, ω) = Re�a(q, ω) + Re�b(q, ω) + Re�c(q, ω). (A7)

2. Re �xx,yy(q, ω = 0)

We will use the expression of Re�xx,yy(q, ω) as given in Appendix 1 to obtain the ω = 0 limit. As before, Re�xx,yy can be
expressed as the sum of three components, Re�xx,yy(q) = Re�a(q) + Re�b(q) + Re�c(q). The results of the calculations for
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the individual terms are as follows. The integral without the chemical potential term is given by

Re �a(q) = − 1

8π
( f1 + f2 + f3), (A8)

where the lower limit on all three integrals are l = tan[ 1
2 cos−1 ( q√

q2+
2
s

)],

f1(q, 0) = 4

q

[
q2 + 2
2

d

]
[tan−1(x)]1

l , (A9)

f2(q, 0) = 1

q3

[
2q2(
2

1 + 
2
2

)− 2(
s
d )2][x − 1

x
− 4 tan−1(x)

]1

l

,

f3(q, 0) = −3(
s
d )2

4q3

[
x3

3
− 5x + 5

x
− 1

3x3
+ 24 tan−1(x)

]1

l

. (A10)

Combining them together we obtain, Re �a(q) = −
2
d +q2

4πq3 {[q2 − 
2
s ] tan−1 ( q


s
) + q
s}.

Re�b(q) includes contributions from all integrals that have nF [E1(p)] and nF [E1(p + q)] terms:

Re �b(q) = − 1

2π

{
μ − 
1 +

∫ μ


1

dx

2q

[
4x2 − q2 − 
2

d

]
sgn(q2 + 
s
d )√

ξ 2 − x2

}
, (A11)

where ξ =
√

(q2+
s
d )
2+4q2
2

1

4q2 . The result of the integration is given in Eq. (33) of the main text. The last term, Re�c(q), includes

contributions from all integrals containing nF [E2(p)] and nF [E2(p + q)] terms and is given by

Re �c(q) = − 1

2π

{
μ − 
2 +

∫ μ


2

dx

2q

[
4x2 − q2 − 
2

d

]
sgn(q2 − 
s
d )√

ξ 2 − x2

}
. (A12)

The final result for Re �c(q) is obtained from Re �b(q) by exchanging 
1 with 
2 and vice versa. Adding together the
three terms we find that the static part of the polarization function has a constant value for q < kF1 + kF2 , while the change
in polarization function from the constant value for q > kF1 + kF2 is given by

δ[Re�xx,yy(q)] = 1

2π

⎡
⎣μ

√(
q2 − q2

d

)(
q2 − q2

s

)
q2

−
(
q2 + 
2

d

)(
q2 − 
2

s

)
2q3

tan−1

⎛
⎝
√(

q2 − q2
d

)(
q2 − q2

s

)
2μq

⎞
⎠
⎤
⎦, (A13)

where qs = kF1 + kF2 and qd = kF1 − kF2 .

3. Derivation of Re �xx,yy(q = 0, ω)

The Im �a(ω) term with contributions from both 
1 → 
2 and 
2 → 
1 transitions is given by

Im �a(ω) = −1

8
�
(
ω2 − 
2

s

)
Y(ω); Y(ω) = 2
2

d

ω

[
1 − 
2

s

ω2

]
. (A14)

Utilizing the Kramers-Kronig relation we obtain for Re �a(ω)

Re �a(ω) = 1

π
P
∫ ∞

−∞
dω′ Im �a(ω′)

(ω′ − ω)
sgn(ω′) = − 
2

d

4πω

{
log

[

s + ω

|
s − ω|
](

1 − 
2
s

ω2

)
+ 2
s

ω

}
.

A direct integration by considering contributions from the integrals containing nF (E1) term yields

Re �b = −
∫

d2 p

(2π )2
nF [E1(p)]

{
E1(p) + ω

[E2(p)]2 − [E1(p) + ω]2
+
[ �p1 · �p2

E1(p)

]
1

[E2(p)]2 − [E1(p) + ω]2

}
+ [ω → −ω]

= − 1

4π

{∫ μ


1

dE1

[
(2E1 + ω)2 − 
2

d


s
d − ω2 − 2E1ω

]
+ [ω → −ω]

}
− (μ − 
1)

2π

= − 1

4π

{

2

d (
2
s − ω2)

2ω3

(
log

[
(−
d
s − 2μω + ω2)(−
d
s + 2ω
1 + ω2)

(−
d
s + 2μω + ω2)(−
d
s − 2ω
1 + ω2)

])
− 2
d
s(μ − 
1)

ω2

}
. (A15)
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Similarly, nF (E2) term yields a contribution to Re �c given by

Re �c = −
∫

d2 p

(2π )2
nF [E2(p)]

{
E2(p) − ω

[E1(p)]2 − [E2(p) − ω]2
+
[ �p1 · �p2

E2(p)

]
1

[E1(p)]2 − [E2(p) − ω]2

}
+ [ω → −ω]

= − 1

4π

{∫ μ


2

dE2

[
(2E2 − ω)2 − 
2

d

−
s
d − ω2 + 2E2ω

]
+ [ω → −ω

]}− (μ − 
2)

2π

= − 1

4π

{

2

d

(

2

s − ω2
)

2ω3

(
log

[
(
d
s − 2μω + ω2)(
d
s + 2ω
2 + ω2)

(
d
s + 2μω + ω2)(
d
s − 2ω
2 + ω2)

])
+ 2
d
s(μ − 
2)

ω2

}
. (A16)
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