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Spin-orbital order in LaMnO3: d−p model study
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Using the multiband d−p model and unrestricted Hartree-Fock approximation, we investigate the electronic
structure and spin-orbital order in three-dimensional MnO3 lattice such as realized in LaMnO3. The orbital order
is induced and stabilized by particular checkerboard pattern of oxygen distortions arising from the Jahn-Teller
effect in the presence of strong Coulomb interactions on eg orbitals of Mn ions. We show that the spin-orbital
order can be modeled using a simple Ansatz for local crystal fields alternating between two sublattices on Mn
ions, which have nonequivalent neighboring oxygen distortions in ab planes. The simple and computationally
very inexpensive d−p model reproduces correctly nontrivial spin-orbital order observed in undoped LaMnO3.
Orbital order is very robust and is reduced by ∼3 % for large self-doping in the metallic regime.
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I. INTRODUCTION

The spin and orbital ordering found in three dimensional
LaMnO3 perovskite is an old problem which is nowadays
quite well understood [1,2], see also early and recent exper-
imental and theoretical references [3–26]. The short summary
and conclusions coming out from these papers are as follows.
At zero temperature, the LaMnO3 lattice has orthorhombic
symmetry. The lattice is distorted due to strong Jahn-Teller
(JT) effect: the MnO6 octahedra are deformed, as shown
schematically using the simplified picture for the ab ferromag-
netic (FM) plane (nonzero tilting of the octahedra is neglected
in this study) in Fig. 1. The magnetic moments on Mn ions
correspond to spins S � 2 and the magnetic structure is of the
A-type antiferromagnetic (A-AF), i.e., FM order on separate
ab planes, coupled antiferromagnetically plane-to-plane along
the crystallographic c axis. The electron occupations on man-
ganese t2g orbitals {xy, yz, zx} are very close to 1, while both eg

orbitals, {x2 − y2, 3z2 − r2}, contain together roughly one (the
fourth) electron. The orbital order which settles in eg orbitals
is not seen when using the standard {x2 − y2, 3z2 − r2} basis
(which corresponds to choosing z quantization axis direction).
However, if we consider a checkerboard pattern superimposed
upon ab plane and choose x axis of quantization on “black”
fields (MnO4 rhombuses m = 2 expanded along x axis, see
Fig. 1), and y axis of quantization on “white” fields (MnO4

rhombuses m = 1 expanded along y axis), then the orbital
order becomes transparent: the orbitals with majority electron
occupations follow the 3x2 − r2 / 3y2 − r2 pattern. Oxygen
distortions repeat along the c axis, and eg orbitals follow. The
common terminology to describe this type of order is C-type
alternating orbital (C-AO) order.

The origin of the orbital order was under debate using
effective 3d models taking into account electron-electron and
electron-lattice interactions [17,27–30]. It was established that
large JT splitting and superexchange are together responsible
for C-AO order observed in LaMnO3 [28–30]. Surprisingly,
electron-lattice interaction is too weak to induce the orbital
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FIG. 1. Schematic view of JT distortions used for the Hartree-
Fock (HF) computations. A single ab plane of the low-temperature
phase of LaMnO3 is presented. Red/blue dots denote positions of
manganese/oxygen ions. The long bars denote energy-privileged
(due to local crystal fields) 3y2 − r2 orbitals (at Mn1) or 3x2 − r2

orbitals (at Mn2 ions)—their cooperative arrangement corresponds
to orbital order which supports FM spin order (spins are not shown).
The numbers close to manganese positions identify different ions
(see the corresponding entries in Table II) as belonging to 3y2 − r2

(m = 1) and 3x2 − r2 (m = 2) orbitals with lower energy. Note that
horizontal and vertical directions on the figure correspond to x and
y axes, respectively, which are at 45◦ angle to the crystallographic
{a, b} axes. Orbital order is repeated in consecutive layers along the
z (crystallographic c) axis.
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order alone and has to be helped by electron-electron su-
perexchange [17]. Importance of the joint effect of strong
correlations and Jahn-Teler distortions was concluded from
the dynamical mean field theory [18]. On the other hand,
superexchange alone would stabilize C-AO order but the order
would be fragile and the orbital ordering temperature would
be too low [29,31].

The large S = 2 spins at Mn3+ ions are coupled by spin-
orbital superexchange which stabilizes A-AF spin order in
LaMnO3 below Néel temperature TN = 140 K. However, spin
order parameter could be little reduced if the ideal ionic
model approximation does not strictly apply and the actual
number of electrons transferred from La to MnO3 subsystem
is reduced to 3 − x, i.e., one has La+(3−x)(MnO3)−3+x, where
x is so-called self-doping.

The idea of self-doping comes directly from ab initio
computations and may be addressed when d−p hybridization
is explicitly included in the d−p model. There, a rather trivial
know-how is that charges on cations, computed using simple
Mulliken population analysis—or better Bader population
analysis—are almost never the same as in the idealized ionic
model. Therefore, it is quite reasonable to introduce into the
d−p model the idea that each La+(3−x) donates onto MnO3

lattice on average not 3 but 3 − x electrons. The self-doping
can be regarded as a free parameter which could be adjusted
using some additional experimental data. However, on the
other hand, one can compute x using ab initio or density
functional theory (DFT) with local Coulomb interaction U
(DFT+U ) cluster computations, exactly like it was done in
Ref. [32]. This is, however, very costly, and contradicts one of
the most important virtues of the d−p model, i.e., time and
cost efficiency of the computations.

Returning now to x in LaMnO3, we note that if x is
finite but still small enough, other magnetic phases could
be more stable—in particular ordinary FM order is found
frequently. Such a situation was studied experimentally in
SrxLa1−xMnO3 [12]; note that here subscript x in the chem-
ical formula SrxLa1−xMnO3 which routinely is identified as
ordinary doping is only roughly similar to our self-doping
x. When we increase ordinary doping x from very small
towards intermediate values, then the metallic regime sets in
SrxLa1−xMnO3 [2].

The purpose of this short paper is to investigate whether
the spin-orbital order observed in LaMnO3 would arise in the
multiband d−p model with the explicit treatment of oxygen
2p electrons. Here we focus on simple modeling of the JT
effect, where oxygen distortions are treated as semiempirical
input for the electronic d−p model. To make the model
realistic, we also include in it nonzero Coulomb repulsion
on oxygen ions and spin-orbit interaction on Mn ions. Note
that model studies done on LaMnO3 before usually neglected
these Hamiltonian components. In addition, we would like to
account for the possibility of nontrivial self-doping x �= 0 (just
as found before in ruthenium, iridium, titanium, and vanadium
oxides [33–35]).

The paper is organized as follows. We introduce the model
Hamiltonian and its parameters in Sec. II. The numerical
method is presented in Sec. III, where we treat the JT effect in
a semiempirical way (Sec. III A), and present the unrestricted
Hartree-Fock approximation in Sec. III B as a method of

choice to describe the states with broken spin-orbital sym-
metries. It was shown recently that this approach gives very
reliable results for doped vanadium perovskites [36]. The
magnetization direction is there one of the open questions
and we discuss possible states in Sec. III C. The ground state
of LaMnO3 is described in Secs. IV A, IV B, and IV C for
three self-doping levels, x = 0, 1/16, and 1/8. Finally, we also
remark on the consequences of neglected eg and t2g splittings
in Sec. IV D. In Sec. V, we present the dependence of orbital
order parameter on the self-doping level and conclude that
the order is robust. A short summary and conclusions are
presented in Sec. VI.

II. HAMILTONIAN

We introduce the multiband d−p Hamiltonian for MnO3

three-dimensional 4 × 4 × 4 (periodic boundary conditions)
cluster which includes five 3d orbitals at each manganese ion
and three 2p orbitals at each oxygen ion,

H = Hd p + Hpp + Hso + Hdiag + Hd
int + H p

int, (1)

where Hd p stands for the d−p hybridization and Hpp for the
interoxygen p − p hopping, Hso is the spin-orbit coupling,
Hdiag is the diagonal part of kinetic energy (bare levels ener-
gies and local crystal fields). Here, Hd

int and H p
int stand for the

intraatomic Coulomb interactions at Mn and O ions, respec-
tively. Optionally one could add JT energy as HJT. However,
instead of introducing this term with a quite complicated
form [37], we shall model the JT interaction by a simple
Ansatz which can be inserted into Hdiag as local potentials
acting on eg electrons. The cluster geometry and precise forms
of different terms are standard; these terms were introduced
in the previous realizations of the d−p model devoted to
transition metal oxides [33–35].

The kinetic energy in the Hamiltonian (1) consists of

Hd p =
∑

{mα; jν},σ

(
tmα; jνd†

mα,σ p jν,σ + H.c.
)
, (2)

Hpp =
∑

{iμ; jν},σ

(
tiμ; jν p†

iμ,σ p jν,σ + H.c.
)
, (3)

where d†
mα,σ (p†

jν,σ ) is the creation operator of an electron at
manganese site m (oxygen site j) in an orbital α (ν) with up
or down spin, σ =↑,↓. The model includes all five 3d orbital
states α ∈ {xy, yz, zx, x2 − y2, 3z2 − r2}, and three 2p oxygen
orbital states, {μ, ν} ∈ {px, py, pz}. In the following we will
use shorthand notation, and instead of {x2 − y2, 3z2 − r2} we
shall write {(z̄), (z)}—this emphasizes the fact that z axis is
chosen as the quantization axis for this eg orbital basis, while
() brackets are here to distinguish these Mn(3d) orbitals from
O(2p) {x, y, z} orbitals. The matrices {tmα; jν} and {tiμ; jν} are
assumed to be nonzero only for nearest neighbor manganese–
oxygen d−p pairs, and for nearest neighbor oxygen–oxygen
p − p pairs. The next nearest neighbor hoppings are ne-
glected. (The nonzero {tmα; jν} and {tiμ; jν} elements are listed
in Appendix of Ref. [33]).

The spin-orbit part, Hso = ζ
∑

i Li · Si, is a one-particle
operator (scalar product of angular momentum and spin op-
erators at site i), and it can be represented in the form similar

155108-2



SPIN-ORBITAL ORDER IN LaMnO3: d−p MODEL … PHYSICAL REVIEW B 99, 155108 (2019)

to the kinetic energy Hkin [38–41],

Hso =
∑

m

⎧⎨
⎩

∑
α �=β;σ,σ ′

t so
α,σ ;β,σ ′d†

mα,σ dmβ,σ ′ + H.c.

⎫⎬
⎭, (4)

with t so
α,σ ;β,σ ′ elements restricted to single manganese

sites. They all depend on spin-orbit coupling strength ζ

(ζ ≈ 0.04 eV [42]), which is weak but still it influences the
preferred spin direction in the A-AF phase. For detailed for-
mulas and tables listing {t so

α,σ ′;β,σ } elements, see Refs. [33,39].
The diagonal part Hdiag depends on electron number opera-

tors. It takes into account the effects of local crystal fields and
the difference of reference orbital energies (here we employ
the electron notation),

� = εd − εp, (5)

between d and p orbitals (for bare orbital energies) where εd is
the average energy of all 3d orbitals, i.e., the reference energy
before they split in the crystal field. We fix this reference
energy for d orbitals to zero, εd = 0, and use only � = −εp

and the crystal field splittings { f cr
mα,σ } as parameters, thus we

write

Hdiag =
∑

i;μ=x,y,z;σ

εp p†
iμ,σ piμ,σ

+
∑

m;α=xy,yz,...;σ

f cr
mα,σ d†

mα,σ dmα,σ . (6)

The first sum is restricted to oxygen sites {i}, while the second
one runs over manganese sites {m}. The crystal-field splitting
strength vector ( f cr

mα,σ ) describes the splitting within t2g and
within eg levels, as well as the t2g to eg splitting, respectively.

Furthermore, the distance 10Dq between t2g levels and eg

levels is ∼1.7 eV [43]). For the group of t2g levels and their
splittings in accordance with local JT distortion of particular
MnO6 octahedron we assume that either yz is lower than zx
orbital, which should correspond to O4 square (in ab plane)
when distorted from an ideal square into rhombus elongated
along y direction, or the opposite: zx is lower than yz or-
bital, which should correspond to O4 distorted into rhombus
elongated along x direction (compare Fig. 2). The splitting
value should be ∼0.1 eV what is an educated guess (compare
Ref. [35]) or even smaller [16]. What concerns the occupied
eg levels—they are also split. We assume varying (ion to ion)
local crystal fields and choose appropriately the local axes of
quantization, following Mn sublattices shown in Fig. 1.

In rhombuses elongated along the x axis (see
Fig. 1), we use 3d orbital states at Mn sites {m},
{α, β} ∈ {xy, yz, zx, y2 − z2, 3x2 − r2} and correspondingly
new {D†

mα,σ } creations operators; the new form of local
crystal field is f cr

mα,σ D†
mα,σ Dmα,σ . Here our shorthand notation

for {y2 − z2, 3x2 − r2} orbitals will be {(x̄), (x)} (now x
is chosen as the quantization axis). On the other hand, in
rhombuses elongated along the y axis (see Fig. 1), we use the
following 3d orbital states α ∈ {xy, yz, zx, x2 − z2, 3y2 − r2}
and correspondingly new D̃†

mα,σ creation operators and the
new form of local crystal field f cr

mα,σ D̃†
mα,σ D̃mα,σ . Here our

shorthand notation for {z2 − x2, 3y2 − r2} orbitals is {(ȳ), (y)}
(now y is chosen as the quantization axis).

dyz

dzx

dxy

dx2−z2

d3y2−r2

px,py,pz

1

�

�

Δ

�

�

10Dq

dzx

dyz

dxy

dy2−z2

d3x2−r2

px,py,pz

2

�

�

Δ

�

�

10Dq

FIG. 2. Artist’s view of the bare 3d levels (no interaction) at
Mnm (m = 1, 2) ions split by local crystal fields originating from JT
distortions, 2p oxygen levels in the d−p model. (a) Left: yz orbital is
lower than zx orbital which corresponds to O4 square when distorted
from an ideal square into rhombus elongated along y direction (see
Mn1 ions in Fig. 1), eg levels are also split—3y2 − r2 is lower than
x2 − z2 (here y axis is chosen as the quantization axis). (b) Right:
zx orbital is lower than yz orbital which corresponds to O4 square
when distorted from an ideal square into rhombus elongated along x
direction (see Mn2 ions in Fig. 1), eg levels are also split—3x2 − r2

is lower than y2 − z2 (here x axis is chosen as the quantization axis).
The average distance between t2g levels and eg levels (10Dq) is
∼1.7 eV [43], and � is oxygen-to-manganese charge-transfer energy.

Returning now to rhombuses expanded along the x axis
when we work with D†

(x)σ and D†
(x̄)σ operators (x quantization

axis) the corresponding canonical transformation is(
D†

(x̄)σ

D†
(x)σ

)
=

(
− 1

2 −
√

3
2√

3
2 − 1

2

)(
d†

(z̄)σ

d†
(z)σ

)
, (7)

where d operators are standard (i.e., for the z quantization
axis).

We can also compute the operators of particle numbers,
which are

D†
(x̄)σ D(x̄)σ = 1

4
d†

(z̄)σ d(z̄)σ + 3
4 d†

(z)σ d(z)σ

+
√

3

4
(d†

(z̄)σ d(z)σ + d†
(z)σ d(z̄)σ ), (8)

D†
(x)σ D(x)σ = 3

4
d†

(z̄)σ d(z̄)σ + 1
4 d†

(z)σ d(z)σ

−
√

3

4
(d†

(z̄)σ d(z)σ + d†
(z)σ d(z̄)σ ). (9)
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Note that orbitals t2g remain the same as before, i.e., they were
not transformed.

When looking at the formulas just above we immediately
see that while in Hdiag the part with local crystal field is
formally expressed by using f cr

mα,σ D†
mα,σ Dmα,σ , then in fact,

thanks to Eqs. (8) and (9) we can still work with old standard
d operators (z quantization axis).

Returning to rhombuses expanded along the y axis, we
should work with D̃†

(ȳ)σ and D̃†
(y)σ operators (for y quantization

axis) and the corresponding formulas are

(
D̃†

(ȳ)σ

D̃†
(y)σ

)
=

(
1
2 −

√
3

2

−
√

3
2 − 1

2

)(
d†

(z̄)σ

d†
(z)σ

)
. (10)

The particle number operators are

D̃†
(ȳ)σ D̃(ȳ)σ = 1

4
d†

(z̄)σ d(z̄)σ + 3

4
d†

(z)σ d(z)σ

−
√

3

4
(d†

(z̄)σ d(z)σ + d†
(z)σ d(z̄)σ ), (11)

D̃†
(y)σ D̃(y)σ = 3

4
d†

(z̄)σ d(z̄)σ + 1

4
d†

(z)σ d(z)σ

+
√

3

4
(d†

(z̄)σ d(z)σ + d†
(z)σ d(z̄)σ ). (12)

To make a short summary: the subsequent HF computa-
tions will be performed in the framework of the standard basis
(i.e., old basis with z quantization axis) and after reaching
self-consistency, we extract occupation numbers using formu-
las from Eqs. (8) and (9); to give an example the electron
occupation in 3x2 − r2 orbitals is just

〈D†
(x)σ D(x)σ 〉 = 3

4
〈d†

(z̄)σ d(z̄)σ 〉 + 1

4
〈d†

(z)σ d(z)σ 〉

−
√

3

4
〈d†

(z̄)σ d(z)σ + d†
(z)σ d(z̄)σ 〉, (13)

etc.
The on-site Coulomb interactions Hd

int for d orbitals take
the form of a degenerate Hubbard model [44]

Hd
int =

∑
m,α<β

(
Ud − 5

2
Jd
αβ

)
nmαnmβ

+Ud

∑
mα

nmα,↑nmα,↓ − 2
∑

m,α<β

Jd
αβ

�Smα · �Smβ

+
∑

m,α �=β

Jd
αβ d†

mα,↑d†
mα,↓dmβ,↓dmβ,↑, (14)

where nmα = ∑
σ nmα,σ is the electron density operator in

orbital α; {α, β} enumerate different d orbitals, and Jd,αβ is
the tensor of on-site interorbital exchange (Hund’s) elements
for d orbitals; Jd

αβ has different entries for the {α, β} pairs
corresponding to two t2g orbitals (Jt

H), and for a pair of two eg

orbitals (Je
H), and still different for the case of cross-symmetry

TABLE I. Parameters of the multiband model (1) (all in eV) used
in HF calculations. For the hopping integrals, we adopt the values
from Refs. [6,38] and include oxygen-oxygen hopping elements in
Hpp, given by (ppσ ) = 0.6, (ppπ ) = −0.15 eV (here we use the
Slater notation [50]). The charge-transfer energy � (5) is defined
for bare levels. The magnitude of splitting within t2g and eg levels is
arbitrarily taken as 0.1 eV and 0.2 eV.

ζ (pdσ ) (pdπ ) � Ud Jt
H Je

H Up J p
H

0.04 −1.8 0.9 2.0 8.0 0.8 0.9 4.4 0.8

terms [31,45]; all these elements are included and we assume
the Racah parameters: B = 0.1 eV and C = 4B.

The local Coulomb interactions H p
int at oxygen sites (for 2p

orbitals) are analogous,

H p
int =

∑
i,μ<ν,σ

(
Up − 5

2
J p

H

)
niμniν

+ Up

∑
iμ

niμ,↑niμ,↓ − 2J p
H

∑
i,μ<ν

�Siμ · �Siν

+ J p
H

∑
i,μ �=ν

p†
iμ↑ p†

iμ↓ piν↓ piν↑, (15)

where the intraatomic Coulomb repulsion is denoted as Up and
all off-diagonal elements of the tensor J p

μν are equal (as they
connect the orbitals of the same symmetry), i.e., J p

μν ≡ J p
H. Up

to now, interaction at oxygen ions H p
int were neglected in the

majority of studies (i.e., for simplicity, it was being assumed
that Up = J p

H = 0).
In the following, we use the parameters Ud , Jd

μν , Up,
and J p

H similar to those used before for titanium and vana-
dium oxides [34,35]; for the hopping integrals we follow
the work by Mizokawa and Fujimori [6,38]. The value
Up ∼ 4.0 eV was previously used in copper oxides [46,47].
Concerning the parameter � an educated guess is necessary.
Old-fashioned computations, such as those reported in the
classical textbook of Harrison [48] and shown in tables therein
suggest 1.5 eV. Results of a more detailed study suggest
that � < 2.5 eV [49]. We also use the Slater notation [50].
We performed our computations for the parameter set in
Table I.

Our reference system is LaMnO3 where the total electron
number in the d−p subsystem is Ne = 18 + 4 = 22 per one
MnO3 unit provided we assume an ideal ionic model with
no self-doping (x = 0), i.e., all three La valence electrons are
transferred to MnO3 unit. Another possibility is to take finite
but small self-doping x. The problem how to fix x is a difficult
question. The best way is to perform independent, auxiliary
ab initio or local density approximation (LDA) with Coulomb
interaction U (LDA+U ) computations and to extract the
electronic population on the cation R (in RMnO3) analogously
like it was done in Ref. [32]. This is however quite expensive.
Without such auxiliary ab initio computations one is left either
with speculations or one should perform computations using
several different values of x.
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III. NUMERICAL STUDIES

A. Computational problems concerning the
Jahn-Teller Hamiltonian

Now let us return once more to the important part of the
electronic Hamiltonian in perovskites, namely to the influence
of JT distortions on the electronic structure. These rarely can
be treated in a direct (and exact) way during the computations.
Most often a semiempirical treatment of JT terms is used:
namely, one assumes an explicit form and the magnitudes
of the lattice distortions, such as suggested by experiments.
Thus the distorted lattice is frozen and we take this as the
experimental fact. The JT modes and the JT Hamiltonian
do not enter computations anymore—their only role is to
deform the lattice and to change Mn–O distances. Instead,
one collects all Mn–O and O–O bond lengths (as suggested
by experiment) and because of modified bond lengths one
modifies the matrix of kinetic hopping parameters. In this
respect, quite popular is the Harrison scaling [48]. We have
used it in the present study.

The second important consequence of changed Mn–O
distances is the creation of additional local crystal fields
(in addition to standard crystal field which is responsible
for t2g to eg splitting). These additional local crystal fields
renormalise bare energy levels within eg doublets and within
t2g triplets. (Note that this picture is valid at the level of
static one-particle effective-potential approximation; i.e., it is
similar like crystal-field cubic potential approximation which
gives rise to standard 10Dq splitting). Thus, as the second
part of modeling JT effect, what we do is the following:
eg doublets and t2g triplets will be split as already discussed
(in the previous section) for Hdiag and f cr

mα,σ .

B. Unrestricted Hartree-Fock computations

We use the unrestricted HF approximation (UHF) (with
a single determinant wave function) to investigate the d−p
model (1). The technical implementation is the same as
that described in Refs. [6,33,34,38] featuring the averages
〈d†

mα,↑dmα,↑〉 and 〈p†
iμ,↑ piμ,↑〉 (in the HF Hamiltonian) which

are treated as order parameters. We use the 4 × 4 × 4 clus-
ters which are sufficient for the present d−p model with
only nearest-neighbor hopping terms. During HF iterations
the order parameters are recalculated self-consistently until
convergence. The studied scenarios for the ground-state sym-
metry were those with spin order: FM, A-AF, G-AF (Néel
state), C-AF (AF in ab plane, repeated in the consecutive ab
planes when moving along the c axis), or nonmagnetic; the
considered easy magnetization direction was either x or z.

To improve HF-convergence we used the quantum chem-
istry technique called level shifting [51]. It is based on replac-
ing the true HF Hamiltonian by a different Hamiltonian—the
one with the identical eigenvectors (one particle eigenfunc-
tions) as the original Hamiltonian and with identical occupied
eigenenergies. The original eigenenergies of virtual states are
however uniformly shifted upwards by a fixed constant value.
When applying virtual level shifting we can obtain some ad-
ditional information. Namely when the splitting between the
highest occupied molecular orbital (HOMO) and the lowest
unoccupied molecular orbital (LUMO), i.e., HOMO-LUMO

TABLE II. Spin-orbital order and electron densities 〈nmα〉 ob-
tained on nonequivalent Mn ions for the HF ground state (at zero
temperature) as obtained for orthorhombic LaMnO3 at self-doping
x = 0 and 0.0625. The index m = 1, 2 denotes a Mn site of a given
sublattice, as shown in Fig. 1. Numbers in bold indicate the most
appropriate quantization direction, i.e., the best local orbital basis
for the description of orbital order at a given sublattice. The HF
calculations are summarized by: the HF energy per MnO3 unit cell,
EHF, and the HOMO-LUMO gap G.

self-doping A-AF / C-AO spin-orbital order
x 0 0.0625

EHF (eV) 123.507 122.156
G (eV) 4.76 0.23

Mn ion sublattice
electron density m = 1 m = 2 m = 1 m = 2
〈nm,xy〉 1.02 1.02 1.02 1.02
〈nm,yz〉 1.00 1.02 1.00 1.02
〈nm,zx〉 1.02 1.00 1.02 1.00

〈nm,x2−z2 〉 0.12 0.88 0.11 0.80
〈nm,3y2−r2 〉 1.00 0.24 0.95 0.27

〈nm,y2−z2 〉 0.89 0.12 0.81 0.11
〈nm,3x2−r2 〉 0.23 1.00 0.26 0.96

〈nm,x2−y2 〉 0.67 0.68 0.68 0.69
〈nm,3z2−r2 〉 0.45 0.44 0.39 0.37

splitting (after correcting for the shift) is negative or zero,
then the single-determinant HF ground state we obtained is
not correct and usually the reason is that the true ground state
is in fact conducting. We remind that the HOMO-LUMO gap
serves here as an estimate of the experimental band gap.

C. Searching for the magnetization direction

We performed computations for several values of self-
doping x. They give the orbital order for eg orbitals of
C-type alternating orbital (C-AO) order in the regime of low
self-doping x < 1

8 (see Table II). At the same time, the spin
order is A-AF, with the easy-axis of magnetization along
the x direction. The preferred spin direction is however not
generic as the ground states with z easy axis and with x easy
axis are almost degenerate (within accuracy below 1 meV).
Average spin values on Mn ions are very close to S = 2 and
the HOMO-LUMO gaps G were also computed, see Table II.

Finally, we remark on the magnetic state obtained in HF
calculations; the up- and down-spin occupations are equal,
i.e., 〈d†

mα,↑dmα,↑〉 = 〈d†
mα,↓dmα,↓〉, thus the average zth spin

component vanishes. However, this does not imply that the
found ground states are nonmagnetic. We have found that the
symmetry breaking with magnetization along x or y axis is
equivalent, and the averages of the type, 〈d†

mα,↑dmα,↓〉, are
finite (not shown, but it is always the case for the data in
Sec. IV). When the summation over μ is performed, i.e.,
if we calculate Re{ ∑

α〈d†
mα,↑dmα,↓〉}, we obtain the average

spin component along the x direction, |〈Sx〉|. This provides
evidence that the spins are indeed aligned along the x axis,
and we give the average magnetization |〈Sx〉| in Sec. V. The
imaginary part of the same sum (if finite) does correspond to
the average spin component along the y direction.
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IV. GROUND STATE OF LaMnO3

A. Zero self-doping x = 0

The ground state of LaMnO3 has C-AO orbital order, and
this is reproduced by the UHF calculations, see Table II,
densities given in boldface. Note that when using only the
standard orbital basis (i.e., the orbitals corresponding to the
z quantization axis), the orbital order is completely hidden. To
get more insightful results and to describe the orbital order
induced by lattice distortions, we considered all the types of
O4 rhombuses.

It is important to realize that orbital order may be easily
detected only for properly selected orbitals, depending on
the sublattice. First, if the standard basis {3z2 − r2, x2 − y2}
is used, no trace of any orbital order is seen, see Table II.
For the other two possible eg bases, {3x2 − r2, y2 − z2} and
{3y2 − r2, z2 − y2}, one finds that the directional orbital has
large electron density only on one sublattice, but on the other
sublattice this is not the case. In other words, if one selects the
x quantization axis, the orbital order is easily visible through
a distinct asymmetry between Mn ions at this and the other
sublattice, i.e., in positions m = 1 and m = 2, see Fig. 1. Thus
the found asymmetry in the density distribution indicates that
the order is of checkerboard type. Indeed, the checkerboard
pattern of oxygen distortions requires choosing different local
bases at two sublattices: on one with x quantization axis, and
with y quantization axis on the other. Then the orbital order
is clearly visible and the symmetry is correctly recovered, see
the electron densities listed in boldface in Table II.

The spin order coexisting with C-AO order is A-AF, with
the easy axis of magnetization along the x (y) direction, see
Table II. Note that the state with the same characteristics
but with easy magnetization axis along the z direction (not
shown in Table II) is only by 0.3 meV higher (thus these
two states are almost degenerate). The other HF states with
C-AO order and with ordinary FM spin order are by 2 meV
higher, while the states with G-AF or C-AF spin order are by
3.5 meV higher than the ground state. Nonmagnetic state is
never realized.

With these results for the electron distribution, one could
say that the experimental facts are faithfully reproduced. How-
ever, it is not so, as the HOMO-LUMO gap G we obtained is
4.76 eV, much larger than the experimentally measured; the
experimental data concerning band gap are in the range of
1.1–1.7 eV (direct gap) [3,4,9] and 0.24 eV [5] (indirect gap).
In fact, the HOMO-LUMO gap should correspond either to
direct or to indirect gap, whichever is smaller. Anyway, for
these both possibilities this discrepancy is by far too large and
it invites one to reject thinking in terms of ideal-ionic model
and to consider instead nonzero self-doping x. Note that our
cluster is rather small thus we can not (in the following)
consider and study any arbitrary value of self-doping x as
this would in some cases result in noninteger electron number
(in the cluster), and is some other case would result in an
open-shell system (and such systems can not represent the
ground state of an infinite crystal).

The density distribution found without self-doping
(at x = 0) suggests that there is some but rather small electron
transfer from O(2p) to Mn(3d) orbitals, see Table II. Indeed,
we have verified that the electron density in all oxygen p

orbitals is very close to 6.0, thus we deal with an almost
“perfect” ionic system with O−2 ions.

B. Weak self-doping x = 1/16

The first possible close shell configuration is obtained by
subtracting only four electrons from the total electron number
in the 4 × 4 × 4 cluster with Nel = 1408 electrons at x = 0.
In this case, we obtain the orbital order and spin order
virtually the same as for x = 0 case (compare the density
distribution for x = 0 and x = 0.0625 in Table II). However,
total electron density in eg orbitals is reduced by self-doping,
see Table II. However, most importantly, the HOMO-LUMO
gap G becomes much reduced to 0.23 eV, in satisfactory
(though probably incidental) agreement with the experimental
results [5].

Once again, one finds the ground state with the x quantiza-
tion axis for the magnetization, and the complementary A-AF
phase with the z easy spin direction is by 1.5 meV higher (per
one unit cell). Other magnetic states are less favorable. The
state with FM order is only by 2.0 meV higher, and the states
with G-AF and C-AF spin order are both by ∼26 meV higher
than the ground state. This result is important and reflects
the proximity of the FM order in doped systems, which can
be stabilized at still higher doping x ∼ 0.17, as known from
the phase diagram [52]. In fact, in the A-AF ground state the
exchange interactions in ab planes are FM, and the described
change of spin order involves just the change of sign of the
exchange interaction along the c axis, from AF to FM.

C. Moderate self-doping: x = 1/8

Computations for x � 1/8 invariably produce the states
with zero (or negative) HOMO-LUMO gaps. This can serve
as an indication that the FM metallic regime sets in already at
this self-doping level in the cluster under consideration.

Note that the experimental results for La1−xSrxMnO3 sys-
tems indicate that such systems are conducting and FM for
x > 0.2 doping [52]. If we roughly identify our theoretical
value of self-doping x = 1/8 ≈ 0.12 with the doping by Sr,
we approach the metallic regime, even when this value of x
does not coincide yet with the experimental doping in metallic
FM manganites (x ∼ 0.17) [11,12]. We remark that such a
discrepancy for small (not infinite) cluster and for simple
empirical d−p model can be expected.

D. Neglecting splitting within eg and t2g states

As already discussed, the modeling of JT Hamiltonian
goes in two separate steps: (i) changing the bare energies of
individual orbitals, and (ii) performing Harrison [48] scaling
of hopping integrals due to modified Mn-O bond lengths [26],
i.e., changing simultaneously static crystal-field potential and
changing the kinetic part. To the best of our knowledge, only
the second step (ii) is discussed in the literature.

Therefore (to conform to the main stream) we performed
auxiliary computations putting to zero bare level splittings
within eg and t2g multiplets but performing Harrison scaling to
adjust the values of d−p hopping elements to the actual bond
lengths. It could appear surprising, but the results concerning
the ground states did not change much. The magnetic order
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and orbital order persist, albeit the orbital order is somewhat
weaker. Thus it seems that the change which the JT effect
brings upon kinetic Hamiltonian part (hopping elements) is
the dominant change or at least it is just enough for a satisfac-
tory modeling of the JT effect.

V. ROBUSTNESS OF ORBITAL ORDER

Finally, we address the question of stability of orbital
order under self-doping. In doped manganites orbital order
persists at low doping up to x � 0.1 [2], and at higher doping
orbital liquid [53] takes over which supports FM metallic
phase. A remarkable feature of the perovskite vanadates is
that orbital order is quite robust [54,55] and is destroyed only
at high concentration of charged defects x � 0.20 by orbital
polarization interactions which frustrates orbital order [56].

To investigate orbital order and its dependence on self-
doping x, we take Ne = 64 × (22 − x) electrons for (4×4×4)
cluster. Having in mind the charge distribution anisotropy
in distorted rhombuses in ab planes, we define orbital order
parameter ηy/x for the observed C-AO order as follows:

2ηy/x = −〈n1,x2−z2〉 + 〈n1,3y2−r2〉
〈n1,x2−z2〉 + 〈n1,3y2−r2〉

+ −〈n2,y2−z2〉 + 〈n2,3x2−r2〉
〈n2,y2−z2〉 + 〈n2,3x2−r2〉 , (16)

where the electron densities appropriate to y/x quantization
directions [as applied to (m = 1) / (m = 2) rhombuses; see
Fig. 1] are used.

Once again we stress that when only one z-quantization
direction (on all rhombuses) is used, then the C-AO orbital
order is not visible at all. To make this picture complete we
can define ordinary order parameter ηz as well,

2ηz = −〈n1,x2−y2〉 + 〈n1,3z2−r2〉
〈n1,x2−y2〉 + 〈n1,3z2−r2〉

+ −〈n2,x2−y2〉 + 〈n2,3z2−r2〉
〈n2,x2−y2〉 + 〈n2,3z2−r2〉 , (17)

which only shows the difference between electron densities
〈nm,x2−y2〉 and 〈nm,3z2−r2〉, (influenced by z-direction tetragonal
distortion) which is independent of m, i.e., they are the same
for (m = 1)-type and for (m = 2)-type rhombuses. We remark
that sometimes one finds a tiny site-to-site charge modulation
which is possibly an artifact due to imperfect convergence,
we neglect it—to get rid of it in Eq. (17) we average ηz over
m = 1 and m = 2 rhombuses.

The C-AO order parameter (16) versus hypothetical values
of x (self-doping) is shown in Table III. It is very robust and
almost independent of self-doping x up to rather high value
x = 3/16. It is remarkable that C-AO order survives in the
metallic regime at x = 2/16 and x = 3/16. On the contrary,
the parameter ηz (17) is inconclusive concerning C-AO order.
Instead, it shows that the electron density in x2 − y2 orbitals is
higher than the one in 3z2 − r2, in agreement with the model
including tetragonal distortions [26].

TABLE III. The HOMO-LUMO gap G, the average magnetiza-
tion value |〈Sx〉|, and the orbital order parameters, ηy/x and ηz, vs
hypothetical values of self-doping x for LaMnO3. All the presented
data correspond to ground states characterized by coexisting A-AF
spin (with x easy axis of magnetization) and C-AO order.

x G (eV) |〈Sx〉| ηy/x ηz

0 4.76 1.98 0.79 −0.20
1/16 0.23 1.95 0.79 −0.28
2/16 �0 1.92 0.78 −0.32
3/16 �0 1.89 0.77 −0.35

VI. SUMMARY AND CONCLUSIONS

We have shown that the d−p model with strong electron in-
teractions reproduces correctly spin-orbital order in LaMnO3,
provided the electronic configuration of Mn ions is very close
to Mn3+ and the oxygen distortions due to the Jahn-Teller
effect are included. This implies also selecting the adequate
orbital basis which is the most appropriate to describe the
orbital ordered state stabilized by oxygen distortions. Thereby
occupied eg orbitals follow the oxygen distortions in ab
planes, and one finds A-AF / C-AO order, as observed [1,52].
Similar to doped vanadium perovskites [56], our study shows
that the spin-orbital order is here quite robust for low decrease
of electron concentration in MnO3 units.

We have shown that the self-doping in LaMnO3 is small
but finite and is in fact necessary to reproduce the observed
insulating behavior with a small gap. This result emphasizes
the importance of electronic charge delocalization over O(2p)
orbitals in the d−p model for a charge-transfer insulator
LaMnO3.

This study completes the series of papers [33–35], where
we have shown that the multiband d−p model is capable of
reproducing coexisting spin-orbital order in various situations
and in various perovskites. In contrast to time-consuming
cluster ab initio or LDA+U calculations [17–21], the com-
putations using d−p model are very efficient and should be
regarded as easy and simple tool for any preliminary study
to establish the electronic structure and ground state proper-
ties of an investigated perovskite. During such calculations
the only difficult part is the proper choice of the Hamilto-
nian parameters. We suggest that this approach could be a
promising technique to investigate heterostructures [57,58] or
superlattices [59,60], where the Jahn-Teller effect plays an
important role. On the other hand, when information about the
correct values of Hamiltonian parameters are uncertain, one
can perform computations with several sets of Hamiltonian
parameters. The results of such computations when con-
fronted with the experimental results could be eventually used
for screening out wrongly chosen Hamiltonian parameter sets.
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the electronic structure of layered ruthenates, Phys. Rev. B 91,
155137 (2015).
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