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The hydrodynamic description of the Fermi arc surface states is proposed. In view of the strong suppression of
scattering on impurities, the hydrodynamic regime for Fermi arc states should be, in principle, plausible. By using
the kinetic theory, the Fermi arc hydrodynamics is derived and the corresponding effects on the bulk flow and
surface collective modes are studied. For the bulk flow, the key effect of the proposed Fermi arc hydrodynamics
is the modification of the corresponding boundary conditions. In a slab geometry, it is shown that, depending on
the transfer rates between the surface and bulk, the hydrodynamic flow of the electron fluid inside the slab could
be significantly altered and even enhanced near the surfaces. As to the spectrum of the surface collective modes,
in agreement with earlier studies, it is found that the Fermi arcs allow for an additional gapless spectrum branch
and a strong anisotropy of the surface plasmon dispersion relations in momentum space. The gapped modes are
characterized by closed elliptic contours of constant frequency in momentum space.
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I. INTRODUCTION

Weyl semimetals are materials with a relativisticlike en-
ergy spectrum in the vicinity of isolated Weyl nodes in the
Brillouin zone. (For recent reviews on Weyl semimetals, see
Refs. [1–3].) The nodes have nonzero topological charges
with the monopolelike Berry curvature [4] and always occur
in pairs of opposite chirality [5,6]. In each pair, the Weyl
nodes can be separated in energy and/or momentum, which
indicates breaking of the parity-inversion (PI) and/or time-
reversal (TR) symmetries, respectively. The nontrivial topol-
ogy and the relativisticlike nature of quasiparticles also affect
the transport properties of Weyl semimetals, e.g., leading
to a negative longitudinal magnetoresistivity that was first
predicted in Ref. [7]. (For recent reviews of the transport
phenomena, see Refs. [8–10].)

The nontrivial bulk topology of Weyl semimetals is also
reflected in unusual surface states known as the Fermi arcs
[11]. Unlike surface states in ordinary materials, the Fermi
arcs form open segments in momentum space that connect
Weyl nodes of opposite chirality [11,12]. The surface states
in Weyl semimetals were first observed via the angle-resolved
photoemision spectroscopy [2,13–18] and reconfirmed later
by the observation of the quasiparticle interference patterns
[19–22]. It is important to note that the energy dispersion
of the Fermi arc states is effectively one dimensional and
linear (see, e.g., Ref. [23]). This may suggest that their
transport properties are similar to that of the one-dimensional
chiral fermions and should be nondissipative. However, as
we showed in Ref. [24], the Fermi arc transport is, in fact,
dissipative because of the scattering between the surface and
bulk states in Weyl semimetals. The dissolution of Fermi
arcs in the presence of strong disorder was also confirmed
numerically in Refs. [25,26].

Electronic collective excitations provide additional power-
ful probes of the nontrivial properties of Weyl semimetals.
The topology is imprinted, for example, in anomalous heli-
cons [27], surface plasmon polaritons [28,29], chiral magnetic
plasmons [30–32], etc. The effect of the Fermi arcs on the
surface plasmons was studied in Refs. [33–35]. The authors of
Ref. [33] employed a simple phenomenological model valid
in the long-wavelength limit. The hybridization of the Fermi
arc states and conventional surface plasmons is controlled via
the anomalous Hall conductivity and a phenomenologically
included Drude weight. Further, the surface plasmon excita-
tion spectrum in Weyl semimetal within the random-phase
approximation was determined in Ref. [35]. The treatment of
the surface plasmons in Ref. [34] is more sophisticated and is
based on the direct quantum-mechanical calculations. Despite
the difference in their approaches, studies in Refs. [33,34]
predict the open hyperbolic constant-frequency contours for
the surface plasmons. The nontrivial patterns of the surface
plasmons can be measured by the scattering-type near-field
optical spectroscopy (for a recent review, see Refs. [36,37])
as well as the momentum-resolved electron energy-loss spec-
troscopy (see, e.g., Refs. [38,39] and the references therein).
Experimentally, the electron energy loss in Weyl semimetals
was recently studied in Ref. [40].

Since Weyl semimetals are typically characterized by low-
impurity scattering rates (see, e.g., Refs. [3,9,41–43] for the
scattering rates and crystal quality estimations), one might
suggest that a hydrodynamic regime of electron transport
could be eventually realized in many such materials. Orig-
inally, the possibility of such a regime for charge carriers
in sufficiently clean solids was discussed in the pioneering
papers by Gurzhi [44,45]. Electron hydrodynamics requires
that the electron-electron scattering rate dominates over the
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electron-impurity and electron-phonon ones. Recently, such a
regime was experimentally confirmed in the Weyl semimetal
tungsten diphosphide (WP2) [46], where the characteristic
quadratic dependence of the electrical resistivity on the cross
section of the wire as well as a strong violation of the
Wiedemann-Franz law were observed.

Theoretically, the nontrivial topological properties of Weyl
semimetals, connected with the energy and momentum sep-
arations between Weyl nodes, are taken into account in the
recently proposed framework of consistent hydrodynamics
[47]. The latter includes several types of Chern-Simons contri-
butions in the electric current and charge densities that affect
not only the electron transport in Weyl semimetals [48,49], but
also their various collective excitations [47,50]. It is natural
to ask, therefore, whether the hydrodynamic regime could be
also realized for the Fermi arc electrons and, if so, how it
would affect the bulk electron fluid.

A low sensitivity of the surface Fermi arc states to disorder
makes them promising candidates to sustain a surface electron
fluid in Weyl semimetals. If this is indeed the case, the
Fermi arcs could realize not only the “Fermi level plumb-
ing” [12], but act as true aqueducts for the surface electron
fluid. Because of the inevitable surface-bulk transitions and
interactions, of course, such a surface electron fluid should be
necessarily coupled to the bulk one.

In this study, we derive the hydrodynamic equations for
the surface Fermi arc states from the kinetic theory and
phenomenologically describe the corresponding surface-bulk
coupling. Our principal finding is that the Fermi arc electron
liquid modifies the boundary conditions for the bulk one.
Depending on the coupling parameters, the bulk flow in
a slab of finite thickness could be noticeably altered and
even enhanced near the surface. In addition, we study the
surface collective modes in the hydrodynamic approximation.
In agreement with the earlier studies [33–35], the presence
of the Fermi arcs is manifested in a strongly anisotropic
dispersion relation of the surface plasmons. Additionally, we
find that while the constant-frequency contours of the surface
modes are given only by the elongated ellipses, the open
hyperbolic contours correspond to the bulk modes hybridized
with the surface excitations similarly to the usual semi-infinite
plasma [51]. Finally, there is also a gapless surface mode,
which is related exclusively to the Fermi arcs. While such
a mode resembles a conventional surface acoustic plasmon
[52], which also has a linear dispersion relation, the Fermi
arc mode is different and its frequency is determined by the
surface dispersion relation. These qualitative effects can be
potentially used to experimentally verify the realization of the
electron hydrodynamics in Weyl semimetals.

Our paper is organized as follows. In Sec. II, we introduce
the phenomenological hydrodynamic model of the Fermi arcs
and discuss the coupling of the surface and bulk electron
fluids. The explicit realization of the coupling is given and
the effects of the surface states on the hydrodynamic flow
are studied in Sec. III. Section IV is devoted to the investi-
gation of the surface collective modes in the hydrodynamic
approximation. Our results are discussed and summarized in
Sec. V. Technical details, including the derivation of the Fermi
arc hydrodynamic equations and some auxiliary formulas, are

given in Appendices A and B, respectively. Throughout this
paper, we set the Boltzmann constant kB = 1.

II. MODEL

In order to derive the hydrodynamic equations for the
Fermi arc quasiparticles, we start from the kinetic theory. As
usual [53,54], the Euler equation is obtained by calculating the
appropriate moments of the kinetic equation. In the presence
of an electric field E, the latter reads as

∂t f (FA) − eE · ∂p f (FA) + v(FA)
p · ∇ f (FA) = I (FA)

coll , (1)

where −e is the electron charge, p = (px, pz ) is the two-
dimensional momentum of the surface quasiparticles, and
I (FA)
coll denotes the collision integral, whose effects on the Fermi

arcs will be discussed later. In the hydrodynamic regime, the
distribution function describes local equilibrium, i.e.,

f (FA) = δ(y − ys)
1

1 + exp
(

ε
(FA)
p −(u(FA)·p)−μ

T

) , (2)

where ys denotes the surface coordinate, s labels the bottom
(s = +) and top (s = −) surfaces, u(FA) is the Fermi arc
fluid velocity, μ is the electric chemical potential, and T is
temperature. For a slab of finite thickness Ly, the coordinates
of the top and bottom surfaces will be fixed at y− = Ly and
y+ = 0, respectively. Here, for simplicity, we assume that the
Fermi arcs are strongly localized at the sample’s boundaries
and, therefore, the dependence of the distribution function on
the transverse coordinate can be modeled by the δ functions.

Further, we assume that the Weyl semimetal has a broken
TR symmetry and contains two Weyl nodes separated by 2b
along the z direction in momentum space. Then, assuming a
simple model (see, e.g., Ref. [23]), the dispersion relation for
the Fermi arc states reads as

ε (FA)
p = svF px, (3)

where vF is the Fermi velocity. The linear energy dispersion
implies that the Fermi arc quasiparticles have a constant
velocity

v(FA)
p = ∂pε

(FA)
p = svF x̂ (4)

parallel to the x axis. Therefore, it is reasonable to assume
that their hydrodynamical velocity u(FA) also points in the x
direction. In other words, there is no hydrodynamic flow due
to the Fermi arcs in the z direction. Of course, the same is
true for the surface electric current, which can only flow along
v(FA)

p [see Eq. (A15) in Appendix A 2]. We note that this is
qualitatively different from the setup in Ref. [33], where a
diffusive surface transport along the z direction was allowed.

The derivation of the hydrodynamic equation for the Fermi
arc electron fluid is given in Appendix A. In the inviscid
limit, which might be justified in the case of relatively small
electron-electron collision times, the Euler equation for the
surface hydrodynamic velocity reads as

(∂t + svF ∂x )
sw(FA)

vF

(
1 + 2

u(FA)
x

svF

)

+ en(FA)

(
1 + u(FA)

x

svF

)
Ex = I (FA)

s , (5)
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where I (FA)
s stems from the collision integral I (FA)

coll and de-
scribes the surface-bulk transitions. The enthalpy and the
fermion-number density of the Fermi arc states in equilib-
rium are derived in Appendix A 2. Their explicit expressions
read as

w(FA) = b

4π2vF h̄

(
μ2 + π2T 2

3

)
, (6)

n(FA) = μb

2π2vF h̄
. (7)

Now, let us briefly discuss the bulk hydrodynamics. In the
absence of external magnetic fields and vorticity, the Navier-
Stokes equation for the quasiparticles in a Weyl semimetal
reads as [48,55]

∂t
w

v2
F

u − η�u −
(
ζ + η

3

)
∇(∇ · u) + ∇P + enE

+ w

v2
F τ

u = Isurf . (8)

Here, w = ε + P is the bulk enthalpy, ε is the bulk energy
density, P is the pressure, u is the bulk fluid velocity, n
is the bulk fermion-number density, η and ζ are the shear
and bulk dynamic viscosities, respectively. Note that, in the
global equilibrium state without background electromagnetic
fields and with vanishing fluid velocity, the energy density, the
pressure, and the fermion-number density take the following
explicit forms:

ε = 15μ4 + 30π2T 2μ2 + 7π4T 4

60π2h̄3v3
F

, (9)

P = ε

3
, (10)

n = μ(μ2 + π2T 2)

3π2h̄3v3
F

. (11)

In relativisticlike systems, the shear and bulk viscosities can
be estimated as η = wτee/4 (see, e.g., Refs. [46,56]) and ζ ≈
0 [53]. In our study, we use the electron-electron collision time
τee = h̄/T , which is consistent with the experimental findings
in Ref. [46].

Compared to the conventional Navier-Stokes equation
[57], Eq. (8) contains a few additional contributions. While
the penultimate term on the left-hand side accounts for the
charged nature of the electron fluid and describes the electrical
force, the term inversely proportional to the relaxation time
τ is the hallmark feature of the electron hydrodynamics in
solids [45]. It comes from the electron scattering on phonons
and impurities and, as is clear from its explicit dependence on
the fluid velocity, breaks the Galilean invariance. As for the
term on the right-hand side of Eq. (8), it describes the transfer
of momentum between the surface and bulk fluids. By taking
into account that the Fermi arcs are localized on the surface,
it can be modeled as follows:

Isurf = −
∑
s=±

δ(y − ys)I (FA)
s x̂. (12)

The inclusion of this source term in Eq. (8) implies that
the boundary conditions (BCs) for the electron fluid should
be modified. Instead of the usual free-surface BCs, the fluid

velocity and its derivatives should satisfy the following BCs
at y = ys:

η∂yux(ys) +
(
ζ + η

3

)
∂xuy(ys) = sI (FA)

s . (13)

Additionally, the normal components of the electron fluid
velocity should vanish on both surfaces, i.e.,

uy(ys) = 0. (14)

In order to illustrate the nontrivial effects of the Fermi arcs, we
will also consider the benchmark case, where the chiral shift
is absent or directed normal to the surfaces of the slab. In such
a simplified setup, there are no Fermi arc surface states and
the BCs for the bulk fluid velocity take the standard no-slip
form, i.e.,

ux(ys) = 0 (15)

or the free-surface form, i.e.,

∂yux(ys) = 0. (16)

Since the Fermi arc fluid velocity affects only the x component
of the bulk flow, the z component of the bulk fluid veloc-
ity always satisfies the standard no-slip or free-surface BCs
similar to those in Eqs. (15) or (16). As we argue below, this
benchmark case is useful to identify the effects of the Fermi
arcs on the hydrodynamic flow without making any a priori
assumptions about the state of the surface.

It is worth noting that the Navier-Stokes equation should
be amended by the energy conservation relation as well as
the electric current continuity relation. While the latter has
a profound effect on both the charge transport and collective
excitations, the former is important only for the thermoelectric
effects and can usually be neglected in electron transport [57].
In general, however, the effect of the energy conservation on
the electron hydrodynamics may become important when the
fluid velocity is not small compared to the speed of sound vsd

(note that vsd is close to vF /
√

3 in relativisticlike systems).
Therefore, in what follows, we will assume that |u| � vsd and
the energy conservation relation can be ignored.

The electric current continuity relations for the surface and
bulk states read as

∂tρ
(FA)
s + ∇⊥ · J(FA)

s = Q(FA)
s , (17)

∂tρ + ∇ · J = −
∑
s=±

δ(y − ys)Q(FA)
s , (18)

respectively. Here, Q(FA)
s describes the electric charge transfer

between the bulk and surface states of the semimetal. Further,
ρ (FA)

s = −en(FA)(1 + su(FA)
x /vF ) is the surface electric charge

density and ρ = −en is the bulk one. The surface and bulk
electric currents are given by

J(FA)
s = svF ρ (FA)

s x̂, (19)

J = −enu + σE − e2[b × E]

2π2h̄
, (20)

respectively. The explicit expressions for the Fermi arc charge
and current densities are derived in Appendix A 2. Note that
the expression for the bulk current (20) includes the intrinsic
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conductivity σ , which was discussed in the holographic ap-
proach in Refs. [58–62]. While σ is important for the correct
description of the normal flow in the presence of a nonzero
chiral shift [48], it plays no role in the longitudinal flow. The
last term in Eq. (20) corresponds to the anomalous Hall effect
[63–69], where b = bẑ is the chiral shift.

By integrating Eq. (18) in the vicinity of the surfaces,
we obtain the following boundary condition for the normal
component of the bulk current:

Jy(ys) = −sQ(FA)
s . (21)

Formally, this implies that, because of the transitions between
the surface and bulk states, the normal component of the bulk
current does not vanish on the surface.

Before concluding this section, it is instructive to sum up
the general features of the surface and bulk flows, as well as
to reiterate the critical role that the BCs play in their interplay.
The surface u(FA)

x and bulk u fluid velocities are determined
by the hydrodynamic equations (5) and (8), respectively. The
bulk equation should be also supplemented by the appropriate
BCs for the normal component of the fluid velocity [see
Eq. (14)] as well as the BCs for the tangential components
[see Eqs. (13) or, in the absence of the Fermi arcs, Eqs. (15)
and (16)]. In addition, as we will see below, the study of the
longitudinal flow requires specifying either the Fermi arc fluid
velocity at some contacts or an explicit form of the transfer
terms. In our study, we use the latter option that allows for a
self-consistent determination of the surface fluid velocity as
well as the bulk flow. As for the collective excitations, the
use of the continuity relations (17) and (18) will be needed
in order to determine the evolution of the electric charge.
In this connection, it should be emphasized that, because of
the presence of the surface states, the normal component of
the bulk electric current (21) does not, in general, vanish
at the boundary.

III. HYDRODYNAMIC FLOW

In this section, we investigate a steady hydrodynamic flow
in a slab of finite width in the y direction and infinite in the x
and z directions. We assume that the slab is sufficiently thick
so that the interaction between the Fermi arcs on the opposite
surfaces y+ = 0 and y− = Ly is negligible and the arcs could
be considered as independent. At the same time, the thickness
should be small enough in order for the surface flow to have
a noticeable effect on the net hydrodynamic flow. Without
loss of generality, we also assume that a uniform background
electric field is applied in the x direction. Note that this is
the same setup that we used in Ref. [48], where, however, the
effects of the Fermi arcs were not taken into account.

Since the bulk electron fluid couples to the surface states,
the transfer term on the right-hand side in Eq. (5) plays an
important role in the hydrodynamic flow. We model it as
follows:

I (FA)
s = −w(FA)u(FA)

x

v2
F τsb

+ αwux(ys)

vF
. (22)

Here, the first term describes the transitions from the surface
to the bulk with the rate determined by the relaxation time τsb.
The second term corresponds to the inflow from the bulk to the

surface, where the rate is parametrized by a small numerical
coefficient α. These terms are derived by using the relaxation
time approximation in Appendix A 3 [see Eqs. (A12) and
(A13)]. For the surface to bulk transfer term, the relaxation
time approximation might be indeed physical because the
dissipation of the Fermi arc states is primarily due to the
surface to bulk scatterings [24]. In the hydrodynamic picture,
this corresponds to the outflow into the bulk. As for the bulk
to surface transfer term, it is estimated in a similar way.
In general, the transfer terms in Eq. (22) can be viewed as
the leading terms in the gradient expansion about the global
equilibrium state.

Taking into account that the right-hand sides of the bulk
Navier-Stokes (8) and continuity (18) equations are nonzero
only at the surfaces of the slab, it is reasonable to take them
into account only via the BCs. In particular, we will use
Eq. (13) for the velocity on the surface and Eq. (21) for
the normal component of the current. Since the latter is not
important for the longitudinal hydrodynamic transport, there
is no need to specify the explicit form of the transfer term
Q(FA)

s . Therefore, the steady longitudinal flow in the bulk is
described by the following equation:

η∂2
y ux(y) − enEx − w

v2
F τ

ux(y) = 0. (23)

Here, as in Ref. [48], we omitted ∇P in the flow equation. In
view of the slab’s geometry, there is no dependence on x and
z. Then, the general solution to Eq. (23) reads as

ux(y) = C1eλxy + C2e−λxy − env2
F τEx

w
, (24)

where λx =
√

w/(ηv2
F τ ) and the constants C1 and C2 are

determined by the BCs. In particular, Eq. (13) takes the form

sη∂yux(ys) = ux(ys)
αw

vF

[
1 − w(FA)

vF τsb

(
sen(FA)Ex + w(FA)

vF τsb

)−1
]

+ en(FA)Exw
(FA)

vF τsb

(
sen(FA)Ex + w(FA)

vF τsb

)−1

, (25)

where we used the following expression for u(FA)
x obtained

from Eqs. (5) and (22):

u(FA)
x (ys) = −[vF en(FA)Ex − αwux(ys)]

×
(

sen(FA)Ex + w(FA)

vF τsb

)−1

. (26)

It is instructive to consider the following two limiting cases:
(i) no transfer of electrons from the surface to the bulk τsb →
∞ and (ii) a very strong outflow from the surface to the bulk
τsb → 0.

In the first case (i.e., τsb → ∞), we have

u(FA)
x (ys) = −svF + s

αwux(ys)

en(FA)Ex
, (27)

sη∂yux(ys) = αwux(ys)

vF
. (28)

By noting that the velocity of the Fermi arcs might be as large
as vF , we could argue that the realization of the hydrodynamic
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regime for the surface quasiparticles is unlikely at large τsb.
Also, in the limit α → 0, i.e., when the Fermi arcs completely
decouple, the BCs in Eq. (28) reduce to the usual free-surface
ones and u(FA)

x (ys) = −svF .
In the opposite limit, i.e., τsb → 0, we obtain

u(FA)
x = 0, (29)

sη∂yux(ys) = en(FA)Ex. (30)

In this case, there is a strong coupling between the surface and
bulk fluids leading to the vanishing Fermi arc fluid velocity.
In addition, the boundary conditions for the bulk fluid are
modified significantly and are affected by the electric field and
the chiral shift.

In a general case, the fluid velocity in the bulk of a Weyl
semimetal can be obtained in an analytical form by using
the general solution in Eq. (24) and the BC in Eq. (25). The
corresponding expression is, however, rather cumbersome and
not very informative. Therefore, instead of presenting it here,
we illustrate the key features of the flow, as well as the
nontrivial effects of the Fermi arcs by using a representative
set of model parameters. In particular, we use the following
material constants:

vF = 1.4 × 107 cm/s, b = 3 nm−1,

τ = 3 × 10−10 s, εe = 13, (31)

which are comparable to those in Refs. [46,70–72]. (Note that
the estimate for the electric permittivity εe is based on the
dielectric constants of tungsten [73] and phosphorus [74].)
By default, we also use the following values of other model
parameters:

μ = 25 meV, T = 10 K, Ex = 1 V/m,

Ly,0 = 10 μm, τsb = 1 ns, α = 10−4. (32)

In order to better clarify the role of the surface states, we
start with the benchmark case without the Fermi arcs on the
surfaces of the slab. Such a situation is realized naturally when
the chiral shift is absent (e.g., in Dirac semimetals) or when
its direction is perpendicular to the surfaces. In this special
case, the bulk fluid velocity in a Weyl semimetal slab is given
by [48]

ux(y) = −v2
F τenEx

w

(
1 − δ

cosh (λxy − λxLy/2)

cosh (λxLy/2)

)
, (33)

where δ = 1 and 0 correspond to the standard no-slip and
free-surface BCs given in Eqs. (15) and (16), respectively. The
corresponding profile of the longitudinal bulk flow velocity as
a function of the y coordinate is shown in the left panel of
Fig. 1. Additionally, in the right panel of Fig. 1, we show the
dependence of the flow velocity integrated over the channel
width, i.e., Ux = ∫ Ly

0 ux(y)dy, on the slab width Ly.
Now, let us discuss the case of hydrodynamic flow with

Fermi arcs on the surfaces. The longitudinal flow velocity ux

and the flow velocity integrated over the channel width Ux for
a few values of the coupling parameter α are shown in the left
and right panels of Fig. 2, respectively. As we see, the pres-
ence of the Fermi arcs enhances the fluid velocity near the
boundaries when τsb is sufficiently small and the transitions
from the bulk to the surface, quantified by α, are weak. This
is in a drastic contrast to the case of the conventional no-slip
or free-surface BCs presented in Fig. 1. The increase of both
fluid velocity and integrated fluid flow velocity is caused by
the Fermi arc fluid that tends to push the bulk one near the
surfaces. As expected, the net enhancement of the flow is
noticeable only for sufficiently small widths of the slab. It
is interesting to note that the fluid velocity profile is rather
sensitive to the value of α, which parametrizes the rate of
transitions from the bulk to the surface. At the same time, the
dependence of Ux on α is very weak. We checked that, with
increasing τsb and/or α, the effect of the Fermi arcs on the
bulk hydrodynamic flow weakens and gradually changes to a
suppression of the flow velocity near the surfaces. It should be
noted that, as expected on the basis of Eq. (27), the Fermi arc
fluid velocity also grows with τsb and could eventually reach
large enough values so that the hydrodynamic approach for
the surface states becomes unreliable. Therefore, τsb should
remain sufficiently small to allow for the Fermi arcs hydrody-
namics.

IV. SURFACE COLLECTIVE MODES

In this section, we study the effect of the Fermi arcs
on the collective modes in a semi-infinite Weyl semimetal
in the hydrodynamic regime. In particular, we focus on the
surface plasmons. We assume that the Weyl semimetal is
located in the upper half-space (y > 0) and the vacuum in
the lower half (y < 0). Therefore, in the notation of Sec. II,
s = +. Henceforth, for simplicity, we omit the corresponding
subscript in the Fermi arc variables.

FIG. 1. The longitudinal flow velocity ux as a function of y (left panel) and the longitudinal flow velocity integrated over the channel width
Ux = ∫ Ly

0 ux (y)dy as a function of the slab width Ly (right panel). Red solid and blue dashed lines correspond to the standard no-slip (15) and
free-surface (16) BCs, respectively.
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FIG. 2. The longitudinal flow velocity ux as a function of the y coordinate (left panel) and the longitudinal flow velocity integrated over the
channel width Ux = ∫ Ly

0 ux (y)dy as a function of the slab width Ly (right panel) for a few fixed values of α. To obtain the numerical results, we
used the BC in Eq. (25) and set τsb = 1 ns.

Previously, the Fermi arc plasmons have been already
studied in Refs. [33–35]. While Ref. [33] employs a sim-
ple phenomenological model, the authors of [34] provide
a more rigorous quantum-mechanical nonlocal approach. In
this study, by following the approach similar to that used in
Refs. [51,75,76], we employ the hydrodynamic approxima-
tion without the retardation effects in Maxwell’s equations. In
this case, the oscillating electric potential φ(t, r) is governed
by Poisson’s equation

�φ(t, r) = 4πe

εe(y)
δn(t, r), (34)

where δn(t, r) describes the deviations of the bulk fermion-
number density from its equilibrium value, εe(y) = θ (y)εe +
θ (−y) is the electric permittivity of the system, and θ (y) is the
Heaviside step function. The omission of the retardation ef-
fects is formally equivalent to setting c → ∞, which implies
that the effects of oscillating magnetic fields can be neglected
as well.

By taking into account that the sought collective modes
are localized on the surface of a Weyl semimetal, we look
for the solutions in the form of plane waves δX (t, r) =
δX (y) e−iωt+ik⊥r⊥ , where ω is the frequency, k⊥ = {kx, 0, kz}
is the surface wave vector, and δX is an oscillating hydrody-
namic variable, e.g., δμ, whose amplitude may depend on the
y coordinate.

Following the arguments in Refs. [51,75,76], we can ne-
glect the effects of the energy conservation relation and set
δT = 0. Then, all oscillating thermodynamical variables can
be expressed in terms of the electric charge density

δP = P̃δn, δw = w̃δn, δw(FA) = w̃(FA)δn(FA), (35)

where

P̃ = ∂P

∂μ

(
∂n

∂μ

)−1

= μ
μ2 + π2T 2

3μ2 + π2T 2

T →0= μ

3
, (36)

w̃ = ∂w

∂μ

(
∂n

∂μ

)−1

= 4P̃, (37)

w̃(FA) = ∂w(FA)

∂μ

(
∂n(FA)

∂μ

)−1

= μ. (38)

Furthermore, by assuming a gradient flow, which is consistent
with the omission of vorticity, the oscillations of the flow
velocity can be expressed in terms of the velocity potential

ψ (t, r) as follows:

δu(t, r) = −∇ψ (t, r). (39)

Then, the Navier-Stokes equation (8), where the surface-bulk
transitions are accounted for by the BCs, takes the form

iω
w

v2
F

∇ψ + P̃∇δn +
(

ζ + 4

3
η

)
�∇ψ − en∇φ

− w

v2
F τ

∇ψ = 0. (40)

In order to obtain the solution for ψ (y), we will reexpress
δn and φ in terms of the velocity potential. By using the
continuity relation (18), the oscillating bulk fermion-number
density reads as

δn = in

ω
�ψ − iσ

ωe
�φ. (41)

This implies that the Poisson equation (34) inside the
semimetal takes the form

�φ = i
4πen

εeωσ̃
�ψ, (42)

where σ̃ = [1 + i4πσ/(εeω)]. By making use of the last two
equations, we can rewrite the Navier-Stokes equation (40) as

�

[
ω2 w

v2
F

+ P̃n

σ̃
� − iω

(
ζ + 4

3
η

)
� − 4πe2n2

εeσ̃

+ iω
w

v2
F τ

]
ψ = 0. (43)

As is clear, the solution for ψ that decreases in the bulk of the
semimetal has the following form:

ψ (y) = Cψ

0 e−k⊥y +
∑
j=±

Cψ
j e−λ j y, (44)

where

λ± = ±
√

3ω2
p + k2

⊥
(
3K2 − 4iv2

F ησ̃ω/w
) − 3ωσ̃ (ω + i/τ )√

3K2 − 4iηv2
F σ̃ω/w

.

(45)

Here, we used the shorthand notation K2 = v2
F nP̃/w, which

approaches v2
F /3 as T → 0, and introduced the plasma fre-

quency ω2
p = 4πe2v2

F n2/(εew). Note that when λ± are purely
imaginary, the corresponding modes are hybridized surface-
bulk excitations. When the bulk viscosity, dissipation, and the
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intrinsic conductivity are ignored, the expression in Eq. (45)
reads as

λ
(0)
± = ±

√
ω2

p + K2k2
⊥ − ω2

K
. (46)

As is clear, only λ
(0)
+ corresponds to a mode localized on the

surface.
Having determined ψ (y), we can now find the expressions

for the electric potentials both inside y > 0 and outside y < 0
the semimetal

φy>0(y) = Cφe−k⊥y + i
4πen

εeωσ̃

∑
j=±

Cψ
j e−λ j y, (47)

φy<0(y) = C̃φek⊥y. (48)

Similarly to the fluid flow, the BCs are also important for the
surface collective modes. For the oscillating fluid velocity,
we impose the same BCs as for the flow in Eqs. (13) and
(14), i.e.,

η∂yδux(0) = −ikxη∂yψ (0) = I (FA), (49)

δuy(0) = −∂yψ (0) = 0. (50)

As is clear from the above equations, the transfer term I (FA)

in Eq. (49) should be set to zero. It is worth noting that,
in a general case where the gradient approximation cannot
be employed, I (FA) �= 0. In particular, an explicit form of
the transfer term should be defined in order to solve the
hydrodynamic equations for the longitudinal flow in Sec. III.

The BCs for the electric potential have the following
standard form:

φy>0(0) = φy<0(0), (51)

εe∂yφ
y>0(0) − ∂yφ

y<0(0) = 4πeδn(FA), (52)

where the normal component of the oscillating electric field
δE(y) = −∇φ(y) has a jump connected with the singular
contribution of the Fermi arcs. According to Ref. [51], the
bulk states themselves should not induce a localized (singu-
lar) surface charge density. The oscillations of the surface
fermion-number density δn(FA) can be obtained by using
Eqs. (17) and (21), i.e.,

δn(FA) = −vF kxn(FA)eφy>0(0)

μ(ω − vF kx )
− i

σ∂yφ
y>0(0)

e(ω − vF kx )
. (53)

As for the oscillating Fermi arc fluid velocity δu(FA)
x , it can be

obtained from the surface Euler equation (5).
Another boundary condition can be derived from the y

component of Eq. (40) after expressing �ψ in terms of δn
[see Eqs. (41) and (42)] and utilizing the BC in Eq. (50). The
explicit form of this new BC reads as[

P̃ − i
ωσ̃

n

(
ζ + 4

3
η

)]
∂yδn(0) = en∂yφ

y>0(0). (54)

Equations (50)–(54) are sufficient to reexpress all integration
constants in Eqs. (44), (47), and (48) in terms of a single
constant that is then fixed by a normalization condition. Also,
after satisfying all the boundary conditions, one can determine

the dispersion relations for the surface modes. As for the dis-
persion relations for the hybridized surface-bulk modes, they
are obtained from Eq. (45), where λ± → λ is a continuous
variable [51].

For the sake of simplicity, we neglect the effects of viscos-
ity (η → 0), dissipation (τ → ∞), and intrinsic conductivity
(σ → 0) in the rest of this section. It is also instructive to
start from the benchmark case without the Fermi arcs on the
surface of a Weyl semimetal. Then, after satisfying all BCs,
Eq. (54) gives the following relation for the modes localized
on the surface:

K2λ
(0)
+ (λ(0)

+ + k⊥) = ω2
p

1 + εe
, (55)

where K and ωp are defined after Eq. (45). The corresponding
positive solution is given by

ω = 1√
2

⎛
⎝ 2εeω

2
p

1 + εe
+ K2k2

⊥ + Kk⊥

√
4ω2

p

1 + εe
+ K2k2

⊥

⎞
⎠

1/2

≈ ωp
√

εe√
1 + εe

+ Kk⊥
2
√

εe
+ K2k2

⊥
√

1 + εe(2εe − 1)

8ωpε
3/2
e

+ O(k3
⊥).

(56)

Note that the long-wavelength approximation is well defined
and consistent with the nonretarded regime only at ω < ck⊥.
By taking into account the large value of c, the range of
validity of the above result extends to rather small values of
the wave vector k⊥ 	 ωp/c. The surface plasmon frequency
ω in Eq. (56) qualitatively agrees with the results obtained
in Refs. [51,75,76]. As we see, the spectrum of the surface
plasmons is isotropic and has a nonzero gap. Moreover, the
value of the gap agrees with that obtained in Ref. [77] after
setting εe = 1.

Now, let us analyze the effect of the Fermi arcs on the
surface collective modes. Because of a nonzero surface charge
density in Eq. (52), the characteristic equation becomes more
complicated

K2λ
(0)
+ (k⊥ + λ

(0)
+ ) = ω2

p[ωb − (ω − vF kx )]

ωb − (1 + εe)(ω − vF kx )
, (57)

where ωb = 2e2bkx/(π h̄k⊥). By solving the characteristic
equation in the long-wavelength approximation, we obtain the
following dispersion relations:

ω± = 1

2(1 + εe)

(
ωb ±

√
ω2

b + 4εe(1 + εe)ω2
p

)
+ O(k⊥),

(58)

ω(FA) = vF kx + k⊥Kωb

εeωp
+ O(k2

⊥). (59)

As in the simplified case without Fermi arcs, the long-
wavelength approximation is well defined and consistent with
the nonretarded regime for k⊥ � ω/c, which is obviously the
case for ω(FA) in Eq. (59). In addition, as in usual metals
(see, e.g., Ref. [76] and references therein), the hydrodynamic
approximation is applicable even for the phase velocities
of order vF . It is worth noting, however, that the Landau
damping, which is usually not captured in the hydrodynamic

155120-7



GORBAR, MIRANSKY, SHOVKOVY, AND SUKHACHOV PHYSICAL REVIEW B 99, 155120 (2019)

k

FIG. 3. The solutions for the surface collective modes in the presence of the Fermi arcs. Solid and dashed lines correspond to the exact
solutions of the characteristic equation and the approximate ones in Eqs. (58) and (59), respectively. The red lines correspond to the gapped
surface plasmons and the blue lines describe the Fermi arc surface mode. Left and right panels show the results for kz = 0 and kz = 0.1 ωp/vF .
Black dots indicate the frequencies at which the surface modes hybridize with the bulk ones.

approach, could become relevant when the phase velocity of
the surface mode with the frequency ω(FA) is smaller than
the quasiparticle velocity vF (see, e.g., Ref. [53]). By making
use of the approximate dispersion relation in Eq. (59) (as
well as the results in Figs. 3 and 4), we checked that this is
not the case here because ω(FA)/kx > vF at sufficiently small
values of kx. In general, however, the Landau damping could
provide an additional dissipation mechanism and should be in-
cluded in a more rigorous treatment beyond the hydrodynamic
approximation.

The modes with ω± can be identified with the sur-
face plasmons. Their frequencies are similar to those in
Eq. (16) of Ref. [34]. It can be also verified that, in agree-
ment with the analysis in Ref. [33], the dispersion rela-
tions in Eq. (58) have discontinuities ∝sign(kx ) at kx = 0,
namely, (limkx→+0 − limkx→−0) limkz→0 ω± = |ωb|/(1 + εe).
Such discontinuities disappear at kz �= 0. It is important to
note that, depending on the chiral shift, ω+ (ω−) at kx >

0 (kx < 0) could be significantly larger than ω2
p + K2k2

⊥.
Then, by taking into account that the characteristic root
defined in Eq. (46) becomes purely imaginary, the cor-
responding excitations should be identified with the hy-
bridized surface-bulk modes [51,76] and, henceforth, will be
omitted.

In contrast to the surface plasmons, which exist even in
the absence of the Fermi arcs, the mode with the dispersion
relation in Eq. (59) originates exclusively from the surface

states. It is somewhat reminiscent of the usual surface acoustic
plasmon [52] with a linear dispersion relation. However, the
new mode stemming from the Fermi arcs has a rather uncon-
ventional directional dependence.

The frequencies of the surface plasmons and the Fermi arc
mode are presented in Fig. 3, where the solid and dashed
lines correspond to the numerical solutions of Eq. (57) and
the approximate dispersion relations in Eqs. (58) and (59),
respectively. Black dots indicate the frequencies at which the
surface modes hybridize with the bulk ones. In agreement with
the previous analysis in Ref. [33], we found three roots of the
characteristic equation (57). Two of them correspond to ω± in
Eq. (58), which are related by the transformation ω → −ω

and k⊥ → −k⊥ (the modes with ω < 0 are not shown in
the figures). The third solution describes a gapless Fermi arc
surface mode with the dispersion relation that, at leading order
in small k⊥, is approximately given by Eq. (59). In addition,
as one can see from Fig. 3, the leading-order approximate
expressions (58) and (59) describe the collective modes rather
well only when the wave vector is sufficiently small.

In order to clarify the dependence of the surface mode
frequencies on the wave vectors, we present the contour plots
in momentum space for the positive frequency plasmon and
the Fermi arc surface mode in Fig. 4. As one can see from the
left panel in Fig. 4, the contour lines of the gapped surface
plasmon are closed ellipses elongated in the direction defined
by the Fermi arcs dispersion relation, i.e., kx. The contours

FIG. 4. The contour plots for the surface plasmon ω+ (left panel) and the Fermi arc mode ω(FA) (right panel) frequencies. The group
velocity is normal to the contour lines and only the results for ω > 0 are presented.
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of the Fermi arc mode are bell shaped with the maximum at
kz = 0.

By noting that the group velocities of the surface collec-
tive modes are given by the derivatives of their frequencies
with respect to momenta, they can be represented by the
vectors normal to the contour lines. Then, as is clear from
Fig. 4, while there is a preferred direction defined by kx, the
surface plasmons could also propagate radially similarly to
the conventional surface plasmons with the frequency given
in Eq. (56). The gapless modes, on the other hand, always
propagate in one direction, although there is a noticeable
spreading, especially when the chiral shift is large.

It should be emphasized that the constant-frequency con-
tours for the plasmon modes obtained in this study are closed
ellipses. This may appear to be qualitatively different from
the open hyperbolic contours in Refs. [33,34]. We checked,
however, that in the hydrodynamic approximation the latter
correspond to the hybridized surface-bulk modes with large
frequencies. In addition, the open contours at large enough
negative kx (or qy in the notation of Ref. [34]) in Fig. 2(a) of
Ref. [34] could, presumably, stem from the hybridization of
the gapped and gapless modes.

In general, we identify two qualitative features that could
be used to analyze the effects of the Fermi arcs on the surface
collective modes in Weyl semimetals. First of all, unlike the
conventional surface plasmons with the frequency given in
Eq. (56), the Fermi arc surface plasmons are described by
a strongly anisotropic dispersion relation. Also, unlike the
gapped plasmon mode, which exists even in the absence of
the surface Fermi arc states, the new gapless collective mode
appears only when the topological surface states are taken
into account. Therefore, if experimentally observed, the latter
mode can be used to extract the information about the separa-
tion between the Weyl nodes as well as the dispersion relation
of the Fermi arcs.

Experimentally, the anisotropy induced by the surface
states can be probed using the near-field optical spec-
troscopy (for a review, see Ref. [37]), as well as the
momentum-resolved electron energy-loss spectroscopy (see,
e.g., Ref. [38]). Because of a possible interference between
the surface modes from different pairs of Weyl nodes [33], the
most suitable materials are the Weyl semimetals with a single
pair of nodes. Therefore, the magnetic Heusler compounds
with a broken TR symmetry [78,79] might be promising
candidates for the study of the surface collective modes.

V. SUMMARY

In this paper, we proposed that the Weyl semimetals with
a broken TR symmetry may possess a hydrodynamic regime
with a nontrivial interplay between the bulk electron fluid
and the fluid formed by the surface Fermi arc quasiparticles.
The hydrodynamic equations for the latter are derived from
the kinetic theory under the assumptions that the electron-
electron scattering rate dominates over the electron-impurity
and electron-phonon ones. Further, we considered only the
case where the hydrodynamic regime is achieved for both
surface and bulk quasiparticles of the semimetal. In principle,
however, the regime where the electron fluid is formed only
on the surface but not in the bulk could be also realized. Such

a scenario is likely to lead to unique features and deserves a
separate study.

In the proposed two-fluid framework, we studied the role
of the Fermi arc fluid on the bulk flow and on the spectrum
of surface collective modes. For simplicity, we assumed that
the surface fluid is inviscid and couples to the bulk via
the phenomenological inflow and outflow terms. The latter
describe the Fermi arc dissipation into the bulk and the
transitions from the bulk to the surface states. We found
that the Fermi arcs modify the boundary conditions for the
bulk electron fluid. Depending on the rate of the surface-bulk
transitions as well as the value of the chiral shift, the bulk
fluid velocity could change significantly near the boundaries.
When the electrons are transferred to the surface at a greater
rate than to the bulk, the bulk fluid could be dragged by the
surface one. Such a regime, however, is characterized by large
surface flow velocities at which the hydrodynamic description
may become ill defined. On the other hand, an unconven-
tional increase of the bulk fluid flow near the boundaries is
seen when the surface to bulk transitions dominate. Such a
manifestation of the Fermi arc flow could be, in principle,
observed via the decrease of the resistivity in samples of small
width.

In this study, we also demonstrated that the Fermi arcs
profoundly affect the surface collective modes in the hy-
drodynamic regime. In particular, we found that the disper-
sion relations of the surface plasmons become anisotropic
in momentum space. This is in contrast to the conven-
tional surface plasmons with the isotropic dispersion. The
origin of the anisotropy is the dispersion relation of the
surface Fermi arc quasiparticles. In general, we identified
two types of surface modes. While one of them is a gapped
surface plasmon hybridized with the Fermi arc oscilla-
tions, the other is a gapless mode triggered exclusively by
the surface states. Similarly to the usual surface acoustic
plasmons [52], the gapless Fermi arc mode has a linear
dispersion relation, but it is sensitive to the sign of the
wave-vector component along the direction of the Fermi arc
velocity. While our results agree qualitatively with those in
Refs. [33,34], we argue that the only true surface plasmon
modes are those with the closed elliptic contours of constant
frequency.

In passing, let us discuss a few limitations of this study. The
hydrodynamic model proposed in this paper is phenomeno-
logical and the underlying reasons for the fluid formation
have not been rigorously addressed. In addition, the reliable
estimate of the hydrodynamic window, i.e., the parameter
region where the electron fluid can be formed, is still lacking
for many experimentally realized Weyl semimetals. In our
analysis, we used a simplified model for the Fermi arcs
without any curvature. While we believe that the results will
remain qualitatively the same for slightly curved arcs, the
precise role of a nonzero curvature should be addressed in the
future. In our study of the surface collective modes, we also
neglected the viscosity and dissipation effects, which could
be rigorously taken into account via nonlocal corrections
as in Ref. [34]. In the future, it would be interesting to
address also the effects of multiple pairs of Weyl nodes and,
therefore, several Fermi arcs on the formation of the surface
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fluid. Such an investigation is beyond the scope of this study,
however.
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APPENDIX A: DERIVATION OF THE
FERMI ARC HYDRODYNAMICS

In this Appendix, we present the technical details of deriva-
tion of the hydrodynamic equation for the Fermi arc surface
states. We utilize a simple model of a time-reversal symmetry-
breaking Weyl semimetal with two Weyl nodes separated in
momentum space by 2b along the z direction, where b is the
magnitude of the chiral shift. The semimetal is finite along the
y direction and infinite in the other two.

1. Kinetic theory

We follow the standard approach [53,54] of deriving
the hydrodynamic equation from the kinetic theory. In the
presence of an electric field E, the kinetic equation reads as

∂t f (FA) − eE · ∂p f (FA) + v(FA)
p · ∇ f (FA) = I (FA)

coll , (A1)

where −e is the electron charge, p = (px, pz ) is the
momentum of the surface quasiparticles, and I (FA)

coll denotes the
collision integral, whose explicit form will be discussed later.

Since hydrodynamics assumes a local equilibrium, we take
the distribution function in the following form:

f (FA) = δ(y − ys)
1

1 + exp
(

ε
(FA)
p −(u(FA)·p)−μ

T

) , (A2)

where ys denotes the surface coordinate, s = ± denotes the
bottom (+) or top (−) surface, u(FA) is the local fluid velocity
of the surface Fermi arc states, μ is the electric chemical
potential, and T is temperature. For a slab of finite thickness,
y− = Ly and y+ = 0 denote the top and bottom surfaces,
respectively. Here, we assume that the Fermi arcs are strongly
localized at the surface and the dependence of the distribution
function on the transverse coordinate can be modeled by the δ

function.
The quasiparticle energy for the surface states reads as

ε (FA)
p = svF px, (A3)

where vF is the Fermi velocity. (For the derivation of
the Fermi arcs and their dispersion relation see, e.g.,
Refs. [10,23,24].) The corresponding quasiparticle velocity is
given by

v(FA)
p = ∂pε

(FA)
p = svF x̂, (A4)

where x̂ is the unit vector in the x direction. Since the Fermi
arc quasiparticles move only along the x axis, it is reasonable
to assume that the surface hydrodynamic motion is also pos-
sible only along that axis, i.e., u(FA) ‖ x̂. As we will show in
Appendix A 4, this is further justified by the fact that the Fermi
arc electric current can only flow along the x direction.

In the case of small fluid velocities, we can use the follow-
ing expansion for the distribution function:

f (FA) ≈ f (FA,0) − pxu(FA)
x

∂ f (FA,0)

∂ε
(FA)
p

, (A5)

where

f (FA,0) = δ(y − ys)
1

1 + e(ε (FA)
p −μ)/T

(A6)

is the distribution function of the Fermi arc quasiparticles in
global equilibrium.

2. Euler equation for the Fermi arc fluid

In order to derive the Euler equation, we multiply Eq. (A1)
by the x component of the momentum px and integrate over
px. [It should be noted that, because of the dispersion relation
(A3), there is no independent energy conservation equation.]

The integration of the first term in Eq. (A1) leads to the
following result:

∫
d2 p

(2π h̄)2
px∂t f (FA) =

∫
d2 p

(2π h̄)2
px∂t

(
f (FA,0) − pxu(FA)

x

∂ f (FA,0)

∂ε
(FA)
p

)
= −∂t

∑
p,a

sFT 2

2πv2
F h̄2 Li2(−eμ/T )

−
∑
p,a

∂t
FT 2u(FA)

x

πv3
F h̄2

[
π2

6
− Li2(1 + eμ/T ) −

(μ

T
+ iπ

)
ln (1 + eμ/T )

]

= ∂t
sF

4πv2
F h̄2

(
μ2 + π2T 2

3

)(
1 + 2u(FA)

x

svF

)
, (A7)

where we took into account the small fluid velocity expansion in Eq. (A5) and use the formulas in Appendix B. Further,
∑

p,a

denotes the summation over particles (electrons) and antiparticles (holes). It should be noted that μ → −μ and e → −e for
holes and the limits of integration over px depends on the boundary label s, i.e.,

∫ s∞
0 d px. The overall coefficient F is defined by
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the integration over the length of the Fermi arc, i.e.,

F =
∫ h̄b

−h̄b

d pz

2π
= h̄b

π
. (A8)

The integral with the term containing the electric field in Eq. (A1) can be calculated in a similar way. The result reads as

−e
∫

d2 p

(2π h̄)2
px(E · ∂p) f (FA) =

∑
p,a

e

2π h̄2

ExFT

vF
ln (1 + eμ/T ) +

∑
p,a

se

2π h̄2

u(FA)
x ExFT

v2
F

ln (1 + eμ/T )

= eExFμ

2πvF h̄2

(
1 + u(FA)

x

svF

)
. (A9)

The term with the spatial derivatives gives rise to the following result:∫
d2 p

(2π h̄)2
px

(
v(FA)

p · ∇)
f (FA) = −

∑
p,a

svF ∂x
FT 2

2πv2
F h̄2 Li2(−eμ/T ) −

∑
p,a

svF ∂x
FT 2u(FA)

x

πv3
F h̄2

×
[
π2

6
− Li2(1 + eμ/T ) −

(μ

T
+ iπ

)
ln (1 + eμ/T )

]

= ∂x
F

4πvF h̄2

(
μ2 + π2T 2

3

)(
1 + 2

u(FA)
x

svF

)
. (A10)

By collecting all contributions together, we finally arrive at the following Euler equation for the Fermi arc fluid:

(∂t + svF ∂x )
sF

4πv2
F h̄2

(
μ2 + π2T 2

3

)(
1 + 2

u(FA)
x

svF

)
+ eμF

2πvF h̄2

(
1 + u(FA)

x

svF

)
Ex = I (FA). (A11)

3. Transfer term

Here, we present the derivation of the transfer term on the right-hand side of the Euler equation (A11). In general, it may
contain two different parts: one describing the surface to bulk transitions and the other describing the inflow from the bulk. By
recalling that the dissipation of the Fermi arcs is primarily due to the surface to bulk scatterings [24], the first part of I (FA) can
be obtained by using the relaxation time approximation as follows:

−
∫

d2 p

(2π h̄)2
px

f (FA) − f (FA,0)

τsb
=

∫
d2 p

(2π h̄)2
px

pxu(FA)
x

τsb

∂ f (FA,0)

∂ε
(FA)
p

= 1

τsb

∑
p,a

FT 2u(FA)
x

πv3
F h̄2

[
π2

6
− Li2(1 + eμ/T ) −

(μ

T
+ iπ

)
ln (1 + eμ/T )

]

= −u(FA)
x

τsb

F

2πv3
F h̄2

(
μ2 + π2T 2

3

)
. (A12)

The term describing the bulk to surface transitions, on the other hand, can be calculated by using the method in the Supplemental
Material of Ref. [47]. Its explicit form reads as

λB
wux(ys)

τbsv
2
F

, (A13)

where ux(ys) is the bulk fluid velocity on the surface, w in the bulk enthalpy density, λB is the dimensional coefficient, and τbs is
the relaxation time describing bulk to surface transitions. It might be more convenient to parametrize the bulk inflow in terms of
a single overall coefficient α = λB/(vF τbs). Then, the final expression for the transfer term I (FA) takes the form as in Eq. (22) in
the main text.

4. Electric charge and current densities of Fermi arcs

For completeness, let us present the explicit expressions for the electric charge and current densities for Fermi arc
quasiparticles. The corresponding expressions can be obtained by using the kinetic theory, i.e.,

ρ (FA) = −
∑
p,a

e
∫

d2 p

(2π h̄)2
f (FA) = −

∑
p,a

e
∫

d2 p

(2π h̄)2

[
f (FA,0) − pxu(FA)

x

∂ f (FA,0)

∂ε
(FA)
p

]

= −
∑
p,a

seF

2π h̄2

[
T

svF
ln (1 + eμ/T ) + u(FA)

x

T

s2v2
F

ln (1 + eμ/T )

]
= − eμF

2πvF h̄2

(
1 + u(FA)

x

svF

)
(A14)

155120-11



GORBAR, MIRANSKY, SHOVKOVY, AND SUKHACHOV PHYSICAL REVIEW B 99, 155120 (2019)

and

J(FA) = −
∑
p,a

e
∫

d2 p

(2π h̄)2
v(FA)

p f (FA) = −
∑
p,a

esvF x̂
∫

d2 p

(2π h̄)2

[
f (FA,0) − pxu(FA)

x

∂ f (FA,0)

∂ε
(FA)
p

]

= −
∑
p,a

vF x̂
eF

2π h̄2

[
T

svF
ln (1 + eμ/T ) + u(FA)

x

T

s2v2
F

ln (1 + eμ/T )

]
= −sx̂

eμF

2π h̄2

(
1 + u(FA)

x

svF

)
, (A15)

respectively.

APPENDIX B: POLYLOGARITHM FUNCTIONS

In this Appendix, we present several definitions and identities for the polylogarithm functions used in the derivation of the
Euler equation. By making use of the shorthand notation f (0) = 1/[e(vF p−μ)/T + 1], it is straightforward to derive the following
formulas: ∫ ∞

0
d p pn f (0) = −T n+1�(n + 1)

vn+1
F

Lin+1(−eμ/T ), n � 0 (B1)

∫ ∞

0
d p pn ∂ f (0)

∂ p
= T n�(n + 1)

vn
F

Lin(−eμ/T ), n � 0 (B2)

where Lin(x) is the polylogarithm function. The polylogarithm functions of order n = 0 and 1 can be expressed in terms of
elementary functions, i.e.,

Li0(−ex ) = − 1

1 + e−x
, (B3)

Li1(−ex ) = − ln (1 + ex ). (B4)

Also, the following identities are useful:

Li0(−ex ) + Li0(−e−x ) = −1, (B5)

Li1(−ex ) − Li1(−e−x ) = −x, (B6)

Li2(−ex ) + Li2(−e−x ) = −1

2

(
x2 + π2

3

)
, (B7)

Li2(1 + ex ) + Li2(1 + e−x ) + iπ [ln (1 + ex ) + ln (1 + e−x )] = 1

2
[π2 − ln2 (ex )]. (B8)
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