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Block excitonic condensate at n = 3.5 in a spin-orbit coupled t2g multiorbital Hubbard model
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Theoretical studies recently predicted the condensation of spin-orbit excitons at momentum q = π in t4
2g

spin-orbit coupled three-orbital Hubbard models at electronic density n = 4. In parallel, experiments involving
iridates with noninteger valence states for the Ir ions are starting to attract considerable attention. In this
publication, using the density matrix renormalization group technique we present evidence for the existence of
an excitonic condensate at n = 3.5 in a one-dimensional Hubbard model with a degenerate t2g sector, when in the
presence of spin-orbit coupling. At intermediate Hubbard U and spin-orbit λ couplings, we found an excitonic
condensate at the unexpected momentum q = π/2 involving jeff = 3/2, m = ±1/2, and jeff = 1/2, m = ±1/2
bands in the triplet channel, coexisting with an also unexpected block magnetic order. We also present the entire
λ vs U phase diagram, at a fixed and robust Hund coupling. Interestingly, this new “block excitonic phase” is
present even at large values of λ, unlike the n = 4 excitonic phase discussed before. Our computational study
helps to understand and predict the possible magnetic phases of materials with d3.5 valence and robust spin-orbit
coupling.
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I. INTRODUCTION

In the last decade, the 4d/5d transition metal oxides have
received considerable attention in the condensed matter com-
munity, especially because they provide a unique platform for
the development of unconventional magnetic and transport
properties mainly as a consequence of a robust spin-orbit
coupling [1–11]. One of the most interesting materials is
Sr2IrO4 containing Ir4+ ions, with an electronic density n =
5 [12]. This compound displays similarities with La2CuO4,
even with a relatively smaller Hubbard repulsion, because
both exhibit long-range antiferromagnetic ordering in quasi-
two-dimensional layers [13,14]. The realization of an effective
layered half-filled Hubbard model in Sr2IrO4 is a result of
a spin-orbit coupling λ close to 0.5 eV that splits the t2g

states into jeff = 1/2 and jeff = 3/2 sectors with a gap ap-
proximately equal to 3λ/2. At n = 5 this leads to a half-filled
jeff = 1/2 band and concomitant Mott/Slater insulator behav-
ior. Besides the iridates, other materials also have similarly
interesting properties [15–17]. Even in the context of iron
superconductors the importance of spin-orbit coupling has
been remarked [18–21].

Another interesting scenario which has been recently the-
oretically investigated led to the prediction of unusual mag-
netism in the n = 4 case [22–28]. At this electronic density,
spin-orbit excitons (for details see Sec. III A) were found
to condense at momentum q = π , both in the intermediate
and strong coupling limits, and also display antiferromag-
netic staggered magnetic order. Experimentally, for double
perovskite materials such as Sr2YIrO6 and Ba2YIrO6, with
Ir5+ ions and a 5d4 configuration, the presence of the exciton

condensate, as discussed a long time ago in semiconduc-
tors [29], has been debated [30–34]. Recent RIXS (reso-
nant inelastic x-ray scattering) experiments on Sr2YIrO6 and
Ba2YIrO6 have unveiled Jeff = 1 and Jeff = 2 excitations with
weak dispersion at energies approximately 0.37 eV and 0.7 eV
[35], respectively, which suggests that the bandwidth of ex-
citonic excitations is not sufficiently large when compared
with λ to realize the predicted spin-orbit exciton condensate.
It should be noted that these Jeff = 1 and Jeff = 2 excitations
can be understood in terms of more conventional excitonic
(electron-hole pair) states [29] between jeff = 3/2 and jeff =
1/2 sectors. Because in these excitations electrons jump from
jeff = 3/2 to jeff = 1/2 states, the addition of angular momen-
tum suggests that this will lead to Jeff ∈ { 3

2 − 1
2 , 3

2 + 1
2 }, i.e.,

Jeff = 1 or 2 excitations. In the layered Sr2IrO4 compound,
these spin-orbit excitons are also present as stable excited
states as shown by recent RIXS and optical conductivity
measurements [36–38]. [Note that the notation Jeff is used for
the total effective angular momentum of the system (or an
atom), while jeff refers for the effective angular momentum
of single particle states. In the rest of the paper, we follow the
same convention.]

In addition to the above mentioned progress, it should be
remarked that there are several real quasi-one-dimensional
materials with robust spin-orbit coupling strength that have
been studied in the literature. The doped variants of the mate-
rials reported below may directly realize the physics discussed
in this publication, because our calculations are based on
numerically exact solutions of one-dimensional multiorbital
models. For example, recently 1D stripes of Sr2IrO4 [39] were
grown epitaxially and RIXS spectra have shown the presence
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of spin-orbit excitons at energies nearly 0.6 eV. Other exam-
ples of one-dimensional jeff = 1/2 antiferromagnets includes
CaIrO3 [40–43] and Ca4IrO6 [44,45]. BaIrO3 also belongs to
the 5d5 class but has shown an unexpected charge-density
wave [46,47]. There are also mixed 3d-5d one-dimensional
insulators, such as Ba5CuIr3O [48] and Sr3CuIrO6 [49,50].
La3OsO7, which lies in the category of 5d3, is also a quasi-
one-dimensional material with antiferromagnetic ordering
and TN = 45 K [51]. There are also examples of quasi-one-
dimensional materials with fractional valence states of the Ir
and Rh ions, such as Ba5AlIr2O11 [52–54], Ca5Ir3O12 [55,56],
and Sr3Rh4O12 [44]. BaRu6O12 and KRu4O8 are examples
of quasi-one-dimensional ruthenates [57,58] that have also
attracted considerable attention. The combination of the ex-
istence of real quasi-one-dimensional 4d and 5d materials
and our model studies employing numerically very accurate
techniques provides a unique opportunity to explore and un-
derstand the phases which can emerge from the interplay of
spin-orbit coupling, Coulomb electronic repulsion, and kinetic
energy.

To obtain our results we use the numerically accurate den-
sity matrix renormalization group (DMRG) technique [59,60]
to solve the degenerate three-orbital Hubbard model in one
dimension. Up to now studies of the phases emerging in
fractionally-filled three-orbital Hubbard models with spin-
orbit coupling are relatively few, particularly as compared
to the thoroughly investigated integer fillings, such as n =
5 and n = 4. To develop a conceptual understanding, here
we used doping n = 3.5, i.e., 3.5 electrons per site in av-
erage, using a model with degenerate bands. Via DMRG
calculations here we report the phase diagram varying λ

and U .
The organization of this paper is as follows. In Sec. II,

the model used for our study is defined and the details of
the computational method are explained. The main results are
presented in Sec. III, including the phase diagram varying
U and λ. In particular, first we present the evidence for the
block excitonic phase that we unveiled, and then we address
the different magnetic phases present in the complete phase
diagram, followed by a description of the density of states
(DOS). In Sec. IV, we discuss our main results and present
our conclusions.

II. MODEL AND METHOD

In this paper, we use the three-orbital Hubbard model in
the presence of spin-orbit coupling. The Hamiltonian contains
a tight-binding term, an on-site Hubbard-Hund interaction,
and a spin-orbit coupling: H = HK + Hint + HSOC. The tight-
binding portion is

HK = −
∑

i,σ,γ ,γ ′
tγ γ ′ (c†

iσγ ci+1σγ ′ + H.c.) +
∑
i,σ,γ

�γ niσγ . (1)

To gain conceptual understanding, we have focused on the
simplest case of degenerate t2g states, hence we fixed tγ γ ′ =
tδγ γ ′ , where t = 0.5, and �γ = 0. This leads to a total band-
width (W ) = 2.0 eV in the noninteracting limit. The on-site

Hubbard-Hund interaction is

Hint = U
∑
i,γ

ni↑γ ni↓γ + (U ′ − JH/2)
∑

i,γ<γ ′
niγ niγ ′

− 2JH

∑
i,γ<γ ′

Siγ · Siγ ′ + JH

∑
i,γ<γ ′

(P†
iγ Piγ ′ + H.c.). (2)

In the above expression niγ is the electronic density at
orbital γ and lattice site i, while the operator Siγ =
1
2

∑
α,β c†

iαγ σαβciβγ is the total spin. The first two terms de-
scribe the intra- and interorbital electronic repulsion, respec-
tively. The third term contains the Hund coupling that favors
the ferromagnetic alignment of the spins at different orbitals;
the fourth term is the pair hopping with Piγ = ci↓γ ci↑γ as the
pair operator. We assume the standard relation U ′ = U − 2JH

based on rotational invariance, and we fixed JH = U/4 as in
Ref. [28]. Hence, only U and λ are free parameters in our
study. The spin-orbit coupling (SOC) term is

HSOC = λ
∑

i,γ ,γ ′,σ,σ ′
〈γ |Li|γ ′〉 · 〈σ |Si|σ ′〉c†

iσγ ciσ ′
γ ′ , (3)

where λ is the SOC strength.
In the noninteracting limit, both the SOC and tight-binding

terms can be diagonalized simultaneously to obtain the fol-
lowing Hamiltonian:

HK + HSOC =
∑
k,m

(
2t cos(k) − λ

2

)
a†

k, 3
2 ,m

ak, 3
2 ,m

+
∑
k,m

(2t cos(k) + λ)a†
k, 1

2 ,m
ak, 1

2 ,m. (4)

Above we used a†
k, jeff,m

= 1/
√

L
∑

l e−ιlka†
l, jeff,m

, where

a†
l, jeff,m

is the creation operator for an electron with total
effective angular momentum jeff and z projection m. The
transformation between the t2g orbitals and jeff basis is the
following (real-space site index l is dropped):⎡

⎢⎣
a 3

2 , 3s
2

a 3
2 ,− s

2

a 1
2 ,− s

2

⎤
⎥⎦ =

⎡
⎢⎣

is√
2

1√
2

0
s√
6

i√
6

2√
6

−s√
3

−i√
3

1√
3

⎤
⎥⎦

⎡
⎢⎣

cσyz

cσxz

cσ̄xy

⎤
⎥⎦, (5)

where s is 1(−1) when σ is ↑ (↓) and σ̄ = −σ (note that from
now onwards to avoid complicated notations, when jeff should
be used as subindex, sometimes this quantum number will be
simply denoted by j). Equation (4) is useful to understand
the noninteracting limit of the model. As λ is increased, the
jeff = 3/2 and jeff = 1/2 bands split. For the doping n = 3.5
addressed in this study, in the large λ limit all electrons
will be located in the jeff = 3/2 band, making the jeff = 3/2
band fractionally filled and the jeff = 1/2 band empty. This
region is called jeff = 3/2 metal, as discussed in Sec. III C.
In Ref. [61], we also present the local Coulomb interaction
term expressed in the jeff basis. Note that the global U (1)
symmetries, corresponding to the conservation of number of
particles in the ( j, m) states separately, are preserved only
for JH = 0 and U = U ′. Thus, for the case of a finite Hund
coupling, as investigated in the present paper, these U (1)
symmetries are explicitly broken leading to the possibility of
long-range order in some channels.
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FIG. 1. Shown is the main result of our publication, namely the
λ-U phase diagram for n = 3.5, where W = 2.0 eV. The labels
IC − SDW, Block(EC), FM, and PM stand for incommensurate
spin density wave, block excitonic condensate, ferromagnetic, and
paramagnetic phases, respectively. j = 3/2 is a metallic phase at
large SOC where all electrons are in a j = 3/2 band, split from
the j = 1/2 band that is empty. The labels M and I are used in
the IC-SDW, block EC, and j = 3/2 phases to denote metal and
insulator, respectively. For the other regimes we could not establish
with certainty their metallic vs insulating character. The high density
of points was achieved by using a system size L = 16 for the DMRG
calculations, but several points in the phase diagram were obtained
with L = 32 chains, as described for special cases below.

Because our primary interest is to understand the subtle
phases emerging from the competition of the Coulomb in-
teraction, spin-orbit coupling, and kinetic energy, we used
the DMRG technique which is numerically exact in one
dimension. DMRG can treat the above three terms in the
Hamiltonian on equal footing. We solved the above described
model for various system lengths, such as L = 8, 16, 24, 32,

and 48, fixing the average local density to n = 3.5. To reduce
the cost of the simulations, we have targeted subspaces of the
total Jeff

z = ∑
i(J

eff
z )i, which is possible because [H, Jeff

z ] =
0 for the chosen tight-binding parameters (for details see
Ref. [28]). For the DMRG process, we used up to 1000 states
and the corrected single-site DMRG algorithm [62] with cor-
rection a = 0.001–0.008. We performed 35 to 40 sweeps to
gain proper convergence to the ground state properties. After
convergence, we calculated the spin structure factor S(q),
local occupations 〈n jm〉, local moments S2

i , L2
i , and (Jeff

i )2,

and also the exciton pair-pair correlation 〈�† j̃m̃′
jm̃ (i)� j̃m′

jm (i′)〉
in order to construct the phase diagram. Moreover, we also
used the DMRG correction vector method [63] with L = 16,
as well as the Lanczos algorithm [64] with L = 4, to calculate
the single-particle DOS.

III. RESULTS

In Fig. 1, we show the phase diagram that we obtained
varying U and λ in units of the noninteracting bandwidth
W , at a fixed average local electronic density n = 3.5. The
main result is the presence of a “block excitonic condensate,”
accompanied with block magnetic ordering (in a ↑↑↓↓ pat-
tern). We will discuss this phase, and other phases, in the
following subsections. Also note that our study is in one
dimension. For this reason when we express that in a range

of U and λ we are located at a particular phase with particular
characteristics, this always has to be interpreted in the sense of
dominant power-law decaying correlations, as opposed to true
long-range order. However, in the Supplemental Material [61]
we show that the U (1) phase characteristic of other excitonic
condensates is explicitly broken in our calculation allowing
for long-range order in the block exciton condensate regime
to develop, compatible with the numerical results to be shown
below.

Before discussing the results in detail, note that we expect
the boundaries in the phase diagram Fig. 1 to correspond to
first-order transitions if different symmetries are broken on
both sides. In other words, at zero temperature we expect that
each boundary between different symmetry breaking patterns
corresponds to a level crossing. Computationally this could
be tested by plotting the ground state energy varying for
example U/W at constant SOC, using a grid of couplings very
close to the transition. If a discontinuity in the ground state
energy first derivative is found at the transition, a first-order
transition occurs. However, these calculations are very time
consuming in our multiorbital model, thus a confirmation of
our expectation of first-order transitions is left for future work.
Of course, if two regimes are merely separated by a crossover,
then this crossover region resembles a continuous transition
qualitatively.

A. Condensation of spin-orbit excitons

We now proceed to show and discuss the evidence of exci-
tonic condensation in our phase diagram. We define the cre-
ation operator for an exciton at site i as �

† j̃m′
jm (i) = a†

i jmai j̃m′ ,
where j = 1/2 and j̃ = 3/2 are fixed. The exciton created by
the above operator consists of a hole located at a j̃ = 3/2
state with projection m′ and an electron with j = 1/2 with
projection m. These excitons are called “spin-orbit excitons”
because the electron-hole pair is present in a spin-orbit en-
tangled state. A similar excitonic operator was used before
in Refs. [25,28] to investigate the condensation of spin-orbit
excitons for the n = 4 case. The present work shows the
condensation of these excitons to be stable for n = 3.5.

To investigate excitonic condensation we measure
the real-space correlation between the excitons, i.e.,
〈�† j̃m̃′

jm̃ (i)� j̃m′
jm (i′)〉. Here we would like to mention that

an earlier similar type of analysis was performed for
one-dimensional systems to investigate quasiexcitonic
condensations but in simpler models such as the extended
Falicov-Kimball model [65].

For the spin-orbit excitons, as the quantum number m can
take two values (m = ±1/2), this gives rise to two channels
for excitonic condensation, namely the singlet and triplet
channels [29,66]. We define the exciton creation operators in
both channels in the following manner:

φs(i) =
∑

m

�
j̃m†
jm (i), (6)

φt (i) =
∑
mm′

�
j̃m†
jm′ (i)τmm′ , (7)

where τ are the Pauli matrices.
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FIG. 2. Panels (a) and (b) show the exciton-exciton correlation
in real space, at U/W = 4.0 and λ/W = 0.1 using a L = 48 system
size. For panels (a) and (b), m = 1/2 and i′ = 23 (in the middle of
a chain with open boundary conditions) are fixed. Panel (c) shows
the momentum distribution function for excitons at U/W = 5.0 and
λ/W = 0.15. Similar momentum distribution functions of excitons
for various λ’s are shown in panel (d). A system size L = 32 is used
for panel (d).

In Fig. 2(a), we show the real-space correlations between
the exciton pairs (with respect to the central site defined as
i′ = 23) for a system size L = 48, at U/W = 4.0 and λ/W =
0.1. In Fig. 2(a), we fix m = 1/2. Note the robust block
ordering [+ + −−] that we found in the pair-pair correla-
tion between excitons (see “m̃′ = m̃ = m′ = 1/2,” red line),
consisting of holes and electrons with the same projection
jeff
z = 1/2. We also noticed the presence of very long distance

correlations between excitons of opposite projections [see
“m̃′ = m̃ = −m′ = −1/2” in Fig. 2(a), black line], i.e., one
exciton consists of a hole and electron pair with projection
jeff
z = 1/2 and the other exciton is made up of a hole and

electron with projection jeff
z = −1/2. Note that the above

discussed excitonic correlations will contribute to both the
singlet and the z component of the triplet channels. Similarly,
we can create excitons consisting of electron ( jeff

z = 1/2) and
hole ( jeff

z = −1/2) with different projections: The correla-
tions between these excitons are shown in Fig. 2(a) (see “m̃′ =
−m̃ = m′ = −1/2,” orange line) and they display a rapid
exponential decay. These excitonic correlations contribute to
the x and y components of the triplet channel.

Using the above information and Eqs. (6) and (7), we
calculate the real-space correlations for the excitons in the
singlet and triplet channels (z component). As shown in
Fig. 2(b), clearly the triplet channel is the dominant showing
quasi-long-range order (likely a very slow power-law decay in
our finite one-dimensional system). As discussed before, the

x and y components of the triplet channel have exponential
decay. This asymmetry between the x, y, and z components
is just a consequence of targeting the total Jeff

z sector in our
DMRG simulations. For the one-dimensional case studied
here, long range correlations (slow power-law decays) are
used as evidence for excitonic condensation. For simpler two-
band models, early work [29] showed that condensation of
excitons in the triplet channel leads to a spin-density wave
and in the singlet channel leads, instead, to a charge-density
wave.

Surprisingly, we also observed block magnetic ordering in
the excitonic condensate phase reported here, which will be
discussed in detail in Sec. III B. The dominating correlations
in the z direction of the triplet channel implies that the relevant
excitons are created by pairing electron and holes with the
same jeff

z , and from now on we will focus only on these
excitons.

The momentum distribution function for excitons is
�m(q) = 1

L

∑
i,i′ 〈�† j̃m

jm (i)� j̃m
jm(i′)〉eιq(i−i′ ). This quantity pro-

vides an indication of the number of excitons (with projection
m) at momentum q. In Fig. 2(d) we show �m(q) for U/W = 5
and various λ’s. For spin-orbit coupling strength λ/W � 0.07,
in the ferromagnetic region (to be discussed in more detail in
the next subsection), the momentum distribution function is
nearly flat. But at larger spin-orbit coupling, excitons con-
dense at momentum π/2 and on further increasing λ, the
number of excitons at q = π/2 again decreases, as shown in
Fig. 2(d). The spin-orbit coupling strength for this crossover
from the ferromagnetic phase to the block-excitonic conden-
sate depends on the strength of U . We noticed the interesting
feature [see phase diagram in Fig. (1)] that for U/W � 5, a
larger U needs a larger λ for the condensation to occur. We
also found π/2 order in the excitonic correlations above the
IC-SDW region, as shown in the phase diagram of Fig. 1, con-
trary to the strong coupling region, where increasing U needs
a smaller λ for stabilizing the block-excitonic condensate.

We also show the finite-size scaling of the excitonic mo-
mentum distribution function in Fig. 2(c), for system sizes
L = 8, 16, 24, and 32. The nearly linear growth of �1/2(q =
π/2) with the system size (L) again suggests the presence of
a robust excitonic condensation. Long-range order is possible
because the U (1) symmetry is explicitly broken in the model,
as discussed in the Supplemental Material [61].

B. Magnetic ordering

In this subsection, we will discuss and show the evidence
for the different types of magnetic orderings found in the
phase diagram. To investigate the various magnetic orderings,
we calculate the spin-spin correlation 〈Si · S j〉 and associ-
ated spin structure factor S(q) = 1

L

∑
i, j〈Si · S j〉eι(i− j)q. We

also calculated the averaged local moments, 〈S2〉 = 1
L

∑
i〈S2

i 〉.
Similarly we calculated 〈L2〉, 〈(Jeff )2〉, and 〈L · S〉. To evalu-
ate the angle between the average local spin and average local
orbital moment, i.e., φLS , we used φLS = cos−1( 〈L·S〉

〈l〉〈s〉 ), where

〈l〉(〈l〉 + 1) = 〈L2〉, and 〈s〉(〈s〉 + 1) = 〈S2〉.
For U/W � 3.5, we found that the IC-SDW region is

smoothly connected to the noninteracting limit. In this region
(red region in Fig. 1) the local moments gradually form up to
the saturated values 〈S2

i 〉 = 2.875 and 〈L2
i 〉 = 1 as we increase
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FIG. 3. In panel (a) the real-space spin-spin correlations are
shown for U/W = 3 and U/W = 5, and for λ/W = 0 and λ/W =
0.15. In panels (b) and (c), the spin structure factor S(q) is shown
for U/W = 3 and U/W = 5, respectively, and for various values of
λ/W , as indicated.

U/W . Eventually this IC-SDW phase crossovers to the ferro-
magnetic (FM) phase. We noticed that in this IC-SDW region,
the spin-ordering vector continuously changes depending on
the values of U and λ, as shown in Ref. [61], which we
believe is the result of Fermi surface renormalization by the
combined effect of U and λ. In Fig. 3(a), we show the
real-space spin-spin correlation for U/W = 3 and λ/W = 0
depicting the incommensurate order, for a system size L = 32.
By increasing λ, we found the block magnetic ordering phase
above this IC-SDW region, but only as long as U/W � 1.0,
as shown in the phase diagram Fig. 1. This block magnetic
order survives up to λ/W ≈ 1. In Fig. 3(b), we display the
spin structure factor S(q) for U/W = 3 for various λ/W ’s
depicting the clear transition from IC-SDW to block magnetic
order. We also show the real-space spin-spin correlation at
U/W = 3 and λ/W = 0.15 in Fig. 3(a), portraying the block
magnetic order (↑↑↓↓↑↑).

As shown in Fig. 1, for λ/W = 0 the above mentioned IC-
SDW phase is directly connected to the ferromagnetic (FM)
region in the strong coupling limit; this crossover happens
approximately at U/W ≈ 3.9. In this FM phase, the local spin
and orbital moments are fully saturated. The saturated values
of the moments can be understood by considering the two-
sites case in the large U limit. As we are interested in density
n = 3.5, in the large U limit the main contribution to the
two-sites ground state will arise from the d3-d4 configuration.
The d3 site will have local 〈S2〉 = 3

2 ( 3
2 + 1) = 3.75, while

the d4 site will have local 〈S2〉 = 2, leading to an average
2.875. Similarly the average local moment 〈L2〉 = 1 arises
from 〈L2〉 = 0 (for d3) and 〈L2〉 = 2 (for d4).

As we increase λ in this FM phase, the system eventually
transitions to the block magnetic ordering. In Fig. 3(a), we
show the real-space spin-spin correlations for U/W = 5.0
and λ/W = 0.0, and for U/W = 5.0 and λ/W = 0.15, as
evidence of the ferromagnetic and block magnetic orders,
respectively. The spin structure factors for U/W = 5.0 are
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FIG. 4. (a) Average local moments and 〈L · S〉/〈l〉〈s〉 for U/W =
5, shown for various λ/W s. In panel (b), φLS is presented for several
λ/W ’s and U/W ’s, where the color depicts the value of φLS as shown
in the side panel scale.

shown in Fig. 3(c) for various λ′s, depicting the crossover
from the ferromagnetic to the block magnetic ordered phases.
As discussed in Sec. III A, we suspect this block magnetic
ordered phase is related to the condensation of spin-orbit
excitons at momentum q = π/2. Note that for all the points
shown in Fig. 1 in the block exciton condensate region (green
region in the phase diagram of Fig. 1), we found block mag-
netic ordering and condensation of excitons at q = π/2. We
also noticed that, as we increase λ, gradually �1/2(q = π/2)
decreases and the system transitions smoothly into a paramag-
netic (PM) phase, with a nearly flat spin structure factor. This
PM phase is exotic because it is stabilized at large SOC and
large U/W . Its properties will be studied in future work.

Now we turn our focus towards the effect of spin-orbit
coupling on the local moments. In Fig. 4(a), we fixed U/W =
5, and on increasing λ we observed that the local 〈S2〉 and 〈L2〉
remain nearly 2.875 and 1.0, respectively. But although their
magnitudes are nearly constant there is a substantial change
in the relative orientation of the spin and orbital moments,
i.e., they gradually modify their relative angle from π/2 to
0. This rotation affects the local 〈(Jeff )2〉, which decreases as
the spin and orbital moments become parallel. In Fig. 4, we
show the average angle between the local spin and orbital
moments. We notice that, as we increase U , smaller λ’s are
enough to render S and L parallel to each other. This indicates
that Coulomb interactions enhance the effect of spin-orbit
coupling and help to entangle the spin and orbital moments.
It is interesting to observe that the block excitonic phase we
found lies in the region where L and S are parallel to each
other with 〈L · S〉 ≈ 〈l〉〈s〉 ≈ 0.8. We would like to mention
that 〈L · S〉 is directly related to the branching ratio calculated
by XAS (x-ray absorption spectroscopy) experiments for the
materials where SOC is robust [67].

C. Local densities and density of states

In the last two subsections we established the presence
of a block excitonic condensate, accompanied with block
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FIG. 5. Average local occupations 〈njm〉 shown for U/W =
0.01, U/W = 3.0, and U/W = 5.0, with increasing λ/W . For j =
1/2 and j = 3/2, m can be {±1/2} and {±1/2, ±3/2}, respectively.

magnetic order. Now we will discuss the spin-orbit basis-
resolved average local occupations 〈njm〉 = 1

L

∑
i〈ni, jm〉 using

a L = 16 sites system. We also calculate the DOS (ρ jm(ω −
μ)) on a four-site chain using Lanczos [64] and on a L =
16 system using the DMRG correction vector method [63],
where μ is the chemical potential evaluated via (E (N + 1) −
E (N − 1))/2 for a system with N electrons. In particular, we
used the DMRG++ computer program [68] and the Krylov
formulation [69] for the DMRG correction vector method
[63]. Details on these calculations are provided in Ref. [61].

In Fig. 5, we show the effect of spin-orbit coupling on the
average local occupations 〈njm〉 for three different U values,
i.e., U/W = 0.01, U/W = 3.0, and U/W = 5.0. Before ex-
plaining the results we would like to mention that the occupa-
tions in the t2g orbital basis for any λ and U are found to be the
same, i.e., 〈nσα〉 ≈ 0.5833, which is a consequence of using
degenerate orbitals in the kinetic energy term, and Coulomb
interaction and spin-orbital coupling that do not break this
symmetry in the t2g orbitals. The “good” basis for systems in
the presence of spin-orbit coupling (in the noninterating limit)
is provided by the j, m states, thus it is reasonable to discuss
the occupation in terms of 〈n jm〉. For small values of Coulomb
interaction, such as U/W = 0.01, we clearly reproduce the
physics of the noninteracting limit. For λ = 0 we found
〈n jm〉 ≈ 0.5833 and as we increase λ the system transitions to
a jeff = 3/2 metallic regime where the low-energy jeff = 3/2
band is fractionally filled with 〈n3/2m〉 = 0.875 electrons per
site, and the higher energy band jeff = 1/2 is empty. At larger
U/W values, this jeff = 3/2 metallic phase is pushed towards
larger λ. As also shown in Fig. 5, for U/W = 3 and U/W = 5
we do not find a jeff = 3/2 metal for λ/W as large as 2.0. This
explains the curvature of the lower boundary of the jeff = 3/2
metal in the phase diagram Fig. 1. To confirm these results,
we also calculated the local occupations for different U/W ’s
at a fixed λ/W = 2.0 and found that increasing U gradually
increases the filling in the jeff = 1/2 state.

Now let us discuss the DOS calculated using the Lanczos
method employing a four-site cluster with open boundary
conditions. We checked that even using such a small four-
site system, we obtain the same phases as in the phase
diagram Fig. 1. First, let us discuss the total DOS ρ(ω − μ) =

0
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FIG. 6. Density of states, ρ jm(ω − μ), near μ shown for various
values of λ/W , and at jeff = 3/2 and jeff = 1/2 in panels (a) and
(b), respectively. In panels (c) and (d), the total ρ(ω − μ) is shown
for λ/W = 0.15 and λ/W = 0, respectively. All the above results are
calculated for a L = 4 (OBC) site cluster using Lanczos at U/W =
5.0. A broadening η = 0.1 was used for all the results above. For j =
1/2 and j = 3/2, m can be {±1/2} and {±1/2, ±3/2}, respectively.

∑
jm ρ jm(ω − μ) for λ = 0, as shown in Fig. 6(d) for U/W =

5.0 where we have a FM ground state. We noticed that away
from the chemical potential we have four dominant peaks,
named P1, P2, P3, and P6. These single-particle excitations
can be understood in the strong coupling limit using a two-site
cluster, as explained in Ref. [61]. The interesting feature is
the presence of a metallic band near the chemical potential: In
the two-site limit this band consists only of two single-particle
excitations P4 and P5. This metallic band in the strong
coupling limit [61] contains nearly 0.5 itinerant electrons per
site, which are moving in the ferromagnetic background of
the other electrons, and leads to a FM metal. For U/W = 5,
the occupied part of this metallic band is made of nearly 0.7
electrons per site.
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FIG. 7. Density of states, ρ jm(ω − μ), shown for a L = 16 site
system at λ/W = 0.15 and λ/W = 0 in panels (a) and (b), respec-
tively. The DMRG vector correction method is used to calculate these
results. U/W = 5.0 and a broadening η = 0.1 are employed. The
inset in panel (a) contains a finite-size scaling of the charge gap at
λ/W = 0.15 and U/W = 5.0. For j = 1/2 and j = 3/2, m can be
{±1/2} and {±1/2, ±3/2}, respectively.

Let us investigate the effect of λ on the density of states.
In Fig. 6(c), we show ρ(ω − μ) for U/W = 5 and λ/W =
0.15. At these couplings our Lanczos results show block
magnetic order (with block excitonic order). We noticed that
the positions of the peaks away from μ are not changed much,
but the DOS at μ decreases with a tendency to open a gap as
we move into the block excitonic phase. To explore this issue
further, we calculated the j, m-resolved DOS ρ jm(ω − μ) near
the chemical potential for different λ/W values, as shown in
Figs. 6(a) and 6(b). For both jeff = 3/2 and 1/2, note that
with increasing λ/W the DOS near μ decreases with the split
in the metallic band. But for jeff = 1/2, the DOS below μ

gradually decreases to 0, because in the limit of very large
λ/W the jeff = 1/2 states will be empty. It should be also
noted that for λ/W = 0.5, we already see the emergence of
states near the chemical potential for jeff = 3/2, with the
system moving towards the paramagnetic phase. From the
above exact analysis of the four-site system, we can conclude
that there is a clear tendency towards the opening of a gap in
the block phase, thus a clear tendency to form an insulator.

To confirm that the above described results persist for
larger systems, we also calculated ρ jm(ω − μ) near the chem-
ical potential using the DMRG vector correction method for
a L = 16 site system. We again fixed U/W = 5 and focused
on λ/W = 0 and λ/W = 0.15, which shows ferromagnetic
and block magnetic ordering, respectively, as discussed in
Sec. III B. We noted that the metallic band is clearly present
in the ferromagnetic phase, see Fig. 7(b). This suggests that
indeed there is a fraction of electrons that develop a metallic
band, having other localized electrons create a ferromagnetic
background with spins S ≈ 3/2 [61]. If now we increase λ/W
to 0.15, driving the system towards the block excitonic phase,
both the jeff = 3/2 and 1/2 sectors show a tendency to open

a gap and being insulating. These results further confirm the
understanding deduced from the small L = 4 exact result. To
establish the insulating nature of the block excitonic phase,
we calculated the single-particle charge gap �c = EN+1 +
EN−1 − 2EN , where N is the total number of electrons. We
performed finite-size scaling of the gap �c using various
system sizes between L = 8 and L = 44. As shown in the
inset of Fig. 7(a), we noticed that limL→∞ �c(L) converges
approximately to 0.1 eV.

The block phase shown in this paper resembles the block
magnetic order phase reported earlier in the context of three-
orbital Hubbard models. In fact, block magnetic ordering,
without the excitonic condensate component, has been found
previously in models without spin-orbit coupling, in the con-
text of the orbital selective Mott phase (OSMP) [70–74].
In the latter, two orbitals are metallic with fractional filling
and one orbital is insulating with half filling. However, note
that the block phase discussed in this publication is not
accompanied by an OSMP phase, as indicated by the average
local occupations. Instead the block phase discussed here is
accompanied by the condensation of spin-orbit excitons at
momentum q = π/2 for which a finite spin-orbit coupling is
a necessary condition.

IV. CONCLUSIONS

In this paper, we used an accurate numerical technique,
DMRG, to construct the λ vs U phase diagram for the
one-dimensional three-orbital Hubbard model at n = 3.5.
As our main result, we provide numerical evidence for the
condensation of spin-orbit excitons in the fractionally filled
three-orbital Hubbard model. Our calculations show that the
spin-orbit excitons condense in the triplet channel and at mo-
mentum π/2, for all the points shown inside the green region
of the phase diagram displayed in Fig. 1. This quasicondensa-
tion of excitons is accompanied by tendencies to open a gap
at the chemical potential and also by block magnetic ordering.
Interestingly, the block excitonic condensate unveiled here
can be stabilized by introducing the spin-orbit coupling on
both the IC-SDW and ferromagnetic metallic phases. We also
noticed that in this block excitonic condensate phase, local
spin and orbital moments are highly entangled and nearly
parallel to each other.

We believe the results reported in this publication—
which are unique given the considerable computational ef-
fort needed that requires vast computational resources—will
encourage further theoretical and experimental investigations
on fractionally-filled iridates [75–79] and also on other quasi-
one-dimensional materials with large spin-orbit coupling.
While our model calculations cannot establish which precise
material will realize the phase unveiled, we believe from now
on the block condensate has to be considered among the
candidate states when n = 3.5 materials are studied.
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