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Due to the intrinsic complexity of the quantum many-body problem, quantum Monte Carlo algorithms and
their corresponding Monte Carlo configurations can be defined in various ways. Configurations corresponding
to few Feynman diagrams often lead to severe sign problems. On the other hand, computing the configuration
weight becomes numerically expensive in the opposite limit in which many diagrams are grouped together. Here
we show that for continuous-time quantum Monte Carlo in the hybridization expansion the efficiency can be
substantially improved by dividing the local impurity trace into fragments, which are then sampled individually.
For this technique, which also turns out to preserve the fermionic sign, a modified update strategy is introduced
in order to ensure ergodicity. Our (super)state sampling is particularly beneficial to calculations with many d
orbitals and general local interactions, such as full Coulomb interaction. For illustration, we reconsider the simple
albeit well-known case of a degenerate three-orbital model at low temperatures. This allows us to quantify the
coherence properties of the “spin-freezing” crossover, even close to the Mott transition.
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I. INTRODUCTION

Continuous-time quantum Monte Carlo algorithms are
state-of-the-art, numerically exact methods for the solution of
the Anderson impurity model (AIM) [1–4]. These are widely
used for the description of the physics of magnetic impurities,
Kondo systems, transport through quantum junctions and are
also employed as auxiliary models in dynamical mean field
theory (DMFT) calculations for lattice models of correlated
electron systems. Several high-level open source implemen-
tations of DMFT and of its merger with density functional
theory have been recently made available [5–9].

One of the most successful flavors of continuous-time
quantum Monte Carlo algorithms is the strong-coupling hy-
bridization expansion (CT-HYB) [10]. CT-HYB is the method
of choice for multiorbital impurity models with general in-
teractions because one observes only a moderate sign prob-
lem provided that the bath problem has sufficient symmetry.
This is because CT-HYB splits each Monte Carlo configu-
ration into a noninteracting bath part and a fully interacting
impurity part and solves the impurity part using an exact
diagonalization/FullCI-type method. However, the dimension
of the impurity Hamiltonian grows exponentially with the
number of orbitals and so does the computational effort with
it. In practice, correlated d or f shells as well as small
correlated molecules can be treated with CT-HYB.

Yet, reaching low temperatures is still challenging due to
the quadratic scaling of the impurity problem with inverse
temperature. This follows from the fact that the mean order of
diagrammatic expansion grows linearly with inverse tempera-
ture, and both the computational cost of evaluating a single
configuration as well as the observed autocorrelation time
between configurations scale linearly with expansion order.

While the exponential scaling with the number of orbitals
and the quadratic scaling with the inverse temperature are
intrinsic to the local problem, potentially model-dependent
improvements to the prefactor of this overall scaling can be
achieved.

Common approaches to such optimization are block diago-
nalization of the local Hamiltonian using conserved quantities
[3,11] and binning, tree [4], or equivalent [12] algorithms in
so-called “matrix-matrix” implementations of CT-HYB. Ad-
ditionally, with a similar motivation as for our method, outer
truncation of the local trace to the few dominant contributions
and calculation of those with more efficient sparse-matrix
methods has been applied particularly to large systems at low
temperatures [13]. Other more advanced strategies are local
updates in imaginary time [14], a fast-rejection/acceptance al-
gorithm by calculating upper/lower boundaries of the weight
[12], or a partial summation of diagrams to extract more
information out of one Monte Carlo configuration [15].

Here we consider a matrix-vector version of the CT-HYB
algorithm as implemented in the w2dynamics package [9]
and investigate the possibility of sampling the sum over the
eigenstates of the local impurity in the Monte Carlo simu-
lation. A hard outer truncation of high energy states (so far
typically used in calculations with w2dynamics) constitutes an
approximation and it is unclear whether it retains ergodicity.
The approach proposed here, instead, is numerically exact
and furthermore exceeds the performance benefits of hard
truncation substantially.

We formulate two versions: the “superstate” -sampling
algorithm, where states grouped by the blocks of the Hamil-
tonian are sampled together, and the “state” -sampling algo-
rithm, where each many-body state of the impurity is sampled
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individually. Conceptually, these methods can be interpreted
as an equivalent of the segment algorithm for general inter-
actions. Our improvements touch the core of the exponential
scaling of CT-HYB and manage to significantly reduce the
computation time of a Monte Carlo weight. Furthermore,
they are in principle compatible with all of the other above-
mentioned algorithmic improvements. Using a five-orbital
AIM with the most general form of the electron-electron
Coulomb interaction as an example, we achieve speed-up
factors verging on three orders of magnitude.

First, we review the basic formulas of CT-HYB in Sec. II.
In Secs. III and IV, the superstate and state sampling methods
are introduced. In Sec. V, we comment on the performance
and the average sign, while in Sec. VI we demonstrate the
capabilities of the (super)state sampling algorithm with a
simple physical example.

II. HYBRIDIZATION EXPANSION

Let us start with a brief review of the hybridization-
expansion continuous-time quantum Monte Carlo algorithm,
focusing on the formulas needed to explain our changes. For
a complete introduction to this method, see Ref. [4]. We
are concerned with the solution of a multiorbital Anderson
impurity model, whose Hamiltonian can be written as

H = Hloc[d , d†] +
∑

pλ

(Vpλ f †
p dλ + H.c.) +

∑
p

Ẽp f †
p fp, (1)

where dλ annihilates a fermion on the impurity, which con-
sists of spin orbitals λ ∈ {1, . . . , 2Norb}, and fp annihilates a
fermion on the bath, where the quantum number p can be
continuous. Vpλ and Ẽp parametrize the hybridization and bath
levels, respectively, while Hloc is a generic interacting local
(impurity) Hamiltonian.

The expansion of the partition function Z = Tr e−βH in
terms of the bath hybridization can be written as [4]:

Z = Z0

∞∑
k=0

∑
λ1,λ

′
1

∫ β

0
dτ1

∫ β

0
dτ ′

1 · · ·
∑
λk ,λ

′
k

∫ β

τk−1

dτk

∫ β

τ ′
k−1

dτ ′
k

× Tr

[
Tτ e−βHloc

k∏
i=1

d†
λi
(τi ) d

λ′
i
(τ ′

i )

]
det[�λiλ

′
j
(τi − τ ′

j )]i j,

(2)

where Z0 is the partition function for the bath part, β = 1/T
is the inverse temperature, Tτ denotes path ordering in imag-
inary time, and �(τ ) = V †(∂τ − Ẽ )−1V is the hybridization
function, which encodes the total retardation effect of the bath
on the local fermions.

Schematically, Eq. (2) can be written as follows:

Z =
∑
C

wloc(C)wbath(C), (3)

where C := (τ1, τ
′
1, λ1, λ

′
1, . . . , τk, τ

′
k, λk, λ

′
k ) denotes an in-

finitesimal term in the expansion, i.e.,

∑
C

:=
∞∑

k=0

∑
λ1,λ

′
1

∫ β

0
dτ1

∫ β

0
dτ ′

1· · ·
∑
λk ,λ

′
k

∫ β

τk−1

dτk

∫ β

τ ′
k−1

dτ ′
k . (4)

In the conventional continuous-time hybridization expansion
quantum Monte Carlo (CT-HYB) algorithm, each C is taken
as a Monte Carlo configuration, and the sum (4) is performed
using Markov chain Monte Carlo:

Z =
∑
C︸︷︷︸

QMC

wloc(C)wbath(C). (5)

With wbath = det[. . .] we denote the bath part, correspond-
ing to a determinant of noninteracting hybridization functions,
which can be computed in O(k3) and updated in O(k2) time.
The quantity

wloc(C) =
∑

s

〈s|Ĉ|s〉 (6)

: =
∑

s

〈s|Tτ e−βHloc

k∏
i=1

d†
λi

(τi )dλ′
i
(τ ′

i )|s〉 (7)

is the local weight or local trace of a configuration, where s
indexes the 4Norb many-body eigenstates of the local impurity
Hamiltonian Hloc, and we have introduced the shorthand Ĉ for
the sequence of local operators of the current configuration.
A naïve implementation of Eq. (7) involves k multiplications
of 4Norb × 4Norb matrices, which scales as O(k exp(αNorb))
with a constant α. Reducing the computational impact of the
calculation of wloc(C) is thus usually the main objective of
optimizing CT-HYB codes.

In general, the local Hamiltonian Hloc conserves a set
of quantum numbers. Consequently, the many-body Hilbert
space can be partitioned into a set of linear subspaces {S}, so-
called “superstates” [3], and the Hamiltonian can be brought
into a block-diagonal form with respect to these superstates.
We can write Eq. (6) as:

wloc(C) =
∑
S

wloc,S (C) :=
∑
S

∑
s∈S

〈s|Ĉ|s〉. (8)

In defining the quantum numbers, we impose the additional
requirement that the impurity operators do not take a state
from one superstate to more than one other superstate, thereby
possibly merging multiple blocks of the Hamiltonian into
one superstate. This implies that wloc,S can be calculated
independently for each S . The scaling is now controlled by
the size of the largest superstate (in the worst case), i.e., by
something much smaller than 4Norb . Since the application of
an impurity operator corresponds to a one-to-one mapping
between different superstates (and giving zero if it violates
the Pauli principle), a further optimization is possible: For
each superstate S , one can follow the sequence of superstates
by using this mapping starting with S at τ = 0 until reaching
τ = β. If one reaches zero at any point or ends up in a different
superstate at the other end, wloc,S is exactly zero and does
not need to be calculated using possibly much more costly
linear algebra. We will refer to this procedure as quantum
number checking in the following sections. This concludes
our overview of what we refer to as conventional CT-HYB
method.
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III. SUPERSTATE SAMPLING

A. General description

The main idea of this work is to transform the deterministic
summation over the eigenstates of the impurity in Eq. (6) into
a stochastic summation. The original Monte Carlo configura-
tion is split into many “smaller” weights. While having been
proposed [16], it has never been implemented to the best of
our knowledge.

We focus on two strategies in particular, one that partitions
the sum into subsets by quantum numbers and one that breaks
it up entirely. We call them

(1) “Superstate sampling”: the summation over all super-
states S is now done by Monte Carlo sampling:

Z =
∑
C

∑
S︸ ︷︷ ︸

QMC

∑
s∈S

〈s|Ĉ|s〉wbath(C), (9)

where each Monte Carlo configuration now contains the trace
over all states s within a superstate.

(2) “State sampling”: the summation over all states s in
Eq. (8) is now done by Monte Carlo sampling:

Z =
∑
C

∑
S

∑
s∈S︸ ︷︷ ︸

QMC

〈s|Ĉ|s〉wbath(C), (10)

where each Monte Carlo configuration now contains the local
configuration evaluated for a single outer state s.

In this section, we will focus on superstate sampling, while
state sampling will be discussed in Sec. IV.

The fragmentation of the sum reduces the amount of cal-
culations needed for one local weight and allows us to move
faster through phase space. It is thus particularly beneficial in
systems with low symmetry, which can have many superstates
with small but nonzero contributions to the local weight. On
the other hand, if many quantum numbers can be used in a
calculation with the conventional sampling, an increase in β

results in an effective reduction of the number of possible
outer superstates. This “help” is a side effect of the large
number of operators in the trace present in the low-T limit.
It results in a very high chance of quantum number violation
and it hence substantially restricts the room for maneuver for
the outer superstates. The advantage of superstate sampling is
therefore twofold: at any temperature an easy and natural se-
lection of the most important outer superstates and much less
need for quantum number checking, particularly beneficial at
low T [17].

By sampling superstates, we are sampling a sum of terms
with potentially different signs. This may induce a sign
problem, which would in general be expected to worsen
exponentially with decreasing temperature. (This is why it is
important to combine all possible bath configurations into a
bath determinant in CT-HYB [2].) Yet, we do not observe
any worsening of the average sign in superstate sampling
compared to the original algorithm (cf. Sec. V). A heuristic
argument for this can be summarized thusly: Since the mean
expansion order grows linearly with the inverse temperature
β [2], the average number of superstates that violate the
Pauli principle increases, until at a certain β, we are often

FIG. 1. Average relative contributions of outer superstates to
the local weight per configuration for a typical simulation with
five orbitals and Kanamori interaction [18]. For comparability, the
superstates are ordered by their contribution (i.e., absolute value of
the part of the local weight sum from all states contained in the
superstate) for each individual configuration, i.e., superstate “1” does
not denote one specific constant superstate but always refers to the
biggest contributor.

left with only one outer superstate. For example, we have
observed that for a typical metallic systems, a temperature
of the order of 10−2 of the electronic bandwidth is about
the point where many configurations have only a single su-
perstate contributing to the trace. At such low temperatures,
the local weight in conventional sampling is the sum over
only one outer superstate, so switching to superstate sampling
should not affect the sign.

When multiple superstates contribute, such as in simu-
lations at high temperatures, the switch to superstate sam-
pling could in principle cause a difference depending on the
superstates’ relative weight and relative sign. To illustrate
the typical superstate weight distribution in such cases, we
consider relatively high-temperature simulations. For a five-
orbital model with Kanamori interaction [18], we show the
average distribution of the local weight of a configuration
onto the outer superstates in Fig. 1. It is clear how the local
weight of each configuration is strongly dominated by the
contribution of one superstate. Similar results can be obtained
for a simpler two-orbital model. We can therefore expect
the method to be useful for high temperatures as well, as it
allows us to sample configurations with their “ideal” outer
superstates.

B. Sampling and ergodicity

Since we extend the configurations in the superstate sam-
pling method by an outer superstate, the simulation must
be able to reach every configuration with nonzero weight
independent of its outer superstate to preserve ergodicity.

a. Inner pair moves. While the possibility to change the
outer superstate needs to be available for ergodicity, we ob-
serve that it only needs to be done comparatively rarely in the
simulation. Therefore, we do not change the outer superstate
when inserting or removing a pair of operators, which are
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FIG. 2. Three configurations represented as line segments with
calligraphic letters denoting the superstates. An “inner” (“outer”)
pair move is shown in the upper (lower) part of the figure. The
impurity operators are represented by symbols, whose filledness tells
whether they are creators or annihilators. The imaginary times of
the operators is given by their position along the segment, which
represents the imaginary time axis. The letter above the τ =0 mark
is the outer superstate of the configuration.

the most common moves proposed. We call this variant the
“inner” pair moves: Because we fix the outer superstate, only
states that lie between the inserted or removed operators in
imaginary time can change and need to be recalculated.

Consider the example of the “inner” pair insertion move
shown in the upper half in Fig. 2: The old configuration Cold

is the one shown in the middle panel. We want to perform an
“inner” pair move that inserts the two orange operators with
random times and flavors in the top diagram, which represents
the resulting configuration Cinner. In this most commonly
proposed type of move, new configurations Cinner are only pro-
posed with the same outer superstate as the old configuration
Cold. The superstate sequence between the two new orange
operators is new whereas the part outside them remains as in
the old configuration. These moves are in a sense most closely
connected to the pair moves of conventional sampling as the
outer superstates with the biggest contributions are not likely
to change in local moves.

b. Outer pair moves. In the other local pair moves we
consider, the “outer” moves, the prescription for the superstate
sequence is the opposite. The superstates between the inserted
operators are to be left unchanged, and the sequence must be
continued from there to τ =0 to determine the superstate that
should be used as new outer superstate. An example for an
outer insertion is the move from the configuration Cold in the
middle of Fig. 2 to Couter on the bottom, where the inserted
operators are the same as in the inner move example for
easy comparison. Since we fix the inner part of the superstate
sequence, the entire part “outside” of the orange operators
changes.

The acceptance of outer pair moves is in practice however
significantly smaller than that of the “inner” pair moves.
This can be understood thinking about the limit of local-
in-τ moves: These, in order to be considered local in the
“outer” case, are subject to the additional constraint of hav-
ing the two operators at opposite ends of the trace. In the
next subsection, we discuss a more efficient way to ensure
ergodicity with respect to the outer superstate, the so-called
global τ -shift move. We will also show in Appendix A that the
global τ -shift moves induce an equivalence between inner and
outer moves, which however does not imply equal acceptance
rates.

A final noteworthy detail of this sampling procedure is the
choice of the outer superstate for the initial configuration at
the beginning of the simulation. While it should not influence
the simulation after thermalization, for many highly excited
outer superstates the local weight is close to zero. We thus
select the initial outer superstates randomly with probabilities
proportional to their local weights.

Let us note that one could think of simpler techniques than
the presented moves to ensure ergodicity, e.g., the addition of
a move that changes only the outer superstate or the possibility
to change the outer superstate randomly during each move.
Both of these turn out to be inefficient ways compared to
those we present here. Adding such a move is, however,
necessary for ergodicity in a simulation of a system in the
atomic limit, i.e., without hybridization, because outer (and
inner) insertions would always be rejected, operators for outer
removals are not present, and the move presented in the
following section does not change a configuration without
operators at all. Therefore, we do occasionally propose a
change of just the outer superstate in configurations without
any operators.

C. Global τ-shift moves

A global “τ -shift move” shifts the positions of all operators
in imaginary time by a random �τ ∈ [0, β], which can equiv-
alently be thought of as a shift of the imaginary time axis.
At the same time, the new outer superstate is by construction
chosen to be consistent with this shift of the origin of the
imaginary time axis (see Fig. 3).

Using just inner pair moves and the global τ -shift move, a
superstate sampling simulation is ergodic if and only if it is
ergodic using conventional sampling with pair moves. This is
because if any configuration can be built up using pair moves
in conventional sampling, any configuration can be built up
using inner pair moves with the outer superstate being one
of the contributing ones in superstate sampling. A proof of
ergodicity can be found in Appendix A.

Let us now consider the properties of the τ -shift move.
Over the course of an entire simulation, the proposal prob-
ability for a specific outer superstate in this kind of move
is proportional to the average relative amount of imaginary
time it covers. Since the superstate sequence is cyclic and
effectively also just shifted along the τ axis, there is no need to
perform quantum number checking. A global move similar to
our τ shift was introduced by Shinaoka et al. [5] for a different
technical reason.
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Δτ β − Δτ

FIG. 3. Diagrams representing two configurations that can be
obtained from one another using a τ -shift move. The symbols on
the imaginary time segments represent the impurity operators, with
shapes standing in for flavors and filledness for whether they are
creators or annihilators. Calligraphic letters denote superstates with
the ones above the τ = 0 and τ =β mark giving the outer superstate
of the configuration. When a τ -shift move is performed, all operators
are shifted according to τ → τ − �τ (wrapping around to τ →
τ + β − �τ if necessary).

The proposal probabilities of a τ -shift move and its reverse
are equal. The acceptance probability of this move is 1. In
Appendix B we prove that the bath determinant remains
unchanged, as the action of the τ shift on the hybridization
matrix move effectively corresponds to a number of permuta-
tions and multiplications of rows and columns. Additionally
in Appendix C there is a proof that the local trace remains un-
changed under a combined cyclic permutation of the operators
and corresponding change of the outer superstate.

Let us discuss why τ shift moves allow us to preserve
ergodicity. Inner moves alone cannot change the outer su-
perstate, but only superstates in parts not including τ =
0 = β. τ shifts indeed move “the section with the outer
superstate” away from τ = 0 = β and can hence shift the
operator/superstate sequence in such a way that the outer
superstate changes while the configuration remains otherwise
equivalent. In combination with the ordinary inner pair moves
it can hence change the superstate of any section without need
for outer pair moves.

Due to its favorable characteristics compared to the outer
moves, we usually add just τ -shift moves to the always
necessary inner moves to ensure ergodicity of simulations
with respect to the outer superstate. We choose to propose
τ -shift moves as 0.5% of all moves by default, which was also
the ratio used in all calculations shown later. While a smaller
ratio might improve performance, the potential speedup in
usual cases would be small as the τ -shift moves usually do
not take up the majority of the time.

Additionally, we also allow random changes of the outer
superstate in our implementation during other global moves
that can be used in CT-HYB but which we do not further
discuss in this paper. For such global moves as the flavor
permutations used in w2dynamics, procedures mapping the
old superstate to a new proposal based on the specific move
could actually be thought of, but since these moves only serve
to go between badly connected areas of phase space, we prefer
not to restrict them more than necessary.

FIG. 4. Average relative contribution of outer states within one
superstate [19], ordered by the size of contribution per configuration,
normalized to the total weight of that superstate. This graph was
obtained from a typical simulation of a five-orbital system with
Kanamori interaction [18].

IV. STATE SAMPLING

A. General description

The superstate sampling method of the last section already
significantly reduces the cost of computing a local weight.
Similarly to the predominance of a single superstate in the
local weight (Fig. 1), we often find that within one superstate,
the individual eigenstates show a similar trend (Fig. 4, using
the same model [18]): The contribution of one superstate S is
dominated by the contribution of one or a small group of its
eigenstates s ∈ S . This suggests trying to apply the principle
of superstate sampling one level deeper in the form of an
“(eigen)state sampling.”

We split the local weight further into even smaller parts,
where the summation over all states s within a superstate S is
also done as a Monte Carlo sum:

Z =
∑
C

∑
S

∑
s∈S︸ ︷︷ ︸

QMC

wloc,s(C)wbath(C), (11)

with

wloc,s(C) = 〈s|Ĉ|s〉. (12)

To avoid confusion, let us stress at this stage that our
method does not make any assumption on the contribution of
the superstates to the local weight. It is an exact sampling with
no approximation involved.

Unlike for superstate sampling, a heuristic argument from
conventional sampling for a sign close to 1 cannot be given
(unless a system with superstates containing a single state
each is considered). This stems from the fact that at least
quantitatively, the weight in state sampling is always different
from the one in conventional sampling, as the latter sums up
contributions from at least one entire superstate. However,
as stated earlier, we empirically find the contribution of a
superstate to the local weight is often dominated by one of
its eigenstates. This suggests that the sign should often not be
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much worse than in superstate sampling, as those dominating
states should be sampled considerably more often than other
ones. Because the local weight in state sampling when such
a dominating state s is the outer state has the same sign
as the local weight of the corresponding configuration with
outer superstate S � s in superstate sampling, the maximum
deterioration of the sign as compared to superstate sampling
should be related to the extent to which individual states
dominate the superstate weight contributions. As the time
evolution further suppresses states of higher energy at lower
temperature, causing the lower energy states to dominate the
superstates’ contributions more and more, the “sign gap”
between the methods should also decrease with decreasing
temperature.

Finally, let us note that this sampling technique only
improves performance over superstate sampling if the sum-
mation over the outer states is actually performed as the
outermost summation in the numerical implementation as
well, as opposed to multiplying the operator matrices first.
While performing the summation over outer superstates first
is common in implementations of conventional CT-HYB sam-
pling as this allows the use of quantum number checking
for performance improvement, the summation over the outer
states is instead often performed only after the multiplication
of the operator matrices (per superstate), as this allows the
use of optimizations employing tree structures. As opposed
to these matrix-matrix implementations, there are so-called
“matrix-vector” ones that perform the summation over the
outer states as the outermost one. For more detailed informa-
tion, see Appendix D.

B. Choice of the outer state within a superstate

The crucial point of moves in state sampling compared
to those in superstate or conventional sampling is how to
choose the outer state. This is also the only point in which
our state sampling moves differ from the ones we propose
for superstate sampling. In superstate sampling the choice of
the new outer superstate is clear from the way in which the
superstate sequence is changed by the move. This is the case
for both outer moves and the τ -shift move (cf. Secs. III B
and III C). In state sampling, the situation is different because
a qualitative equivalent of the superstate sequence for states
does not exist. At τ = 0 there is indeed an eigenstate of the
Hamiltonian, but it will change into a linear combination of
multiple eigenstates after the first application of an impurity
operator.

In the inner pair moves (cf. Sec. III B, Fig. 2), we simply
keep the outer state fixed, just as we kept the outer superstate
fixed in the corresponding moves in superstate sampling. For
the kinds of moves which we want to use to change the outer
state, we randomly choose the outer state to be proposed from
a suitable set (cf. Fig. 5). This involves first following essen-
tially the same procedure for a move as in superstate sampling,
which allows us to obtain an outer superstate proposal which
we could call the target superstate. From this target superstate,
we randomly choose a state to propose as outer state, in
our specific implementation according to the distribution in
Eq. (13). In this optimized probability distribution for the
outer state proposal, we take only the eigenenergies of the

different possible outer states into account, as we have found
this to be a useful way to increase the sampling efficiency.

Let us take a look at some detailed examples for these latter
kinds of moves: When the outer pair insertion (cf. Sec. III B)
depicted by Fig. 2 is performed in state sampling, the initial
configuration depicted in the middle is of course extended by
the specification of one outer state s ∈ A, and one of the states
contained in E is randomly selected as the outer state of the
proposed new configuration depicted below it. Similarly, in
the τ -shift move (cf. Sec. III C) depicted by Fig. 3, the initial
configuration depicted on top is extended by the specification
of an outer state s ∈ A and one of the states contained in C is
randomly chosen as the outer state of the proposed configura-
tion. In any further global moves with no particular connection
to the superstate sampling technique, we chose to randomly
propose one of the contributing superstates. Therefore when
they are performed in state sampling, we randomly choose
one of the states contained by the contributing superstates—
the only case in our implementation where outer states from
more than one different superstate could be proposed in one
otherwise identical move.

Proposing one of the possible states with uniform probabil-
ity, however, causes a lower acceptance rate compared to the
analogous moves in superstate sampling, where, e.g., the τ -
shift move even has acceptance rate 1. Therefore, we employ
a more efficient strategy: Since close to τ =0 there is always
just the outer state s propagating with its eigenenergy, we can
make the procedure more efficient by “transferring” the time
evolution of this state from the acceptance to the proposal
probability; i.e., we include it in the proposal probability so
that in the standard Metropolis acceptance probability for-
mula, it cancels with the equivalent factor in the weight of the
configuration. This proposal probability weighting allows us
to incorporate our prior (or easier to calculate) knowledge to
avoid wasting time on proposals that would likely be rejected:
For a well chosen proposal probability, i.e., one close to the
actual weight distribution, we raise the acceptance probability
for all outer states since those outer states that would be
rejected more often with uniform proposal probability are
simply proposed less often. To include the aforementioned
time evolution close to τ = 0, we use the proposal probability

pprop(s) = exp(−(Es − E0) · (τ f + β − τl ))∑
k∈T exp(−(Ek − E0) · (τ f + β − τl ))

, (13)

where T contains all states from all outer superstates that may
be proposed and τ f and τl are, respectively, the imaginary
times of the first and last operator after the move. In this
way, the acceptance rate for outer state changes is significantly
increased and, e.g., reaches about 50% for the global τ -shift
move in typical calculations. The best choice of proposal
probability for such an optimization depends on the weight we
expect: In this case, we essentially assume that the potentially
excited state at τ = 0 will be brought closer to the ground
state by the impurity operators, since if we expected the
energy to stay at the level of the outer state, we could choose
a better proposal probability assuming propagation over the
entire imaginary time with the energy of the outer state (which
corresponds to replacing τ f + β − τl by β in the proposal
probability).
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FIG. 5. Left: a superstate sampling configuration for a two orbital model with Kanamori interaction. Bold horizontal lines denote a time
evolution of an eigenstate, the dotted vertical lines the operators that cause transitions between superstates. Here all superstates have size 1,
except the spin-flip and pair-hopping one. Right: the configuration resulting from application of a global τ shift by �τ to all operators of the
one shown on the left. τ f and τl denote the imaginary times of the first and last operator after the shift. In the superstate sampling algorithm
the local weight is the sum of the red and blue state as outer state of the trace, whereas in the state sampling only one of the two is selected.

V. SPEEDUP QUANTIFICATION

To check the correctness of the results, we use a two-orbital
model with a Kanamori interaction, i.e., density-density, pair-
hopping, and spin-flip terms, and a finite number of bath sites
for which we have a reference solution obtained using exact
diagonalization. Both the reference self-energy as well as one
calculated using our CT-HYB solver are shown in Fig. 13
(Appendix E).

In order to analyze the performance, we use a five-orbital
Hamiltonian modeling a realistic transition-metal impurity on
the surface of a metal [18] with both the full (spherically sym-
metric) Coulomb tensor as well as one derived from the same
interaction matrix restricted to Kanamori-like terms only. We
perform all calculations using w2dynamics [9], with either
the implementation of conventional sampling [20] found in
older versions, or superstate and state sampling proposed
here; other than the sampling method, there are no differences
with significant performance impact between the calculations.
To quantify the performance improvement we compare the
sampling rates, i.e., the raw amount of generated (correlated)
samples per time. For the autocorrelation time we found a
minor increase of about 10% for superstate sampling but only
about 3% for state sampling as compared to the old sampling
method. This can be considered negligible in comparison
to the speedup factors. The mean sign is about 1.0 for the
model with Kanamori interaction using both conventional
and superstate sampling and about 0.98 using state sampling.
For the model with full Coulomb interaction the sign is
significantly less than 1 in all cases, and it is slightly smaller
with state sampling than with the other methods [21]. For the
calculations used to measure the speedup factors, the absolute
values of the mean sign for all three methods can be found in
Fig. 7.

Figure 6 shows the achieved speedup factors (top panel)
and the absolute sampling rates measured in simulations
(bottom panel) of the impurity model with Coulomb inter-
action. We obtain a speedup of the Monte Carlo sampling
up to a factor of about 700 in the considered temperature
range, depending on the used sampling method, temperature,
and interaction. Remarkably, the speedup of our five-orbital

example was never smaller than 100 for the most arduous
case, i.e., the full interaction. The reason why the speedup
factors for the Coulomb interaction are larger under other-
wise equal conditions is that a larger number of superstates
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interaction and cubic interpolation curves plotted logarithmically.
Top panel: speedup factors of the sampling methods compared
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Bottom panel: speed of all the sampling methods for Coulomb
interaction.
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teraction with cubic interpolation. The sign obtained in simulations
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tion. Note that the error of the sign for the model with Coulomb
interaction is considerably larger using conventional sampling than
using other algorithms. The graph also shows that the sign obtained
in state sampling is only slightly worse that that obtained using the
other methods.

contribute on average in this case. A general observation
is that the speedup decreases with decreasing temperature
because the number of superstates contributing to the trace
decreases with decreasing temperature as more operators tend
to cause more quantum number violations. Therefore only the
quantum number checking can be avoided at lower tempera-
tures, whereas at higher temperatures other trace contributions
are present for which matrix-vector products need not be
calculated any more.

Yet, there is still a noticeable speedup even at lower
temperatures where quantum-number checking takes a large
amount of the total time [22]. As the speed-up affects only
the trace calculation, it will also continue to decrease with β

because the computational complexity of the bath determinant
(which scales with β3) is asymptotically larger than that of the
trace calculation.

Another noticeable feature is the bigger advantage of state
sampling over superstate sampling for Coulomb interaction,
which is due to the larger average size of the outer superstates
in that case. The amount of calculated matrix-vector products
is reduced by approximately that factor in state sampling
compared to superstate sampling, as only one of the outer
states is chosen in the former case. This optimization is
only advantageous for a matrix-vector solver like ours, as
additional outer states can be included at negligible further
cost if the entire product of the operator matrices for a
specific outer superstate has been calculated, cf. Sec. IV and
Appendix D. A similar optimization is also possible without
splitting configurations in the superstate sampling method by
using the cyclical invariance of the trace and starting the trace
calculation at a τ where the superstate of the configuration is
smaller than the outer superstate of the configuration, but this
can interfere with time savings from caching of intermediate
state vectors and even the size of the smallest superstate may

be greater than 1. More details on the methods can be found
in Ref. [23].

In conclusion, we find that superstate sampling improves
performance without significant drawbacks to such an ex-
tent that it should always be preferable to the conventional
sampling method. Especially in simulations with few good
quantum numbers, state sampling can provide an additional
speedup, though it can also impact the mean sign. In our ex-
amples, the speedup in the case with full Coulomb interaction
is big enough to clearly outweigh the marginally reduced sign,
but this may depend on characteristics of the system and the
implementation.

VI. APPLICATION: THE SPIN-FREEZING CROSSOVER

In Ref. [24], Werner et al. applied DMFT to a model with
three degenerate orbitals and rotationally-invariant Coulomb
interaction. Upon changing the filling n, they identified a
sharp change in the qualitative behavior of the local spin
susceptibility. For small fillings, the latter becomes rapidly
small at large imaginary times τ , as in a standard metal.
Approaching the Mott transition at n = 3, it starts instead to
closely resemble that of an atomic insulator, i.e., it seems
to become essentially constant in τ . This is surprising, as it
happens for fillings still on the metallic side, before reaching
the metal-insulator Mott-Hubbard transition. The sudden loss
of coherence was interpreted as an abrupt crossover—or even
a true quantum phase transition (“spin-freezing”)—to a bad
metal characterized by violations of the Fermi-liquid proper-
ties, along a line in the zero-temperature n-U phase diagram.

An independent analysis showed, however, convincing
evidence that the same model remains in a metallic phase
away from integer fillings [25]. What changes upon getting
close to the Mott transition is the coherence of the quasi-
particle excitations. The “spin-freezing” is therefore a finite-
temperature—though surprisingly rapid—crossover to a “bad-
metal” rather than a T = 0 phase transition. As long as the
DMFT self-consistence does not lead to a gap in the spectral
function of the bath of the corresponding Anderson impurity
model, the solution at zero temperature must indeed be a
Fermi liquid. This conclusion was already demonstrated more
rigorously in Refs. [26,27].

Yin, Haule, and Kotliar [28] and, immediately after them,
Georges, de’ Medici, and Mravlje [29] performed CT-HYB
calculations of hitherto unprecedented efficiency, reaching
temperatures 1000–1500 times smaller than the half band-
width (see Fig. 6 and Fig. 7 in the two papers, respectively).
The focus was on the functional dependence of Im�(iωn)
which, even after the spin-freezing crossover, was shown to
follow a Fermi-liquid scaling at extremely low frequencies,
visible at these temperatures. A recent study nailed this down
using an advanced multiorbital numerical renormalization
group solver [30].

Similar types of crossovers have been discussed in the
presence of spin-orbit interaction [31] always showing the
change of behavior in the local spin susceptibility at a fixed
temperature. Yet, one would like to unambiguously demon-
strate that this is actually the physics of a crossover from
a good to a bad metal with a coherence temperature that

155112-8



STATE AND SUPERSTATE SAMPLING IN … PHYSICAL REVIEW B 99, 155112 (2019)

becomes fairly small upon approaching the Mott transition at
half filling.

Here, we consider the same model of Ref. [24] as a func-
tion of doping focusing in particular on the temperature de-
pendence. Using the CT-HYB implementation of w2dynamics
[9], featuring both superstate sampling and sliding window
sampling [14], we are able to obtain a clear picture of the
temperature evolution of the local spin response, identifying
a coherence scale, even deep into the “spin-freezing region.”
The quantities of interest are the electronic self-energy �(iωn)
and the static local spin susceptibility

χω=0
loc (T ) =

∫ β

0
dτ χloc(τ ), (14)

i.e., the ω = 0-Fourier component of the spin-spin response
function χloc(τ ) = g2 ∑

i j 〈Si
z(τ )S j

z (0)〉 (with i and j running
over the three orbitals). The half-bandwidth of the semicir-
cular noninteracting density of the states of each orbital is D
(corresponding to 2t in Ref. [24]). The coupling constants of

−1.6
−1.4
−1.2
−1

−0.8
−0.6
−0.4
−0.2

0

0 1 2 3 4 5 6

Im
(Σ

(i
ω

n
))

/D

iωn/D

βD = 1600
μ = 5.2
μ = 7.8
μ = 8.6

−1

−0.8

−0.6

−0.4

−0.2

0

0 0.1 0.2 0.3 0.4 0.5

μ = 5.2, n = 1.8

μ = 7.8, n = 2.35

μ = 8.6, n = 2.63Im
(Σ

(i
ω

n
))

/D

iωn/D

βD = 200
βD = 800

βD = 1600

FIG. 8. Imaginary part of the self-energy on the Matsubara axis
with U/D = 4, J/D = 2/3. Upper panel: three different chemical
potentials at low temperature βD = 1600. The corresponding fill-
ings are reported in the lower panel and represent values across
the spin-freezing crossover (see inset to Fig. 11). A closeup of
the low-frequency region is shown in the lower panel together with
the evolution with temperature. The Fermi liquid behavior for n =
2.63 (μ = 8.6), i.e., deep in the “spin-freezing region,” is recovered
only when considering the lowest temperatures. It indeed occurs
at such a low-energy scale that its existence is not foreseeable by
extrapolating the data at, e.g., βD = 200.

the three-orbital Kanamori interaction are the usual Hund-J
and Hubbard-U (with V = U − 2J) at fixed J/U = 1/6 ratio.

We first focus on the imaginary part of the Matsubara
self-energy Im�(iωn) for three different fillings at the lowest
temperature T = 1/β = D/1600. As shown in Fig. 8, for
filling n = 1.8 the extrapolation of Im�(iωn) for iωn→0 is
not dramatically influenced by the temperature. This indicates
that the system has reached a coherent Fermi-liquid state and
further lowering T does not change the shape of Im�(iωn)
but only makes the Matsubara frequencies denser, remaining
on the same “straight” line. This is a manifestation of the
so-called “first-Matsubara” rule [32–34], according to which
a T 2 scattering rate characteristic of a Fermi liquid gives rise
to a linear-in-T value for Im�(iωn=0).

The situation is drastically different for larger values of
n. Note that at this U, n = 2.35 and 2.63 had been already
assigned to the “spin-freezing region” in the original paper
by Werner et al. (see inset to Fig. 11). At these fillings the
low-frequency part of Im�(iωn) is highly nonlinear and it is
clear that to recover linearity one has to consider the lowest
temperatures (and probably even lower than T = D/1600 at
n = 2.63). This unambiguously hints at a sudden drop of
the Fermi-liquid coherence temperature upon increasing the
filling n.

An inspection of the local spin susceptibility confirms
that the physics at n = 2.35 and 2.63 is not qualitatively
different from the good-metal fillings but it is just the result
of a strong renormalization of the coherence properties. The
results are shown in Fig. 9. For an atom, χ (τ ) is perfectly flat
independently of the temperature, so that its integral from 0 to
β is proportional to β (Curie law). For a Fermi liquid, its shape
instead has to change with temperature in such a way that its
integral gives a constant Pauli susceptibility. Even though the
speed of the decay for n = 2.35 and 2.63 is greatly reduced
compared to n = 1.8 (in agreement with Werner et al.), a
pronounced temperature dependence of χ (τ ) is present also
for the larger fillings, revealing the Fermi-liquid properties.

To conveniently represent the evolution with the filling
we look at the value of the susceptibility at τ =β/2: In the
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Fermi-liquid case this has to go (quadratically) to 0 upon
reducing T . The coherence temperature can be estimated for
instance from the inflection point of χ (τ =β/2) (see also
Fig. 12). By looking at Fig. 10 one immediately understands
how the filling efficiently reduces the temperature scale at
which χ (τ =β/2) approaches 0 and hence how it makes the
coherence temperature drop. At the same time our results
reveal how the physics of this model is qualitatively the same
at all metallic fillings. The difference between the curves for
different n is indeed only the velocity of the renormalization
and the temperature scale at which the Fermi-liquid scaling is
recovered.

The crossover from Curie to Pauli upon reducing the tem-
perature can also be visualized in Fig. 11. Upon approaching
the spin-freezing crossover the Pauli behavior gets progres-
sively pushed to lower and lower temperatures. In the curves
at n = 2.63 for instance it is clear that even lower temper-
atures would be needed to fully resolve it. For this reason
it is hard to unambiguously prove that deep into the “spin-
freezing region” the coherence scale is actually exponentially
small. Even in the good-metal region a precise estimate of
the crossover temperature Tcoh is not a trivial task. First of
all there is a dependence on the observable one is focusing
on. Second, even by looking at the same physical quantity,
different criteria give somewhat different answers.

In Fig. 12 we quantify Tcoh via two approaches based
on χ (τ =β/2). These two ways of quantitatively estimat-
ing Tcoh give compatible results though affected by sizable
errors. Furthermore, even though the crossover from the

FIG. 11. Temperature dependence of χω=0
loc (T ) for different fill-

ings (indicated by square markers of the same colors in the inset
taken from Ref. [24]). The low-T Pauli-like behavior is visible in
the “nonfrozen” regime (lower panel). At higher temperature there is
a crossover to Curie-Weiss physics. The latter gets more and more
dominant in the “frozen” regime (upper panel; upper right region of
parameter space in the inset).

high-temperature ∼1/T Curie to the Pauli region becomes
relatively sharp (i.e., in principle more easily identifiable)
after crossing the “spin-freezing” crossover line, we have
difficulties in precisely determining Tcoh, as the latter is very
small there and we do not have many susceptibility data
points at such low temperatures. Nevertheless, the existence
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and by fitting the high temperature region with Wilson’s formula
[34,35]. We have not been able to obtain good results using the latter
method at the lowest densities.
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FIG. 13. Comparison of the CT-HYB self-energy calculated
using the superstate sampling method (points) to exact diagonaliza-
tion (lines) for a two-orbital system with Kanamori interaction.

of a sudden drop of Tcoh approaching half filling, as in fact
pioneered by Werner et al. in Ref. [24], is undoubted. Simi-
lar conclusions are corroborated by high-precision numerical
renormalization group studies, published in Refs. [36,37]. The
reason why this crossover is so sharp, as well as its shape in
the doping-U diagram, are not fully clear yet [38].

In real materials, the position of the coherence scale can
be strongly influenced by several factors, such as the nonlocal
hybridization between orbitals, absent in the model Hamilto-
nian studied here. One of these factors has been also identified
in the presence of sharp peaks in the noninteracting density
of the states [34], something often coexisting with the many-
body physics in strongly correlated materials.

VII. CONCLUSIONS

We have shown that the sum over all impurity eigenstates
of the local problem in CT-HYB can be divided into smaller
pieces and sampled individually. This fragmentation leads to a
remarkable gain in the algorithm’s efficiency, to some extent
against the general intuition. This is due to the exponential
character of the imaginary time evolution e−Hlocτ , which very
sensitively damps the amplitudes of high energy excitations.
Acting on the core of the exponential scaling in CT-HYB we
manage to achieve speedup factors of the order of 103, with
essentially no worsening of the average sign. Additional work
has to be carried out in order to show whether the impact of
the exponential scaling of the local problem can be reduced
further by employing methods based on our ideas.

The speedup figures have been obtained for a five-orbital
model with full-Coulomb interaction, representing physically
relevant situations such as realistic transition-metal impuri-
ties deposited on metallic substrates. We also discussed the
well-known spin-freezing crossover obtained in three-orbital
Hubbard-model calculations. Reaching very low temperature
allows us to quantify the coherence temperature and the
recovery of the Fermi-liquid properties of the self-energy,
even when this physics is pushed to very low scales by the
proximity to the Mott transition.
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APPENDIX A: PROOF OF ERGODICITY
OF τ SHIFT MOVES

To prove ergodicity, rigorously at least for the case of
density-density interaction, by connecting two configurations
differing only in their outer superstates, we first take an arbi-
trary configuration C and connect it to the “empty” configura-
tion, which has no operators: For an arbitrary outer superstate,
consider the occupation number basis states contained by the
superstates. To get from one superstate to another, impurity
operators need to be applied such that a state from the first
superstate would be transformed into a state from the second
one. To do this in a simulation, perform inner pair moves to
build up this sequence of operators right after τ ; the second
operator from each pair can be placed anywhere resulting in a
configuration of nonzero weight, with one simple possibility
being β − τ if the first is placed at τ . Now, perform one tau-
shift move with �τ being the point right after the last operator
of the inserted sequence, and the outer superstate is changed
from the old, “first” one to an arbitrary “second” one. By
removing all operator pairs in the opposite order, an “empty”
configuration with an arbitrary outer superstate is reached. We
can now run the procedure in reverse to build up a new config-
uration C ′. This implies ergodicity, as any two configurations
C and C ′ are connected by a finite number of moves.

It is simple to demonstrate that ergodicity is not lost if outer
pair moves are replaced by global τ -shift moves or vice versa:
An outer move can be replaced by a sequence of a τ -shift
move, an inner move, and the τ -shift move inverse to the first
one. In the first move, �τ just needs to be sufficiently big to
change the order of the operator pair that would be affected by
the outer move in τ , then it can be performed as an inner move
instead because the section of the trace that is changed has
entirely been moved inside. A τ -shift move can be replaced
by a sequence of outer and inner moves: Remove all operators
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in pairs using outer and inner moves such that an operator-free
configuration with the desired outer superstate is obtained,
then put all operator pairs shifted by �τ back in using outer
and inner moves.

As a final remark, it should be stressed that even though
a τ -shift move has acceptance 1 in superstate sampling, the
acceptance of the outer pair moves remains smaller than that
of the inner pair moves. This is due to the fact that outer moves
are connected to inner moves by specific τ shifts that have a
proposal probability smaller than 1.

APPENDIX B: INVARIANCE OF THE BATH WEIGHT
UNDER GLOBAL τ-SHIFT MOVE

For the proof of the invariance of the bath determinant
(adapted from Ref. [23]), let us consider the form of the
hybridization matrix elements with time ordering along both
dimensions,

�i j = �(τi − τ
†
j ), (B1)

where �(τ ) is the hybridization function, an antiperiodic
function with period β, τi the imaginary time of the ith annihi-
lator (ordered by imaginary time), and τ

†
j the imaginary time

of the jth creator. The number of annihilators and creators
shifted across τ = 0 by the move will be denoted as NA and
NC in the following.

Due to the τ -shift move, the imaginary time of operators
with τ < �τ will be transformed as τ → τ + β − �τ and
that of other operators as τ → τ − �τ . The arguments of the
hybridization functions are only time differences in which the
shift parameter �τ always cancels, but in cases where exactly
one of the two operators had a τ < �τ , the corresponding
matrix element changes its sign.

Additionally, since the ordering of the operators is cycli-
cally permuted, the rows and columns are cyclically permuted
such that the NA first rows become the NA last rows and the
NC first columns become the NC last rows, where NA is the
number of annihilators with τ < �τ and NC the number of
creators with τ < �τ . A cyclic permutation that moves every
column or row exactly one position toward the front (“wrap-
ping around” from the beginning to the end) is equivalent to
swapping adjacent columns or rows k − 1 times, where k is
the size of the matrix in that dimension (as the hybridization
matrix is a k × k matrix for hybridization expansion order k).

Each swap causes the determinant to change its sign, and
the sign change of matrix elements where only one opera-
tor wrapped around the end is equivalent to multiplying all
wrapped rows and columns by −1, where every multiplication
of a column or row causes the determinant to change its sign
as well. In total, expressed using the number of wrapped
operators Nwrap = NA + NC , the determinant thus accumulates

an additional factor of ((−1)k−1)
Nwrap · (−1)Nwrap = (−1)kNwrap ,

where the matrix size k is the expansion order.
This extra factor is compensated by the sign that is incurred

due to time ordering. That the change of this extra sign
is equal to the factor acquired by the determinant may be
proven by considering the amounts of permutations necessary
to restore the ordering after performing a τ -shift move that
wraps exactly one operator around the origin. From this, the
general case follows.

APPENDIX C: INVARIANCE OF THE LOCAL WEIGHT
UNDER GLOBAL τ-SHIFT MOVE

To prove the invariance of the local weight in superstate
sampling under a τ -shift move, we use the cyclic invariance of
the trace (adapted from Ref. [23]). Due to the way superstates
are chosen by definition we know that if the trace is restricted
in such a way that nonzero components are left for only one
superstate at any τ , the result will be the same as if done so
everywhere. Our local weight is effectively the conventional
local weight with such a restriction applied at τ = 0 and
τ = β, and if projection operators P(x) are inserted onto the
outer superstate x at the beginning and end of the product
of time-evolution, creation, and annihilation operators corre-
sponding to current configuration, it can be written as a proper
trace:

wloc =
∑
s∈x

〈s|Ĉ|s〉 (C1)

= tr(P(x)ĈP(x) ). (C2)

As the time evolution does not mix states from different
superstates, the superstate projection operator commutes with
all time-evolution operators,

[exp(−τ Ĥ ), P(x)] = 0, (C3)

for any superstate x and any τ . Because the creators and
annihilators map each source superstate to one unique target
superstate and vice versa, a projector onto a superstate x on
one side of an annihilator or creator can be replaced by a
projector onto the superstate y which the operator maps x to
on the other side of the operator:

d (y|x)P(x) = P(y)d (y|x), (C4)

where the mapping of superstates relevant for the specific case
is given in parentheses in superscript with the meaning that
applying d (y|x) to a state vector (to the right) in the subspace
of superstate x will produce a state vector in the subspace of
superstate y.

Using these two relations, we can commute the projectors
all the way through the product to any other point and also
to any imaginary time by splitting time evolution at that
time into two consecutive time evolutions if necessary. The
projectors will not necessarily be projectors onto the old outer
superstate any more, but onto the superstate that can be found
at that point in the sequence for the current configuration.
After commuting both projectors to the position in the product
corresponding to the imaginary time �τ , the product can be
cyclically permuted such that one of the projectors ends up at
each end of the trace. It is then equivalent to the local weight
of the superstate sampling configuration after a τ shift by
�τ . This shows that the local weight does not change after
a τ -shift move.

APPENDIX D: COMPATIBILITY OF STATE SAMPLING
WITH IMPLEMENTATIONS

Whether the performance of state sampling actually ex-
ceeds that of superstate sampling depends on the type of
CT-HYB implementation it is used with. When reviewing
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standard CT-HYB in Sec. II, we simply expressed the weight
of a configuration as the trace of the product of the corre-
sponding impurity operators. Typically, there are two ways to
calculate it: In a matrix-matrix implementation, the matrices
representing the impurity operators are multiplied with one
another and the trace is obtained from the diagonal elements
of the total matrix product. In the matrix-vector flavor, we
instead explicitly perform a sum over the outer states: For each
outer ket-vector, we repeatedly calculate the matrix-vector
product with the operators, starting from the first all the way
through to the outer bra vector, with which we finally compute
the scalar product.

By decomposing the problem into superstates (i.e., block
diagonalizing the Hamiltonian and choosing the blocks such
that the operators connect them in a one-to-one way), we
simplify the calculation of the trace in that the outer states (per
superstate) follow independent, noncrossing paths through the
superstates. As a result, in the matrix-vector implementation
one can just reduce the size of the initial operator matrices. In
a matrix-matrix implementation the trace of the product can
be decomposed into the sum of traces per outer superstate,

which introduces the explicit summation whose terms can be
calculated using matrices of reduced size as well.

If we consider such an implementation as the starting point,
we just have to restrict the summation to one outer superstate
in either case to implement superstate sampling. While we
can obviously reduce the number of needed calculations by
restricting the outer sum to one state only in the matrix-vector
implementation, i.e., implementing state sampling, there is
no way to beneficially implement this in a matrix-matrix
algorithm. We could use only one of the diagonal elements of
the resulting products, but this does not make the product cal-
culation simpler and therefore does not improve performance
but would only waste the other contributions that could be
included at negligible further cost.

APPENDIX E: EXACT DIAGONALIZATION
CROSS CHECK

Here we show that the results of the CT-HYB results
with superstate sampling agree with an exact-diagonalization
benchmark.
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