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We study Bell-state correlations for quasiparticle pairs excited in nonlinear current through a double quantum
dot in the Kondo regime. Exploiting the renormalized perturbation expansion in the residual interactions of
the local Fermi liquid and Bell’s inequality for cross correlation of spin currents through distinct conduction
channels, we derive an asymptotically exact form of Bell’s correlation for the double dot at low bias voltages.
We find that pairs of quasiparticles and holes excited by the residual exchange interaction violate Bell’s inequality
for the spin currents.
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I. INTRODUCTION

Recent advancement in current observation has realized
ultrasensitive current noise measurements on current through
a Kondo dot, spin current, and current cross correlation [1–5].
Low-energy properties of quantum dots with magnetic mo-
ments that strongly interact with conduction electrons in
connected lead electrodes exhibit the Kondo effect, which has
been a central issue of condensed-matter physics over the 50
years [6]. The low-energy properties of the Kondo effect are
described well by the local Fermi-liquid theory. The local
Fermi liquid is an extension of Landau’s Fermi liquid to cover
quantum impurities, in which free quasiparticles and resid-
ual interactions account for the underlying physics [7–13].
In electric current through the Kondo dot at low applied
bias voltages, residual interactions excite quasiparticle pairs
that have an effective charge of 2e [10,14–20]. This doubly
charged state has been observed as enhancements of the shot
noise [1,2,21–25].

This paper will explore the nature of the correlation be-
tween the quasiparticles that are excited by the residual inter-
actions within the current. In a previous work of ours [26], we
found that the residual exchange interaction of a quantum dot
excites spin-entangled quasiparticles and holes. However, it
remains a question how the entanglement can be observed. We
exploit Bell’s inequality with current correlations to investi-
gate the quasiparticle’s entanglement. Bell’s theorem draws an
essential distinction between the correlations found in quan-
tum mechanics and those found in classical mechanics. As a
no-go theorem, Bell’s theorem places limits on physical pos-
sibility [27–33]. Bell-state correlation of electrons involved
in tunneling currents through mesoscopic devices has been
studied for the past 20 years [34–37]. Several studies have
focused on Bell-state correlations caused by many-body ef-

*sakano@issp.u-tokyo.ac.jp

fects. For example, Bell-state correlations of superconducting
electron pairs have been studied with the Cooper pair splitter
both theoretically and experimentally [4,38,39]. Bell-state
correlations have also been predicted for electrons scattered
by the Kondo exchange interaction at temperatures near the
Kondo temperature [40]. Our work paves a way to investigate
quantum entanglement in a variety of correlated materials, and
will bring deeper understanding and different applications of
local Fermi liquid.

This paper is organized as follows. First, we introduce a
double quantum dot to generate quasiparticles’ entanglements
between the channels in Sec. II. Then, we briefly describe
Bell’s inequality with current correlations in Sec. III, and in-
troduce the source term to systematically calculate the current
correlations in Sec. IV. We also describe the renormalized
perturbation theory to correctly treat the low-energy excited
states of the local Fermi liquid in the nonlinear current in
Sec. V. We discuss the restriction on the measurement time
interval, and the Bell’s inequality for an effective current that
carries spin entanglements in Sec. VI. A measurable form of
the Bell’s inequality for the full current and the interaction
dependence are investigated. A brief summary is given in
Sec. VII.

II. MODEL

Consider the double dot illustrated in Fig. 1. The system is
described by the action of the Anderson impurity model given
as S = ∑

μ

∫ T /2
−T /2 dt (σ3)μμLμ

A, where the Lagrangian is given
as Lμ

A = Lμ
0 + Lμ

T + Lμ
I with

Lμ
0 =

∑
αmσ

∫ D

−D
dε c̄μ

εαmσ

(
i
∂

∂t
− ε

)
cμ
εαmσ

+
∑
mσ

d̄μ
mσ

(
i
∂

∂t
− εd

)
dμ

mσ , (1)
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FIG. 1. Schematic of the double dot and quasiparticle pairs ex-
cited within the two channels of the current. The bias voltage eV is
applied between the left and right leads. The filled and unfilled cir-
cles represent quasiparticles and holes, respectively, and the arrows
attached to them indicate their spin degrees of freedom. Cyan and
yellow indicate channels 1 and 2, respectively.

Lμ
T =

∑
αmσ

[
vd̄μ

mσ ψμ
αmσ + v∗ψ̄μ

αmσ dμ
mσ

]
, (2)

Lμ
I = U

∑
m

nμ

dm↑ nμ

dm↓ + W nμ
d1 nμ

d2 + 2JSμ
d1 · Sμ

d2. (3)

Here, T is a measurement time, σ3 = ((1, 0)t , (0,−1)t ) is
the third element of the Pauli matrix σ, and the superscripts
μ = − and + represent the forward and backward paths of the
Keldysh contour, respectively. Throughout this paper, the time
argument t in the Lagrangian and the Grassmann numbers
are suppressed. Lμ

0 represents electrons in the lead electrodes
and the double dot. cμ

αεmσ and c̄μ
αεmσ are the Grassmann

numbers for electrons with spin σ =↑,↓ and energy ε in
the conduction band of the left and right leads α = L, R of
channel m = 1, 2. dμ

mσ and d̄μ
mσ are the Grassmann numbers

for electrons with spin σ in level εd of dot m. Lμ
T represents

electron tunneling between the leads and the dots. They are
connected by tunneling matrix element v through ψμ

αmσ :=∫ D
−D dε

√
ρccεαmσ and ψ̄μ

αmσ := ∫ D
−D dε

√
ρcc̄μ

εαmσ with D the
half width of the conduction band and ρc = 1

2D the density of
state for the conduction electrons. Electron tunneling causes
an intrinsic linewidth of the dot levels to be 	 = 2πρc|v|2.

Lμ
I represents the electron interactions in the double dot.

U and W are the intra- and interdot Coulomb interactions,
respectively, and J is the exchange interaction. The Grass-
mann number corresponding to the electron occupations and
the total spin in the dot m are given by ndmσ = d̄mσ dmσ , ndm =∑

σ ndmσ , and Sdm = 1
2

∑
σσ ′ d̄mσ σσσ ′dmσ ′ . We impose the

particle-hole symmetry εd = −U
2 − W and the absolute zero

temperature T = 0 to eliminate the thermal and partition
noises and maximize the effect of J . The bias voltage eV is
applied symmetrically: the chemical potentials of the left and
right leads are μL = + 1

2 eV and μR = − 1
2 eV , respectively.

With no loss of generality, a positive bias voltage eV > 0 can
be assumed. We also use the natural units h̄ = kB = 1.

III. BELL’S INEQUALITY WITH
CURRENT CORRELATIONS

We investigate quasiparticles that become correlated across
the two channels. In the original argument of Bell’s theo-
rem, the spin correlation of two particles was studied [41].
However, one-by-one detection of every spin of the quasi-
particles in a quantum-scale current remains is still diffi-
cult to be achieved in solid-state devices. Thus, we ex-
ploit Bell’s inequality for two correlated currents, derived by
Chtchelkatchev et al. [39]. This approach is outlined below.

The key idea of Bell’s theorem is that determinism with a
hidden variable is assumed to describe any correlations [41].
The violation of this assumption gives a sufficient condition
for the quantum entanglement. For our double dot, the corre-
lation between channel 1 and 2 are assumed to be described
by a hidden variable η. Then, the density matrix of the whole
system can be written in the form

ρHVT =
∫

dη f (η)ρ1(η) ⊗ ρ2(η), (4)

where the distribution function for the hidden variable is
satisfied with f (η) � 0 and

∫
dη f (η) = 1, and ρm(η) is the

density matrix for channel m. Integration of the current can
give the average of spin angled to θ per a particle in the current
of channel m in a measurement time from t − T

2 to t + T
2 :

Āmθ (t, η) =
∫ t+T /2

t−T /2 dt ′ tr
[
ρm(t ′, η)Js

mθ (t ′)
]

∫ t+T /2
t−T /2 dt ′ tr

[
ρm(t ′, η)Jc

m(t ′)
] . (5)

Js
mθ = Jmθ − Jmθ+π and Jc

m = Jmθ + Jmθ+π are the spin and
charge current, respectively, where Jmθ is the current with spin
angled to the θ direction in channel m. For a current which
effectively carries the spin correlation, the average spin is
normalized as |Āmθ (t, η)| � 1. Then, the conventional deriva-
tion of Bell’s inequality for two incident entangled particles is
applicable to the averaged spin in the currents through the two
channels. We obtain the Clauser-Horne-Shimony-Holt Bell
inequality for two correlated currents as

0 � C � 2, (6)

where Bell’s correlation is given in the form

C = |F (θ, ϕ) − F (θ ′, ϕ) + F (θ, ϕ′) + F (θ ′, ϕ′)|. (7)

Here, F (θ, ϕ) = hs(θ, ϕ)/hc is given by a cross correlation of
the spin current

hs(θ, ϕ) =
∫ T /2

−T /2
dt dt ′〈Js

1θ (t )Js
2ϕ (t ′)

〉
HVT, (8)

and that of the charge current,

hc =
∫ T /2

−T /2
dt dt ′〈Jc

1 (t )Jc
2 (t ′)

〉
HVT, (9)

with the average by the density matrix of the hidden vari-
able theory, 〈. . . 〉HVT := tr[ρHVT . . . ]. Therefore, violation of
Eq. (6) for Bell’s correlation CQM calculated with the fully
quantum-mechanical density matrix ρQM gives a sufficient
condition for quantum correlation.

155106-2



BELL-STATE CORRELATIONS OF QUASIPARTICLE … PHYSICAL REVIEW B 99, 155106 (2019)

IV. CURRENT CORRELATIONS

In our quantum dot, the current of the electrons with spin
angled to the θ direction in channel m is given as

Imθ = −ie(vd̄mθψRmθ − v∗ψ̄Rmθ dmθ ). (10)

To calculate current correlation, we introduce the source term

Lμ
sou(λ) = −i

∑
mγ

[(eiλμ
mγ − 1)vd̄mγ ψRmγ

+ (e−iλμ
mγ − 1)v∗ψ̄Rmγ dmγ ] (11)

in Lμ
A. Here, λμ

mγ = (σ3)μμλmγ is a contour-dependent source
field, and γ (= θ, θ + π ) is the spin index defined with respect
to the θ direction. The Grassmann number for an electron in
the dot with spin γ can be given by a rotational transformation
as dμ

mθ = cos θ
2 dμ

m↑ + sin θ
2 dμ

m↓. d̄μ
mθ , ψ

μ
αmθ , and ψ̄

μ
αmθ are also

defined in the same manner. Current correlations can be
calculated by differentiating the generating function lnZ (λ)
with the corresponding source fields. The partition function is
given in the form

Z (λ) =
∫

D(c̄εαmσ )D(cεαmσ )D(d̄mσ )D(dmσ )eiS(λ)

(12)

with

S (λ) =
∑

μ

∫ T /2

−T /2
dt (σ3)μμ

[
Lμ

A + Lμ
sou(λ)

]
. (13)

The specific form of lnZ (λ) up to order V 3 is given in
Ref. [26].

V. RENORMALIZED PERTURBATION THEORY

To take electron correlations into account, we use the
renormalized perturbation theory [42–44]. At low energies,
perturbation expansion in Lμ

I provides an exact result if
all the terms in the series are accounted for. However, this
expansion is difficult, except for some special cases. Below,
employing the idea of the renormalized perturbation theory,
we reorganize the perturbation expansion and effectively carry
out all-order calculations at low energies.

First, we formulate the quasiparticle’s Lagrangian L̃μ
qp by

replacing εd, v, U, W, J, dμ
mσ , and d̄μ

mσ of Lμ
A with the

renormalized parameters and the Grassmann numbers of the
quasiparticle given by ε̃d, ṽ, Ũ , W̃ , J̃, d̃μ

mσ , and ˜̄dμ
mσ . These

renormalized parameters and Grassmann numbers are defined
by sets of perturbation series given by the self-energy and the
four vertex at T = eV = 0 [26]. Note that the renormalized
linewidth given by 	̃ := 2πρc|ṽ|2 corresponds to the charac-
teristic energy scale, namely, the Kondo temperature: TK =
π	̃/4. We can evaluate ε̃d, 	̃, Ũ , W̃ , and J̃ by using the
numerical renormalization group (NRG) approach [44–46].
The nonequilibrium effects at low bias voltages eV 
 TK
arise through perturbation expansions in the renormalized
interactions.

As a part of the interaction effects are taken into account
ab initio in the quasiparticle’s Lagrangian during renormal-
ized perturbation expansion, a counter term has to be intro-
duced to avoid overcounting in the perturbation expansion. In

TABLE I. Signs of spin/charge current correlations of particle-
particle (p-p), hole-hole (h-h), and particle-hole (p-h) pairs with
parallel and antiparallel spins. The pairs excited in the current are
shown in Fig. 1.

p-p or h-h pairs p-h pair

Parallel spin (i) +/+ (ii) −/−
Antiparallel spin (iii) −/+ (iv) +/−

the other words, the total Lagrangian has to be satisfied with
Lμ

A = L̃μ
qp + Lμ

CT. The counter term Lμ
CT, can be expressed in

terms of the renormalized parameters and the renormalized
Grassmann numbers, which are determined by the renor-
malized condition for the renormalized self-energy and the
renormalized four-vertex. In the particle-hole symmetric case,
the perturbation expansion up to only the second order in the
renormalized interactions provides an asymptotically exact
form of the self-energy at T = 0 up to the second order in
ω and eV because of the counter term. As a result, asymp-
totically exact forms of currents and current correlations up
to order (eV )3 are obtained. We shall calculate the current
correlations using perturbation expansion in the residual in-
teractions.

VI. RESULTS AND DISCUSSION

Let us calculate CQM in terms of the quasiparticle parame-
ters. Since 〈Is

mθ 〉 = 0 in our model, the correlation of the spin
currents can be rewritten into the correlation of spin current
fluctuations δIs

mθ = Is
mθ − 〈Is

mθ 〉 as

hs
QM(θ, ϕ) =

∫ T /2

−T /2
dt dt ′〈δIs

1θ (t )δIs
2ϕ (t ′)

〉
. (14)

At low energies, namely, T � (eV )−1 � tK, differentiation
of lnZ (λ) with the source fields yields

hs
QM(θ, ϕ) = −T e3V

2π

(
eV

	̃

)2(1

4
j̃2 − 1

3
w̃ j̃

)
cos(θ − ϕ)

+O
(
V 5), (15)

where tK ∝ 	̃−1 is the Kondo time scale, and w̃ = W̃
π	̃

and

j̃ = J̃
π	̃

. Note that the spin correlation measured by hs
QM(θ, ϕ)

comes from only a portion of the entangled quasiparticle
pairs within the current. As seen in the specific form of
lnZ (λ) [26], the residual interactions can excite four types
of the quasiparticle pairs in the current (see Fig. 1). As
Table I shows, the spin and charge current correlations of
these pairs have different signs from each other. Consequently,
some of the spin and charge correlations due to these pairs
are independently canceled in the full current. Therefore, the
correlation of the charge current I ′c

m that effectively carries the
spin current correlation must be calculated, rather than that of
the full current given by hfcc = ∫ T /2

−T /2 dt dt ′〈Ic
1 (t )Ic

2 (t ′)〉 with
Ic
m = ∑

γ Imγ . The current correlation can be written in terms
of current fluctuation of I ′c

m as

hc
QM = H c

QM + T 2
〈
I ′c
1

〉〈
I ′c
2

〉
, (16)
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where H c
QM = ∫ T /2

−T /2 dtdt ′ 〈δI ′c
1 (t )δI ′c

2 (t ′)〉 with δI ′c
m (t ) =

I ′c
m (t ) − 〈I ′c

m 〉. Although an explicit expression of I ′c
m is not

easy to derive, the correlation can be evaluated readily using
the terms of spin-correlated carriers in lnZ (λ):

H c
QM = −T e3V

2π

(
eV

	̃

)2(1

4
j̃2 − 1

3
w̃ j̃

)
+ O(V 5). (17)

The leading term of the charge current is of the third order in
the applied bias voltage, 〈Ic

m〉 ∝ eV ( eV
	̃

)
2
. Thus,

tb ∝
[

eV

(
eV

	̃

)2]−1

,

a boundary value of the measurement time, divides the behav-
ior of CQM into two regions. One is T � tb, where H c

QM 

T 2〈Ic

1 〉〈Ic
2 〉. Then, the correlation function can be given sim-

ply as hc
QM ∼ T 2〈Ic

1 〉〈Ic
2 〉. This results in CQM ∼ 0, and CQM

never violates Bell’s inequality in this region. In the opposite
region T 
 tb, the correlation of the fluctuations is domi-
nant, namely, H c

QM � T 2〈Ic
1 〉〈Ic

2 〉, which leads to hc
QM ∼ H c

QM.
Then, Bell’s correlation is given in the form

CQM ∼ K (θ, θ ′; ϕ, ϕ′) (18)

with

K (θ, θ ′; ϕ, ϕ′) = | cos(θ − ϕ) − cos(θ ′ − ϕ)

+ cos(θ − ϕ′) + cos(θ ′ − ϕ′)|. (19)

Since K (θ, θ ′; ϕ, ϕ′) is bounded within [0, 2
√

2], it is con-
cluded that the exchange interaction of the Fermi liquid can
violate Bell’s inequality. We note that the limit T → ∞ can be
taken to evaluate FQM(θ, ϕ) = hs

QM(θ, ϕ)/H c
QM although the

measurement time is bounded within tK 
 T 
 tb, because
the T dependencies of hs

QM(θ, ϕ) and H c
QM cancel out each

other for T � tK.
However, CQM may be difficult to measure experimentally,

because hc
QM is the current correlation of the carriers that

effectively carry the correlated spins. Next we suggest a
measurable form of Bell’s correlation. Multiplying each side
of Eq. (6) for our double dot by r = |hc/hfcc|, we derive a
measurable form of Bell’s inequality and correlation that are
composed of the cross correlations of the full current as

C∗ = |F ∗(θ, ϕ) − F ∗(θ ′, ϕ)

+ F ∗(θ, ϕ′) + F ∗(θ ′, ϕ′)| (20)

with F ∗(θ, ϕ) = hs(θ, ϕ)/hfcc. Then, Bell’s inequality for C∗
is given by a deformed boundary:

0 � C∗ � 2r. (21)

For the quantum-mechanical density of states and tK 
 T 

tb, C∗ and r take the forms

C∗
QM = rQMK (θ, θ ′; ϕ, ϕ′), rQM =

∣∣∣∣∣∣∣
1 − 4

3

(
w̃

j̃

)
1 + 4

3

(
w̃

j̃

)2

∣∣∣∣∣∣∣, (22)

respectively. Since C∗ is simply given by a product of C and
r, C∗

QM can also violate Bell’s inequality given by Eq. (21).

The maximum value of C∗
QM is given by C∗

QM,max = 2
√

2rQM,

 0

 0.5
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-0.5-0.4-0.3-0.2-0.1 0

QM

HVT

 0

 0.5

 1

 1.5

 2

 2.5

-0.5-0.4-0.3-0.2-0.1 0

(a)

(b)

FIG. 2. (a) C∗
QM,max and 2rQM as a function of ferromagnetic

J (< 0) for U = W = 3.0π	. The gray area is covered by the
hidden variable theory, and the yellow area represents the suffi-
cient condition for the quantum correlation. (b) 2rQM as a function
of ferromagnetic J for U = 3.0π	 and several choices of W =
3.0π	, 2.9π	, 2.8π	, and 2.0π	, and U = W = 0. The thin dot-
ted line indicates the maximum value 2rQM = 1 +

√
21
3 ≈ 2.528.

which corresponds to Tselson’s bound [47] in our model. This
bound gives the upper limit for the correlation in the quantum
regime. C∗

QM,max and 2rQM are plotted as a function of J;
J � 0 and J � 0 for U = W = 3.0π	 in Figs. 2(a) and 3(a),
respectively. A critical point appears at J = Jc > 0 [46,48].
For J > Jc, two electrons occupying in the double dot form
an isolated singlet state and decouple from the conduction
electrons, and then no charge currents can flow through the
double dot. Thus, we focus on the region J < Jc, in which
the low-energy state is accounted for by the local Fermi
liquid, and electric current flows through the dot. The region
between C∗

QM,max and 2rQM represents a sufficient condition
that the correlation of spin currents across the two channels is
quantum mechanical in nature. For J > 0, the value C∗

QM,max
takes a local minimum to zero, where the excited quasiparticle
pairs with parallel and antiparallel contributions to the spin
correlation cancel each other out. Thus, Bell’s test is not
applicable with this value of J .

Experimentally, the violation of Bell’s inequality can be
confirmed through observation with values of C∗

QM larger than
the theoretically calculated value of 2rQM. This parameter
2rQM depends on the strength of U, W, and J , which can be
evaluated using NRG calculations. 2rQM is plotted as a func-
tion of J for several choices of U and W for J � 0 and J � 0
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FIG. 3. (a) C∗
QM,max and 2rQM as a function of antiferromagnetic

J (> 0) for U = W = 3.0π	. J is normalized by the critical value
Jc. The gray area is covered by the hidden variable theory, and
the yellow area represents the sufficient condition for the quantum
correlation. (b) 2rQM as a function of ferromagnetic J for U = 3.0π	

and several choices of W = 3.0π	, 2.9π	, 2.8π	, and 2.0π	, and
U = W = 0. The thin dotted line indicates the value of the local
maximum rQM = 1 −

√
21
3 ≈ 0.528.

in Figs. 2(b) and 3(b), respectively. For |J| � TK, the values
of hfcc

QM coincide with hc
QM, which results in rQM → 1 and the

rQM independent form of Bell’s inequality is recovered. In this
region, therefore, Bell’s test can be examined without the need
for any numerical calculations of rQM.

Finally, we discuss the causal locality of Bell’s theorem in
our model. Bell-state correlations in our model are induced
by entangled quasiparticles that are excited by the residual
exchange interaction that is scaled by TK. Therefore, for the
causal locality to hold, the two measurements in channels
1 and 2 must be separated by a distance d � ctK, where
tK = h̄

kBTK
and c is the speed of light. For a typical Kondo

temperature of quantum dots TK ∼ 1 K, d must be much larger
than ctK ∼ 4.58 × 10−2 m.

VII. SUMMARY

We have found that spin entangled quasiparticles that are
excited by the residual exchange interaction of the local Fermi
liquid in the double dot leave their trace in the violation of
Bell’s inequality with correlations of the effective current.
By deforming the boundary of the hidden variable theory,
we have derived an experimentally measurable form of Bell’s
inequality that is composed of correlations of the full current.
The interaction dependence of the deformed boundary and
Bell’s correlation has been demonstrated by using the NRG
approach. We have also shown that the long measurement-
time limit can be taken to both theoretically and experimen-
tally evaluate correlations of current fluctuations, beyond the
restriction to extract the meaningful Bell-state correlation.
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