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Vortex-core properties and vortex-lattice transformation in FeSe
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Low-temperature scanning tunneling microscopy and spectroscopy has been used to image the vortex core
and the vortex lattice in FeSe single crystals. The local tunneling spectra acquired at the center of elliptical
vortex cores display a strong particle-hole asymmetry with spatial oscillation, characteristic of the quantum-limit
vortex core. Furthermore, a quasihexagonal vortex lattice at low magnetic field undergoes noticeable rhombic
distortions above a certain field ∼1.5 T. This field H∗ also reveals itself as a kink in the magnetic field dependence
of the specific heat. The observation of a nearly hexagonal vortex lattice at low field is very surprising for
materials with an orthorhombic crystal structure and it is in apparent contradiction with the elliptical shape of
the vortex cores. These observations can be directly connected to the multiband nature of superconductivity
in this material, provided we attribute them to the suppression of superconducting order parameter in one of
the energy bands. Above the field H∗ the superconducting coherence length for this band can well exceed the
intervortex distance which strengthens the nonlocal effects. Therefore, in addition to multiple-band effects, other
possible sources that can contribute to the observed evolution of the vortex-lattice structure include nonlocal
effects which cause the field-dependent interplay between the symmetry of the crystal and vortex lattice or the
magnetoelastic interactions due to the strain field generated by vortices.

DOI: 10.1103/PhysRevB.99.144514

I. INTRODUCTION

Vortices in superconductors reveal in different ways impor-
tant aspects of the normal and superconducting state proper-
ties. The spatial distributions of the quasiparticle density of
states in a vortex core depend on the specific Fermi surface,
gap anisotropy, and symmetry of the superconducting order
parameter [1,2], and they are observable only in the case
of clean limit ξ < l (where ξ is the coherence length of
the superconductor and l is the mean-free path), otherwise
they can be suppressed by the quasiparticle scattering. A
broad variety of vortex-core shapes has been observed in
different clean superconducting materials. In 2H-NbSe2 a
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sixfold symmetrical shape of vortices has been reported [3,4],
a fourfold symmetry has been observed in YNi2B2C [5,6],
while striped vortex-core states which are largely influenced
by patches of different short-range order have been observed
in Bi2Sr2CaCu2O8+x [7]. Recently, vortices were also ob-
served in the heavy-fermion superconductor CeCoIn5 [8,9].
The core shows bound states located at zero bias, which have
an in-plane fourfold anisotropy and an asymmetric spatial
dependence [8]. This fourfold core symmetry has a strong
relation to the anisotropic gap structures found in macroscopic
measurements [10]. An elongated twofold vortex core has
been observed in FeSe films [11] and single crystals [12] and
it has been explained in terms of the nematicity of the system
[13,14].

Besides investigations of the vortex cores, the way the
symmetry of the vortex lattice is shaped by the materials’
properties has also been studied intensively using different
vortex imaging techniques. In isotropic superconductors vor-
tices form a hexagonal vortex lattice (in absence of pin-
ning) [15,16]. However, square vortex lattices have been also
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reported in many materials [17,18]. Indeed, the difference in
the free energy for the hexagonal and the square vortex lattice
is found to be only 2% [16]. Therefore, a weak anisotropy can
change the balance and lead to a distorted hexagonal or square
vortex lattice. Many theoretical papers have addressed the
role of the symmetry of the superconducting order parameter
and the influence on the vortex-lattice structure and they
consistently found that a square vortex lattice can be stabilized
when the applied magnetic field is increased in the case of d-
wave symmetry [19–21]. On the other hand, the Fermi surface
anisotropy combined with nonlocal electrodynamics can be
also responsible for vortex-lattice transitions. Theoretically,
the corresponding nonlocal corrections to the London model
have been used to calculate the vortex-lattice free energy and
determine the stable vortex configurations as a function of
magnetic field [22–24]. Recently a vortex-lattice transition
from hexagonal to a distorted tetragonal has also been re-
ported for CsFe2As2 that has been explained considering the
intervortex interactions and the crystal structure [25]. Other
investigated structural properties of vortex lattices include dis-
torted hexagonal symmetry, vortex chains [26], order-disorder
transitions [27], and pinning by twin boundaries [28].

Among the Fe-based superconductors, FeSe has attracted a
lot of attention because the tetragonal-to-orthorhombic struc-
tural transition is not accompanied by an ordered magnetic
state in the whole temperature range down to the supercon-
ducting transition (in contrast to other Fe-based supercon-
ductors). Therefore, the nematic state that sets in below the
structural transition and manifests itself in many electronic
properties, persists also in the superconducting state [29]. The
microscopic origin of this nematic state is still extensively
debated. The key issue is whether this state is mostly driven by
spin or orbital fluctuations [29]. Also, it is not clear if there is
any link between the nematic and superconducting orders. The
Fermi surface consists of multiple bands, with a hole pocket
at the � point and electronlike pockets at the Brillouin zone
corners [30–35].

In the following we report low-temperature scanning tun-
neling microscopy and spectroscopy (STM/STS) experiments
showing an anisotropic vortex core in the quantum limit
and a noticeable vortex-lattice transformation. We discuss
these results in the context of the existing theories and the
anisotropic multiband nature of the superconductivity in this
material.

STM/STS measurements provide a unique possibility for
directly probing both the changes in the structure of the
vortex lattice and the shape of individual vortex cores. When
STM/STS results are complemented by thermodynamic mea-
surements, the distinctive features of the vortex matter can
provide us a deeper insight into the physics of superconduct-
ing correlations.

For the particular case of FeSe our experimental data con-
tain three important observations: (i) we find a characteristic
magnetic field H∗ ∼ 1 T separating the low-field regime with
an almost hexagonal vortex lattice and high-field regime with
gradually increasing orthorhombic distortions in the vortex-
lattice structure. (ii) The crossover at the field close to the
H∗ value reveals itself on the field dependence of the specific
heat [see Fig. 4(b)] where we clearly observe a change of
the slope in the magnetic field interval 1 < H < 2 T. (iii)

Our observation of a nearly hexagonal vortex lattice at low
magnetic fields is a surprising result for an orthorhombic
material which is also in apparent contradiction with the
elliptical shape of vortex cores.

The paper is organized as follows. In Sec. II we briefly
discuss some experimental details of our samples and ap-
proaches. In Sec. III we present the results of our experimental
findings as well as the discussion and a simple theoretical
model describing the behavior of the vortex-lattice distortions.
Finally, the results are summarized in Sec. IV.

II. EXPERIMENTAL DETAILS

FeSe single crystals were grown in evacuated quartz am-
poules using the AlCl3/KCl flux technique in a temperature
gradient (from 400 to ∼350 ◦C) for 45 days [36]. The chemi-
cal composition of crystals was studied with a digital scanning
electron microscope TESCAN Vega II XMU [36].

The crystals have a platelike shape with the c axis oriented
perpendicular to the crystal plane with only the tetragonal β-
FeSe phase present. The lattice parameters c = (5.52 ± 0.01)
Å and a = (3.77 ± 0.01) Å were found via x-ray diffraction
for FeSe single crystals.

Low-temperature scanning tunneling microscopy and
spectroscopy have been performed at T = 1.5 K using the
Unisoku UHV STM system, with a base pressure of 4 × 10−11

Torr. The samples were cleaved in UHV at room temperature
and soon after were transferred to the STM at low tempera-
ture. Pt-Ir tips were used in all of our experiments, therefore
the tunneling conductance between a normal electrode (tip)
and a sample provides, in the limit of low voltages, the
local quasiparticle density of states of the sample. Tunneling
spectroscopy was performed using a standard lock-in tech-
nique with an ac modulation of 0.2 mV at 373 Hz. The
vortex lattice is visualized by acquiring the lock-in signal
(conductance) maps at E = EF while scanning the tip over
the sample surface at higher voltage (20 mV) at each location.
Topography was always acquired simultaneously to assure the
location where the spectroscopic information was recorded.

Low-temperature specific heat data were obtained under
the applied field from 0 to 9 T using the Quantum Design
physical property measurement system (PPMS) via the relax-
ation method.

III. RESULTS AND DISCUSSION

A. Vortex core

Scanning tunneling microscopy measurements of FeSe
single crystals (with a superconducting critical temperature of
∼9 K reveal atomically flat surfaces. Figure 1(a) shows an
atomic resolution topographic image of the surface of FeSe
at T = 1.5 K (topmost Se layer). The image also shows the
presence of dimerlike defects (bright spots) surrounded by
dark regions that are usually associated with Fe vacancies
[37]. They are aligned both along the a and b axis, which
point to their independence from a structural orthorhombic
distortion [38]. The inset of Fig. 1(a) shows a zoom-in image
of the Se lattice and reveals a regular square lattice of the
topmost Se atoms with a lattice parameter of a = 3.77 Å,
consistent with x-ray investigation. The small difference of
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FIG. 1. (a) A topographic STM atomic resolution image of size 31.9 × 31.9 nm2. Crystallographic axes a and b are presented at 45◦ from
the topmost Se layer, representing the underlying Fe-Fe directions. The topography was acquired with V = 10 mV, I = 100 pA. The inset
shows a zoom-in of the topmost Se lattice of size 10 × 10 nm2. The scale bar in the inset is 2 nm. (b) Differential conductance map at E = EF

and at H = 1.5 T acquired simultaneously with the topography image in (a). The size of the image is 31.9 nm2, and shows a single vortex.
(c) and (d) Intensity plot obtained from a sequence of 160 spectra acquired along the long axis of the vortex core from the bottom left corner
to the top right corner of the image in (b) (direction a). (d) Intensity plot obtained from a sequence of 160 spectra acquired along the short axis
of the vortex core from the left to the right of the image in (b) (direction b). The spacing between the curves is 0.174 nm and the stabilization
point for each curve is V = 5 mV, I = 60 pA for all curves in (c) and (d). (e) Characteristic tunneling spectra acquired along the direction a
at the center of the vortex (blue) and at distances 3.3 nm (red) and 18 nm (black) from the vortex center. (f) Characteristic tunneling spectra
acquired along the direction b at 2 nm (blue), 5 nm (red), and 11 nm (black) from the center of the vortex.

the in-plane lattice parameters that sets in at the structural
transition is below 1% and below the STM resolution.

Differential tunneling conductance spectra dI/dV (�r, E )
recorded as a function of the sample-tip voltage V , are pro-
portional to the local density of states (LDOS) N (�r, E ). In
multiple-band materials, partial densities of states of different
bands contribute to the tunneling conductance with different
weights. When a magnetic field is applied along the c axis of
the crystal, Abrikosov vortices enter the sample and modify
the local density of states. Vortices can be imaged by STM by
mapping the local conductance at an energy where a vortex
alters the density of states. Therefore, STM is a direct experi-
mental technique to visualize vortices in superconductors with
high spatial resolution.

Figure 1(b) shows a map of the zero bias conductance
(ZBC) representing the LDOS at the Fermi level, of the same
scan area as in Fig. 1(a). The image shows a single vortex core
elongated in one of the Fe-Fe bond directions (at 45 deg with
the Se topmost lattice).

General theoretical models accounting for the vortex shape
include superconducting gap anisotropy [39,40] as well as
Fermi surface anisotropy [41–43]. The competing effects
between these two factors in the optimal vortex-lattice struc-

ture for fourfold symmetric superconductors are discussed in
Ref. [44]. In general, the spatial decay of the vortex-core states
happens on the length scale of ξBCS = h̄vF /π�, where h̄ is the
reduced Planck constant, vF is the Fermi velocity, and � is the
gap amplitude. Therefore, in the case of an anisotropic gap
where �(k) �= const, the vortex shape in real space is directly
influenced by this anisotropy and, in particular, the vortex
extends in the directions of gap minima or nodes. However,
the directional dependence of vF (k) also affects the vortex-
core shape, and in the case of Fe-based superconductors in
the absence of strong nodes the Fermi velocity anisotropy can
determine the anisotropy of the decay length of vortex-core
states [45].

STM can be used to probe the electronic states within the
vortex core directly. The spatial evolutions of the tunneling
spectra along the long and short axis of the elliptical vortex
core are reported in the intensity plot of N (�r, E ) in Figs. 1(c)
and 1(d). Individual spectra taken at representative points are
depicted in Figs. 1(e) and 1(f).

In clean superconductors, at the vortex core the tunneling
conductance should show low-energy excitations predicted
by Caroli, de Gennes, and Matricon (CdGM) [46] due to
the electron confinement. In conventional superconductors,
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due to the very small value of the ratio �/EF (where � is
the superconducting gap and EF is the Fermi energy), these
discrete energy levels appear as a broad symmetric peak at
EF . Usually, away from the center the zero-bias peak splits
into two peaks symmetric in energy [3,4]. If the temperature
is low enough, such that the quantum limit T/T c < �/EF

is satisfied, low energy excitations at En = (n + 1/2)�2/EF

(n = 0, 1, 2, . . .) should become detectable in very clean ma-
terials. However, usually the quantum limit is reached in con-
ventional superconductors at very low temperature (in NbSe2

for example at T < 50 mK). CdGM states for the quantum
limit have been argued for YNi2B2C [6], Bi2Sr2CaCu2O8+δ

[47], YBa2Cu3O7−δ [48], and, more recently, in some Fe-
based superconductors [49–52].

In the case of FeSe, the evolution of the local density of
states along the shorter direction is smooth [see Fig. 1(d)] with
low-energy peaks that evolve spatially and converge into the
coherence peak. On the contrary, there appears an oscillatory
behavior along the longer direction, where the intensities of
vortex-bound states oscillate in space and it is particle-hole
asymmetric, i.e., the differential conductance intensity of the
bound state peak on negative energy is larger than that on
positive energy [see Fig. 1(c)]. Such asymmetry appears in
the so-called “quantum-limit” vortex-bound state [53]. The
energy of the bound state along the longer direction is at
En=0 = 0.55 mV and almost does not shift when the STM
tip moves away from the vortex center as it is shown in
Fig. 1(e). This yields a value of EF ≈ 5 meV and a ratio

�/EF ≈ 0.5 (where � = 2.35 meV) consistent with other
estimates [33,54]. This small value of EF confirms that this
material is in the quantum limit.

To extract the coherence lengths from the maps, we
fit the spatial dependence of the zero-bias conductance
in the vortex core with an exponential decay of the form

G(x, y) = G∞ + A
∑

i exp (−
√

(x−xi )2

ξ 2
Long

+ (y−yi )2

ξ 2
Short

). Here G∞ is
the conductance value in between the vortex cores and the
summation is performed over the first neighbors. Keeping
the neighboring vortices in the summation improves the
fit for the maps at high magnetic fields when the vortices
overlap. In the trivial case of a single-band superconductor
and an isotropic matrix element describing the tunneling from
the STM tip to the surface, we would expect that the lengths
ξLong and ξShort can be considered as the coherence lengths
along different directions.

We find that ξShort ∝ 1/
√

H + const, as expected for a
superconductor in the clean limit in large fields [55,56] while
ξLong ≈ const. The extracted magnetic field dependencies of
ξLong and ξShort are shown in Fig. 2(a). The absolute val-
ues of the low-field coherence lengths are consistent with
the value ξ

Hc2
ab ≈ 4.4 nm, which can be extracted from the

low-temperature upper critical field ∼17 T [54]. Figure 2(b)
reports the anisotropy of the coherence lengths that increases
as the magnetic field increases. The spatial dependence of the
zero-bias conductance along the two high-symmetry direction
of the vortex is shown in Figs. 2(c) and 2(d) for the vortices in
the 2 T image.

FIG. 2. (a) ξLong and ξShort plotted as a function of applied magnetic field, dashed lines are guided for eyes. (b) Plot of ξLong/ξShort versus
applied magnetic field, demonstrating an increase of the in-place anisotropy with increasing field. (c) and (d) The spatial dependence of
zero-bias conductance away from a vortex core in two perpendicular directions. Its exponential decay fitted by G(r) = G(0) + Ae−r/ξ defines
ξShort and ξLong, respectively.
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Quantitatively, the gap anisotropy for the � band reported
in [57] is very large �max/�min ∼ 15. If one assumes that
the contribution of the tunneling current from the � band
dominates in the STM signal and the anisotropy of the vortex
core reflects properties of this band, the gap anisotropy in
the � band ∼15 should be partially compensated by the vF

anisotropy ∼1.5 [57]. Still this compensation cannot provide
the moderate anisotropy of the vortex-core shape ∼1.5–2.5
observed in Fig. 2(b). This implies that the tunneling from
the electron pocket should be also taken into account. In-
deed, the gap anisotropy in the electron ε pocket is opposite to
the � pocket [57]. Therefore, the magnetic field dependence
anisotropy of the vortex core seems to reflect the multiband
character of this material.

STM observation of the field dependence of the coherence
length has been reported in the single-band superconductor
β-Bi2Pd [58] and in the two-gap superconductors NbSe2 [59]
and CaKFe4As4 [60], whereas a magnetic field independent

coherence length has been observed in multigap materials in
the dirty limit such as 2H-NbSe1.8S0.2 and 2H-NbS2 [58].

B. Vortex-lattice transformation

We used the STM conductance maps to visualize the vortex
lattice in this compound and found that its structure evolves
with the applied magnetic field. A set of differential conduc-
tance images for four applied magnetic fields between 1 and
6 T applied perpendicular to the a-b plane of the sample is
shown in Figs. 3(a)–3(d). In order to analyze the vortex struc-
ture, we performed Delaunay triangulation of the real-space
images, as summarized in Figs. 3(e)–3(h). In this analysis
each vertex denotes the position of a vortex. Figures 3(i)–3(l)
show the Fourier transform of the conductance maps showing
an almost hexagonal vortex lattice at low fields that transforms
in a rhombic lattice and then in a nearly square lattice as
the magnetic field is increased and the vortices move closer

FIG. 3. (a)–(d) Two-dimensional (2D) maps of the zero-bias conductance (ZBC), normalized to normal-state conductance at −10 mV, for
the external magnetic field 1 T (a), 3 T (b), 4 T (c), and 6 T (d). These scanning tunneling spectroscopic measurements were carried out at 1.5 K
over the area 156.2 × 156.2 nm2 (the scale bar is 50 nm), during scanning process the height of the tip was controlled by a feedback loop and it
corresponds to the current I = 100 pA at the bias V = −20 mV. (e)–(h) 2D Delaunay triangulation for the vortex patterns shown in (a)–(d) for
the same scanning areas, the filled red dots depict the positions of the vortex cores and red dashed lines indicate the shortest distances between
two neighbor vortices. (i)–(l) k space (or 2D frequency domain) for the vortex lattices shown in (e)–(h), respectively, obtained by a Fourier
transformation (the scale bar is 0.04 Å−1). The vortex lattice at H = 1 T (a) is close to perfect hexagonal lattice; the vortex lattice at H = 3 T
(b) can be described as a superposition of distorted hexagonal and square local lattices; the vortex lattice at H = 4 T (c) is close to perfect
square lattice, while the vortex lattice at H = 6 T (d) becomes more blurred and it loses long-range order.
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FIG. 4. (a) Evolution of the inner angles between every three neighboring vortices, determined using with the Delaunay triangulation, as a
function of the external magnetic field H . The error bars indicate the standard deviation; the dashed lines are guides to the eyes. The H range
where the vortex lattice is close to hexagonal and all angles are close to 60◦ is shown in yellow; the H range corresponding to the transition
from the hexagonal lattice to square lattice is shown in gray. (b) Dependence of the specific heat γ (H ) of the FeSe crystals on the external
magnetic field H . The H range, where the transformation of the vortex lattice takes place [see (a)], correlates with the crossover from the linear
dependence γ (H ) ∝ H for low H values to the linear dependence with different slope and offset for high H values. (c)–(e) Typical probability
distribution functions for the inner angles of the Delaunay triangles for H = 1 T (c), 3 T (d), and 4 T (e) and their Gaussian decomposition (red
dashed lines). There is a clear transition from the unimodal distribution with the single maximum near 60◦ (c), inherent for hexagonal lattice,
to bimodal distribution with two local maxima near 45◦ and 80◦ (e), inherent for distorted square lattice. The probability distribution function
with three maxima at 45◦, 60◦, and 80◦ (d), observed in the transition region, point out to the coexistence of hexagonal and square lattices in
the same scanning area. The peaks in probability distribution which corresponds to the hexagonal lattice are marked with red squares in (a).

together. The vortices interact with each other through the
circulating currents around each vortex and form a lattice in
equilibrium.

At small distances from the core, the current pattern reflects
the symmetry of the electronic states and may give rise to a
complex evolution of vortex-lattice structures with an applied
field [44]. In the case of the nonmagnetic borocarbides and
A15 materials, the vortex-lattice transitions observed have
been explained in terms of nonlocality, i.e., the property of
clean superconductors, in that the current density at any posi-
tion r is determined by the vector potential within a region of
radius ξ around this position. As the connection between the
current density and the vector potential depends on the shape
of the Fermi surface, this shape will be reflected in the vortex-
vortex interaction and ultimately in the structure of the vor-
tex lattice. The analysis of these images is summarized in
Fig. 4(a), where the average angle obtained from the Delaunay
triangulation is plotted as a function of the applied magnetic
field. An almost hexagonal lattice is obtained at low field
characterized by a unimodal distribution of angles centered
at about 60◦, shown in Fig. 4(c). The probability distribution
function with three maxima at 45◦, 60◦, and 80◦ is instead
observed in the transition region, pointing to a coexistence

of hexagonal and rhombic lattices in the same scanning area
[Fig. 4(d)]. At high fields a bimodal distribution with two local
maxima near 45◦ and 80◦ is observed as shown in Fig. 4(e).

The magnetic-field dependence of specific heat is another
excellent sensitive independent tool to probe the vortex ex-
citations in a mixed state. At low temperatures, the specific
heat in finite magnetic field usually has linear temperature
dependence C(H, T ) ∝ γ (H )T . For the isotropic s-wave or-
der parameter the coefficient γ is proportional to the mag-
netic field γ (H ) ∝ H because the specific heat in the vortex
state is dominated by the contribution from the localized
quasiparticles in the vortex cores. On the other hand, for a
superconductor with nodes in the gap, for example d-wave
superconductors with line nodes, Volovik et al. [61] pointed
out that the Doppler shifts in the quasiparticle spectrum due
to supercurrents around a vortex core qualitatively modify the
field dependence as γ (H ) ∝ √

H .
The field dependence of the specific heat coefficient is

presented in Fig. 4(b). The data deviate from both the linear
(γ ∝ H) and square-root (γ ∝ √

H ) behavior in agreement
with other reports [62]. FeSe indeed is not a simple isotropic
s-wave or nodal superconductor [12,57,63,64]. In the case of a
two-band superconductor with strongly different gaps, γ (H )
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increases steeply with the field caused by the suppression of
the smaller gap by increasing the magnetic field [65]. It is
evident that the slope of γ (H ) at low field is larger than that
at higher field, which has been observed also in two-gap su-
perconductors such as MgB2 [65]) and Lu2Fe3Si5 [66]. After
the magnetic field exceeds H∗, the specific heat coefficient
increases linearly with the applied field. Based on this, the
typical field H∗ is evaluated as 1 T corresponding to the kink
in the data in Fig. 4(b) and this value strongly correlates
with the observed onset of the vortex-lattice transformation
in the STM data. We note that the value of γ at H∗ is about
0.36γn, where γn is the normal-state Sommerfield coefficient.
Note that the residual value γr = γ (H = 0) is determined by
the zero-field density of subgap states which is presumably
controlled by various types of defects and, thus, indicates the
quality of the investigated single crystals.

C. Discussion

To summarize, the key experimental observations which
should be explained by an appropriate theoretical model
can be listed as follows: (i) at low fields the vortex-lattice
anisotropy strongly differs from the anisotropy of the vortex
core; (ii) the structure of the vortex lattice exhibits a crossover
from an almost hexagonal one at low fields to the distorted
square one at high fields; (iii) the core anisotropy grows with
the increasing magnetic field; and (iv) the crossover in the
magnetic field dependence of the heat capacity occurs at the
field values close to the ones corresponding to the onset of
the gradual change in the vortex-lattice structure.

Naturally, an appropriate explanation of these experimental
findings should be developed taking into account the previous
results of Refs. [30–32,67] indicating an essential two-band
nature of superconducting state in FeSe. These observations
include a noticeable difference between the gaps, Fermi ve-
locities, and, thus, the coherence lengths ξ (1,2) for the Cooper
pair wave functions in different energy bands. Thus, the
complicated structure of the superconducting order parameter
reflecting the superconducting correlations at different bands
is an obvious reason for possible changes in the structure of
the vortex matter in this compound. The resulting multicom-
ponent order parameter is well known to be the cause of a
variety of phase transitions and clustering in the vortex matter
[68,69] as well as the gradual changes in the vortex-lattice
geometry [70].

As at low magnetic fields the intervortex interaction is
controlled only by the anisotropy of the London penetration
depth, one can always obtain the hexagonal vortex lattice by
the coordinate rescaling with the anisotropy factor [71]. To
determine the field range where such a procedure can give
us a reasonable approximation, we perform a rescaling of the
vortex-lattice images at various fields by fitting the scaling
parameter so that we obtain the hexagonal lattice: x → x/

√
κ

and y → y
√

κ , where the parameter κ has meaning of the
effective lattice anisotropy. At low fields κ should coincide
with the in-plane anisotropy of the London penetration depth.
The field dependence of the evaluated scaling ratio κ is shown
in Fig. 5. At low fields, κ is close to one suggesting that
the London penetration depth is almost isotropic in the ab
plane. Strictly speaking, this procedure is not unique and

Perfect square lattice Perfect hex-lattice( )a

( )b

H, T
0 1 2 3 4 5 6 7 8

0

0.5

1

1.5

2

FIG. 5. (a) We apply rescaling with the factor κ along the diag-
onals. For κ = 1.71 this rescaling transforms a square lattice into a
hexagonal lattice. (b) Field dependence of the scaling ratio κ . The
transformed lattice becomes hexagonal at 1 � H � 7 T after applied
transformation.

rescaling with the factor κ ≈ 3 also gives a hexagonal lattice.
Neither of these values is consistent with the anisotropy of
the vortex core. We find that the effective lattice anisotropy
monotonically increases with the magnetic field. Above the
field equal to 4 T the scaling ratio becomes independent of
the field. It should be noted that both the anisotropy of the
vortex-core shape [Fig. 2(b)] and the anisotropy of the vortex
lattice [Fig. 5(b)] gradually grow in the range 1 � H � 4 T
and saturate approximately at H = 4 T. The ratio κ appears
less than the core anisotropy by a factor ∼1.5 in a wide
field range. This can be interpreted assuming, e.g., that the
anisotropy of the London penetration depth at high field is
affected only by the anisotropy of the hole pocket while the
superconductivity in the electron pocket is suppressed.

Our measurements of the density of states inside the vor-
tex core clearly demonstrate a substantial anisotropy of the
system: the ratio of the core dimensions is of the order of 2.
As a result, to explain the observation of the square vortex
lattice at high magnetic field we assume that it arises from the
distortion of the hexagonal vortex lattice in the anisotropic su-
perconductor with the anisotropy of the effective masses of the
order of

√
3. Strictly speaking the latter anisotropy factor does

not coincide with the factor describing the core anisotropy.
This discrepancy may be connected with the additional core
distortion caused by the gap anisotropy at the Fermi surface
which does not necessarily coincide with the anisotropy of
the effective masses of the Cooper pairs.

For the qualitative theoretical description of the observed
experimental data, we suggest to use a two-band Ginzburg-
Landau (GL) model with the interband Josephson coupling.
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We write the free energy in the following form:

F =
∫ ⎧⎨

⎩
2∑

j=1

[
a( j)|ψ ( j)|2 + b( j)

2
|ψ ( j)|4

+ (Dψ ( j) )∗K̂ ( j)(Dψ ( j) )

]

+ εJ (ψ (1)∗ψ (2) + ψ (2)∗ψ (1) ) + B2

8π

}
dV, (1)

where a(1,2), b(1,2), K̂ (1,2), and εJ are the phenomenological
parameters, D = −i∇ − (2π/�0)A. The tensors K̂ (1) and
K̂ (2) in general have different anisotropies, which gives the
possibility of the transformation of the vortex lattice. This
two-band GL model suffers from too many free parameters.
Minimization of the free energy and analysis of the phase dia-
gram versus all the parameters of the model seems redundant
because it is difficult to verify a particular choice of these
parameters. Therefore, we consider two simplified cases of
parameters which allow us to illustrate a possible qualitative
explanation of our experimental data by the simplest numeri-
cal analysis.

At first we consider the case of vanishing Josephson inter-
band coupling εJ = 0, so that the order parameter components
interact only via the magnetic field in agreement with the
conclusions of Refs. [72,73] for FeSe. At the same time we
should note that this assumption of zero Josephson coupling
contradicts to some recent numerical works (see, e.g., [67])
modeling FeSe.

Introducing the Cooper pair wave functions in different en-
ergy bands one can define two critical magnetic fields H (1,2)

c2 ∼
�0/(ξ (1,2))2 corresponding to the suppression of different or-
der parameter components by the approaching vortex centers.
Assuming H (2)

c2 < H (1)
c2 , we see that a complete suppression

of superconductivity in both bands should occur only at the
upper critical field H (1)

c2 , while the field H (2)
c2 corresponds just

to a strong suppression of the superconducting correlations in
one of the bands. This line of reasoning allows us to assume
that the interplay between the dominant order parameter ψ (1)

and the growing below H (2)
c2 subdominant order parameter

ψ (2) is responsible both for the kink in the specific heat
data and the smooth transformation of vortex-lattice structure
found in STM measurements.

To illustrate these simple arguments, we consider here a
range of fields where one of the order parameter component is
dominating while the other is significantly suppressed. There-
fore we can use the London model for the first component
and use the Ginzburg-Landau approach [15] for the second
component. Assuming for simplicity the vortex centers in both
order parameter components to coincide, we can write the free
energy of the superconductor as a sum of two terms:

F = 1

8π

∫
[(λ(1))2 curl Bm̂(1) curl B + B2] dV

+
(
H (2)

cm

)2

4π

∫
dV

[
−|ψ (2)|2 + 1

2
|ψ (2)|4

+ (ξ (2) )2(Dψ (2) )∗(m̂(2) )−1(Dψ (2) )

]
. (2)

( )a

( )b

0.5 1H/H

*H /H

FIG. 6. (a) Transformation from the hexagonal vortex lattice to
the square one. The angles of the unit cell are denoted as α and β.
(b) The angles of the unit cell of the vortex lattice vs the magnetic
field. The parameters are taken as follows: λ(1)/ξ (1) = 34, λ(2)/ξ (2) =
3.5, ξ (2)/ξ (1) = 3, m(1)

y /m(1)
x = 3.5, and m(2)

x = m(2)
y .

Here we introduce the normalized mass tensors m̂(1) and m̂(2)

following [71]. We consider a strong type-II superconductor
with λ(1,2)  ξ (1,2). Both tensors m̂(1) and m̂(2) are determined
by the crystal symmetry meaning that they both can be
diagonalized in the same axes. The lattice structure should
depend on the field if these tensors have different anisotropy.
At the high fields above H (2)

c2 = �0/[2π (ξ (2) )2] the lattice is
completely described by the anisotropy of m̂(1). Below this
field the second component comes into play starting to modify
the structure of the vortex lattice. In the case ξ (1) � ξ (2) �
λ(2) � λ(1) the total effective penetration length is determined
mostly by the λ(2) value in the low fields. Thus, the structure
of the vortex lattice should be consistent with the anisotropy
of the tensor m(2). In order to describe the transition from the
hexagonal lattice at low fields to the distorted square lattice
at high fields we take for illustration the isotropic m̂(2) and
m(1)

x /m(1)
y ∼ 3.

The field dependence of the angles of the unit cell of
the vortex lattice calculated using this model are shown in
Fig. 6. Above the field H (2)

c2 the lattice does not experience
any modifications. The transformation occurs close to the field
H∗ ∼ 0.7H (2)

c2 which is below the critical field H (2)
c2 .

In the above model we did not consider possible splitting
in positions of vortices in two components of the order pa-
rameter. However, this splitting has not been observed in the
LDOS patterns which clearly do not show the doubling of the
vortex images.

Now we proceed with the consideration of the op-
posite limit of strong Josephson coupling |εJ |  |a(1,2)|.
Applying the linear transformation for the order pa-
rameters components ψ (1) = η(1) cos α − η(2) sin α, ψ (2) =
η(1) sin α + η(2) cos α one can exclude the Josephson term
from the free energy expression written through the new
components η(1)∗η(2) + c.c. In terms of the new order pa-
rameter components η(1,2) the free energy takes the following
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form:

F =
∫ ⎧⎨

⎩
2∑

j=1

[ã( j)|η( j)|2 + (Dη( j) )∗ ˆ̃K ( j)(Dη( j) )]

+ (Dη(1) )∗ ˆ̃K (12)(Dη(2) )+c.c.+ f4(η(1), η(2) ) + B2

8π

⎫⎬
⎭ dV,

(3)

where f4 contains all the fourth-order terms of η(1) and η(2).
In the case of the strong Josephson interaction the parameters
ã(1) and ã(2) have different signs (for certainty ã(1) < 0 and
ã(2) > 0), i.e., the η(2) component is significantly suppressed.
Further analysis can be simplified close to the upper critical
field Hc2, where the linear equations for the order parameter
components have the following form:

ã(2)η(2) + D ˆ̃K (12)Dη(1) = 0, (4)

ã(1)η(1) + D ˆ̃K (1)Dη(1) − 1

ã(2)
(D ˆ̃K (12)D)2η(1) = 0. (5)

Here we have neglected the term proportional to ˆ̃K (2) assum-
ing a nongradient term to be more significant. Thus, in the
limit of the magnetic field close to the upper critical field
the two-component GL model can be effectively reduced to
the single component model with the nonlocal gradient terms.
The anisotropy of the tensors ˆ̃K (1) and ˆ̃K (12) is different in the
general case so these nonlocal terms can lead to the vortex-
lattice transformation. The analysis of the GL model with the
nonlocal term is given in the Appendix.

Finally, another possible reason for the observed vortex-
lattice transformation is related to the “magnetoelastic” in-
teractions, which appear because when the normal cores are
nucleated they push slightly on the surrounding supercon-
ducting phase. Therefore, there is an additional contribution
to intervortex interactions due to the strain field generated
by vortices. This interaction is weak but long ranged and
affects the vortex lattice in materials with large dTc/d p,
where p is pressure or strain [74]. In fact, one might need to
include this interaction even to understand the vortex lattice
in tilted fields in NbSe2 with dT c/d p ∼ 0.5 K/GPa, because
the standard anisotropic London in this case gives the wrong
answer for VLs [75]. For iron-based materials, dT c/d p is on
the order of K/GPa and varies with doping [76]. Hence, all
these materials are good candidates for observing the vortex
structure evolution and transitions caused by strain induced
interactions. A square vortex-lattice transition has recently
been reported in LiFeAs [77] and it has been explained in
terms of vortex overlap. The different shape of the vortex
cores and strong differences in the band structure in these
two compounds make it rather difficult to give the comparison
of FeSe and LiFeAs. Further experimental work is necessary
to compare the scenario of the vortex-lattice transformations
in these systems and clarify the relevance of the multigap
order parameter structure for the case of LiFeAs. We have
carefully analyzed our data and we can safely exclude this
as a possible origin of the vortex-lattice transformation in
FeSe. We do not observe any vortex overlap in our STM

data at fields below 3 T, which is a field higher than the
field region in which the vortex lattice smoothly changes from
nearly hexagonal to rhombic. However the issue of vortex
core overlapping deserves a more detailed comment if we
keep in mind that in our model there are two components
of the order parameter. The dominant component is highly
anisotropic and provides the squarelike lattice at the high field.
Its coherence length is definitely smaller than the distance
between vortices because we work far from the upper critical
field Hc2 of the superconductor. The subdominant component
of the order parameter is assumed to be isotropic and the upper
critical field H (2)

c2 for this component is less than Hc2. The size
of the vortex core is different for different order parameter
components. Thus, for our range of magnetic fields below the
field H (2)

c2 the cores overlap if we consider the subdominant
order parameter pattern and do not overlap for the dominant
order parameter component. It is the overlapping of the sub-
dominant order parameter cores which is responsible for the
transformation of the vortex lattice to the hexagonal one at low
magnetic field. The STM measurements appear to be sensitive
mainly to the dominant order parameter component which we
associate with � pocket and thus our experiments do not show
the overlap of the vortex cores in the field range where the
rhombic distortion of the vortex lattice are observed.

IV. CONCLUSIONS

In summary, we have studied vortex core and vortex lattice
in FeSe single crystals. We observed an elliptical vortex core
with an anisotropy that increases in applied magnetic field.
Tunneling spectra in the vortex core reveal the presence of
low-energy excitation states that are particle-hole asymmetric
along the long direction of the vortex core and the local
density of states shows spatial oscillatory behavior. Such
features are characteristic of vortex core in the quantum
limit. Furthermore, the evolution of the vortex lattice as a
function of magnetic field shows strong deformations from
an almost hexagonal to nearly square lattice above the field
∼1.5 T applied perpendicular to the a-b plane of the sample.
Several features of the vortex core and vortex lattice appear
unexpected and they can be explained only if one considers a
compensation effect due to the multiband nature of this ma-
terial. First, the anisotropy of the vortex core is quantitatively
different from the gap anisotropy and the anisotropy of the �

pocket. One needs to consider possible contributions from the
electron pocket to explain the observed anisotropy. Second,
the nearly hexagonal vortex lattice at low field is unexpected
in a material with orthorhombic crystal structure and it is in
contradiction with the elliptical vortex core. Therefore, the
anisotropy of the penetration depth and that of the coherence
length appear to be different at low field. However, at high
field this anisotropy is the same [Fig. 5(b)]. Finally, the ob-
served rhombic distortions of the vortex lattice appear to hap-
pen in a field region where a kink is observed in the magnetic
field dependence of the specific heat [Figs. 4(a) and 4(b)]. This
kink of the specific heat suggests that one of the order param-
eter components is suppressed at high fields. This assumption
along with choice of different anisotropies of the effective
masses in different bands allow us to reproduce qualitatively
the transformation of the vortex lattice. While we cannot
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exclude contributions from other sources to the vortex-lattice
transformation, it seems that the multiband nature is playing
an important role to reconcile some of the apparent contradic-
tions. Other possible contributions to the vortex-lattice trans-
formation are nonlocal effects and magnetoelastic interaction.
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APPENDIX

In order to describe the field-dependent distortion of the
vortex lattice above the critical field H∗ we follow Ref. [78]
and introduce the Ginzburg-Landau free energy per the unit
vortex length modified taking account of the higher-order
gradient terms responsible for the nonlocal response of the
superconducting condensate:

F = H2
cm

4π

∫ {
− |ψ |2 + 1

2
|ψ |4 + ξ 2|Dψ |2

+ ξ 4|μxxD2
xψ + μyyD2

yψ |2

+ ξ 4μ2
xy

[(
D2

xψ
)∗(

D2
yψ

) + (DxDyψ )∗(DxDyψ )

+ (DxDyψ )∗(DyDxψ ) + c.c.
]}

dx dy, (A1)

where D = −i∇ − 2π
�0

A, A is the vector potential of the
magnetic field, and Hcm is the thermodynamic critical field.

Due to the large value of the Ginzburg-Landau parameter
κ = λ/ξ we can neglect the contribution to the magnetic
field arising from the supercurrents in the sample and assume
the magnetic field to be homogeneous. The usual effective
mass term determines the properties of the vortex lattice at
low fields while the fourth-order terms originating from the
nonlocal effects affect the properties of the vortex lattice and
the vortex core shape at higher fields. Our experimental data
provide evidence for the almost hexagonal vortex lattice at
low fields and, thus, we assume the effective mass term to
be isotropic. The D2h symmetry of the vortex lattice allows
us to reduce the number of the components in the tensor of
fourth-order gradient terms only to three coefficients. The
terms with μxx and μyy have the D2h symmetry while the
last term proportional to μ2

xy has the D4h symmetry. All these
terms are responsible for the distortions of the vortex cores
and the vortex lattice.

For the sake of simplicity we follow the original approach
introduced by Abrikosov [15] in order to obtain the geometry
of the vortex lattice at high fields close to the upper critical
field. We start from the linear theory and find the form of the
superconducting nuclei:

D2ψ + ξ 2
[
μxxD2

x + μyyD2
y

]2
ψ + ξ 2μ2

xy

[
D2

xD2
y + (DxDy)2

+ DyD2
xDy + DxD2

yDx + (DyDx )2 + D2
yD2

x

]
ψ = h

ξ 2
ψ.

(A2)

The h is the lowest eigenvalue of the operator on the left-hand
side of the above equation. The equation h(H ) = 1 gives the
value of the upper critical field. If no high gradient terms are
taken into account, i.e., μxx = μxy = μyy = 0, then we get
standard expressions h = 2πξ 2H/�0 and Hc2 = �0/(2πξ 2).

We choose the vector potential as follows: Ay′ = Hx′,
where

x = x′ cos α − y′ sin α, (A3)

y = x′ sin α + y′ cos α. (A4)

The angle α stands for the mutual orientation of the vortex
lattice and the anisotropy axis of the fourth-order gradient
terms in the GL free energy. In general the eigenfunction has
the form

�k (x′, y′) = eiky′
�0

(
x′ − k

H

)
, (A5)

where function �0 obeys the following equation:

−d2�0

dx′2 + H2x′2�0 + L4

(
d

dx′ , x′, α
)

�0 = h

ξ 2
�0, (A6)

where L4 is the fourth-order polynomial operator of d/dx′ and
x′ which comes from the high gradient terms after rotation
by angle α. This equation coincides with the Schrödinger
equation for the harmonic oscillator with the polynomial
perturbation. This equation is too complicated to solve exactly
but one can use the perturbation theory if the coefficients μxx,
μxy, and μyy are small enough. Then we consider the function
�0(x′) to be expanded as �0(x′) = �

(0)
0 (x′) + �

(1)
0 (x′) + · · ·

where �
(0)
0 (x′) is the wave function of the ground state of the
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FIG. 7. The order parameter profiles calculated for vortex lattices energetically favorable at different magnetic fields. The color indicates
the absolute value of the order parameter ψ normalized onto its maximal value. The parameters of the nonlocal terms are μxx = 0.3, μyy = 0.6,
and μxy = 0.6. The vortex lattice smoothly transforms from the tetragonal one at high fields to the hexagonal at low fields.

harmonic oscillator and �
(1)
0 (x′) is the first-order perturbation

with respect to the operator L4. The correction to h also can
be obtained within the perturbation approach.

As a next step we look for the solution in the following
form:

ψ (x′, y′) =
∑

n

Cneikny′
�0

(
x′ − kn

H

)
. (A7)

One can see that this function is periodic ψ (x′, y′) =
ψ (x′, y′ + 2π/k). The angle α and the number k deter-
mine one of the lattice basis vectors with respect to the
anisotropy axes. If we put Cn = exp(−iπρn2) we find
out that |ψ (x′, y′)| = |ψ (x′ + k/H, y′ + 2πρ/k)|. Taking σ =
k2/(2H ) we have a standard (ρ, σ ) parametrization of the vor-
tex lattice [79]. Finally, we have that the lattice is determined
by three real parameters α, ρ, and k.

We should minimize the GL free energy in order to find
the proper parameters. If we substitute the solution to the free
energy functional then we find

F =
∫ [

(h − 1)|ψ |2 + 1

2
|ψ |4

]
dx dy. (A8)

One can show that the minimization of this functional is
equivalent to minimization of the parameter

βA = 〈|ψ |4〉
〈|ψ |2〉2

, (A9)

where the average is taken over the lattice primitive cell.
The minimization of βA as a function of α, ρ, and k has
been performed numerically. The results of this minimization
procedure shown in Figs. 7 and 8 appear to be in a good
qualitative agreement with the experimental data. We observe
the transformation of the lattice and increase of the vortex-
core anisotropy with the increase of the field. All the transfor-
mations are smooth and both vortex sizes depend on the field.
In the low field limit (but still above H∗) the nonlinear term
in the GL equations becomes significant and should be taken
into account more accurately, i.e., beyond the approximation
of a single Landau level adopted above.

FIG. 8. The core dimensions and their ratio vs the magnetic field.
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