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Fragile superconductivity in the presence of weakly disordered charge density waves
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When superconducting (SC) and charge-density-wave (CDW) orders compete, novel low-temperature behav-
iors can result. From an analysis of the Landau-Ginzburg-Wilson theory of competing orders, we demonstrate
the generic occurrence of a “fragile” SC phase at low temperatures and high fields in the presence of weak
disorder. Here, the SC order is largely concentrated in the vicinity of dilute dislocations in the CDW order,
leading to transition temperatures and critical currents that are parametrically smaller than those characterizing
the zero-field SC phase. This may provide the outline of an explanation of the recently discovered “resilient”
superconducting phase at high fields in underdoped YBa2Cu3O6+δ .
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I. INTRODUCTION

There are a variety of microscopic circumstances in which
correlated electronic materials exhibit comparably strong and
macroscopically competing tendencies toward superconduct-
ing (SC) and incommensurate charge-density-wave (CDW)
orders [1]. A particularly interesting aspect of the interplay
between the two orders is the role of topological defects—
vortices in the SC, which can be induced by the application
of an external magnetic field, H , and dislocations in the
CDW, which are produced by quenched disorder. In cases
in which a subdominant order is nearly degenerate with the
dominant order, the subdominant order can be stabilized in
the neighbor of a topological defect where the dominant order
vanishes. The possibility of one or another form of density-
wave order in a vortex core “halo” has been the subject of
considerable theoretical and experimental interest, especially
in the context of the underdoped cuprate high-temperature
superconductors. Here we explore some qualitative physics
that arises in regimes where CDW order is dominant, and in
which SC arises in the neighborhood of CDW dislocations.

A. Topological defects and halos

In systems with complex phase diagrams, there is of-
ten a range of temperatures, T , in which—in the absence
of competition—two distinct symmetries would be sponta-
neously broken, but where the competition between the two
orders is strong enough that only the dominant order param-
eter develops a nonzero expectation value; the subdominant
order is quenched by the competition. This state of affairs
pertains when the repulsion between the two orders, which
corresponds to the term γ in the Landau-Ginzburg free energy
in Eq. (3.1), exceeds a critical strength, γc1. [See Figs. 1(a) and
1(b)]. However, under some circumstances (that we will de-
rive explicitly), the subdominant order emerges in a “halo” of
finite extent surrounding any topological defect in the primary
order. Two features of the system are required for this to occur:

(i) First, the magnitude of the primary order must vanish—
or at least must be substantially suppressed—in the core of the

defect. This is generic in the vortex core of an order parameter
with XY symmetry, or a domain wall of an order parameter
with Ising symmetry. It would not be expected, for instance, in
a skyrmion of an order parameter with Heisenberg symmetry.

(ii) Secondly, the elastic “stiffness” of the secondary order
parameter, κ , must be sufficiently small, so that the gain in
condensation energy from having the secondary order ex-
pressed in the defect core exceeds the elastic cost of having
a spatially varying order parameter. (Note, the critical value
of κ depends, among other things, on how close is the balance
is between the primary and secondary ordering tendencies).

Under these circumstances, there exists a second criti-
cal value, γc2(κ ) > γc1, such that for γc2 > γ > γc1 there
occurs a finite halo region about any topological defect of
the primary order parameter in which the secondary order
parameter has a nonvanishing amplitude. There are many
examples of this basic physics that have been discussed.
Superconducting cosmic strings [2,3] are an example in which
the superconducting order is the secondary order that appears
associated with vortices in a dominant cosmic condensate.
Subdominant CDW, spin-density wave (SDW), or nematic
orders arising in halos about magnetic-field-induced vortices
in a dominantly superconducting order have been theoretically
discussed [4–13], and experimentally observed [14–17], in
various cuprate superconductors. Some evidence has been
presented that in certain Fe-pnictides, superconducting order
can exist in a narrow range of T above the bulk Tc in a region
about a structural twin boundary, i.e., Ising domain walls of a
nematic order parameter [18].

In the present paper, we will focus on the case of com-
petition between CDW and SC order. Where the SC order is
dominant, the topological defects in question are the familiar
vortices already mentioned, and the halo is then a region
with local CDW order. Here, at low T in a strongly type II
superconductor, the density of vortices is controlled by an
applied magnetic field, H , and a low density of vortices can
be introduced by the application of a small field with Hc1 <

H � Hc2. Conversely, where the CDW order is dominant,
the topological defects are dislocations. Because there is an
emergent XY symmetry associated with an incommensurate
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FIG. 1. Schematic phase diagrams showing competition between CDW and SC order in the absence of disorder [(a) and (b)] and in
the presence of weak disorder [(c) and (d)]. For reference, the dotted lines represent what would be the phase boundaries in the absence of
coupling between the SC and CDW orders (γ = 0). The thin solid lines represent continuous transitions and the heavy purple line discontinuous
transitions. The dashed lines indicate crossovers. For further explanation, see Sec. II.

CDW, at a formal level these defects are precisely dual to the
superconducting vortices, with the role of CDW and SC orders
interchanged. Now, the halo is a region of local SC order in the
vicinity of a dislocation core. No precise dual relation exists
in the presence of a magnetic field, which for all practical
purposes couples minimally only to the SC order. However,
quenched disorder plays a somewhat analogous role; in a
quasi-two-dimensional system, weak disorder (greater than a
parametrically small value that vanishes as interplane cou-
plings tend to 0) produces dilute, randomly pinned disloca-
tions in the CDW order [19]. (See also [20–23]).

B. Halos and long-range order

Until now, we have focused on local (or mean-field)
considerations. An isolated vortex or dislocation is a one-
dimensional (1D) object (or a 0D object in a 2D system), so
an isolated vortex halo cannot give rise to a broken symmetry
[10]. Unless interhalo interactions are taken into account,
thermal fluctuations destroy any long-range order (LRO) that
one would have associated with the order-parameter halo.
Thus, LRO (if it occurs) is triggered by the coupling between
halos. As a result, for a system of dilute halos, there are typ-
ically two parametrically distinct characteristic temperatures:

a relatively high crossover temperature Thal below which the
halos are locally well formed, and a lower critical temperature,
Tc, at which LRO of the subdominant order parameter onsets.
Given that the effective exchange couplings between well-
separated halos have random phase, the nature of the LRO
that results is extremely complicated, and not well understood
theoretically—the ordering problem is some form of “XY -
gauge glass problem” [24]. In the Landau-Ginzburg-Wilson
(LGW) theory that we have considered, these couplings fall
exponentially with separation between halos. However, as
T → 0, while the basic structure of the state remains un-
changed, the details of these effective couplings are expected
to be increasingly altered by the existence of gapless elec-
tronic quasiparticles, which typically mediate interactions that
fall with an inverse power of separation.

For the problem at hand, we will treat these issues with an
explicit solution of a simple effective field theory. However,
to develop a general intuition, we can estimate Tc as follows:
(i) Compute the order-parameter susceptibility of an isolated
halo, χ (T ). For instance, the susceptibility associated with a
CDW halo living along a vortex line is that of an appropriate
classical 1D XY model, χ (T ) ∼ 1/

√
T �T (where T � is the

mean-field Tc). (ii) Compute the effective coupling between
neighboring halos, J (R), which naturally depends strongly
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on the distance, R, between halos. In the simple Landau-
Ginzburg effective field theories we will analyze, J (R) ∼
J0 exp(−R/�), where � is an appropriate correlation length; in
more microscopically realistic treatments of metallic systems
at low T , this dependence can be much more complicated
[25,26]. Tc can be estimated from the implicit solution of the
equation χ (Tc)J (R) ∼ 1.

C. Plan of the paper

Before launching into specific calculations, in Sec. II we
present some representative phase diagrams that can emerge
as a consequence of the competition between CDW and SC
order. Next, in Sec. III, we define a model classical effective
field theory with fields corresponding to unidirectional CDW
and SC order. In Sec. IV we treat this model in the context of
Landau-Ginzburg theory, meaning that we treat the model as
an effective free energy (with coefficients that are assumed to
depend smoothly on T ) and we solve for the field configura-
tions that minimize it.

To explore the effects of order-parameter fluctuations more
seriously, in Secs. V and VI we treat the same model as an ef-
fective Hamiltonian (i.e., in the context of Landau-Ginzburg-
Wilson theory), with fixed (temperature-independent) param-
eters. Specifically, in Sec. V we treat the fluctuations of the
fields approximately using Feynman’s variational approach
[27] (which is exact in a suitable large-N limit of the same
model [28]) and in Sec. VI we treat the fluctuations exactly
(numerically) using classical Monte Carlo methods.

Finally, in Sec. VII we generalize the discussion slightly
to the case of a tetragonal system (where the CDW order
can have its ordering vector in one of two symmetry-related
directions) in order to obtain a phase diagram that is sug-
gestive of observed behaviors of the cuprate high-temperature
superconductors. We then comment on insights one can obtain
concerning existing observations in the cuprates that can be
qualitatively well understood in terms of the present consid-
erations. In particular, in the interest of brevity, we focus on
YBCO with doped hole density roughly in the range 0.1–
0.14, which we identify as a regime in which the principal
features of the phase diagram are a consequence of the fierce
competition between SC and CDW orders. While in this
paper we have considered only problems in which there is a
close competition between CDW and SC order, very similar
considerations apply to other cases in which multiple orders
are intertwined [29–42].

II. QUALITATIVE PHASE DIAGRAMS

Many qualitative aspects of our results are represented
in the schematic phase diagrams in Fig. 1, which show a
variety of ways the competition between CDW and SC order
plays out; these aspects can be motivated independently of
the specific method of solution. These figures are derived
from the effective field theory defined below in the sense
that we have shown that phase diagrams with these precise
topologies and general shapes occur for appropriate choices
of parameters. However, given that the parameters that enter
an effective Hamiltonian are themselves generally functions
of T and B, albeit smooth, analytic functions, details of the

global shapes of phase boundaries derived from such calcu-
lations are inessential. Moreover, the various features of the
phase diagram are best computed using different theoretical
methods. We have therefore drawn the phase diagrams to best
illustrate the points of physics rather than to report results of a
single calculation. So as to avoid subtleties that are special to
strictly 2D systems, it is assumed that the system in question
is a layered, quasi-2D system with weak uniform couplings
between planes. Thus, the CDW and zero-field SC phases
exhibit true LRO, and the vortices induced by a finite B form
an Abrikosov lattice or (in the presence of disorder) a vortex
glass up to nonzero temperatures [43,44].

In the following, γ represents the strength of the repulsion
between the CDW and SC orders, and σ is a measure of the
strength of the disorder. Explicit definitions are given when
we define the effective field theory in Eqs. (3.1) and (3.3)
below. While at a microscopic level the electronic structure
is changed in a way that affects the tendency toward both SC
and CDW order (especially in the case of “unconventional”
SC), at the order-parameter level, gauge invariance precludes
any linear (“random field”) coupling between disorder and
the SC order parameter, so in our model, disorder couples
directly only to the CDW order parameter. (It indirectly affects
SC through the local competition with CDW order). In this
section, we will consider explicitly only the case in which
in the zero-field limit, the SC ordering tendency is slightly
stronger than the CDW.

As a function of increasing γ , there are a variety of qual-
itatively distinct regimes possible in the clean limit, σ = 0,
some of which we will outline here. As already mentioned, γc1

is defined such that at H = 0, CDW and SC order coexist at
low enough T so long as γc1 > γ , while no such coexistence
occurs for γ � γc1. Under appropriate circumstances, there is
a second critical value γc2 > γc1 such that at T = 0, a CDW
halo forms about an isolated vortex (which is generated by
an infinitesimal nonzero H) for γc2 > γ > γc1 but not for
γ > γc2. We will also derive a third critical value γc3 > γc2,
which is the smallest value of γ such that for any γ > γc3

there is no range of T and H in which CDW and SC coexist.
γ = σ = 0: The dotted lines in all four panels of Fig. 1

delineate the phase boundaries in the clean limit and in the
absence of coupling between the order parameters. In this
limit, at temperatures below the red dotted line (which is
vertical since B does not couple significantly to CDW order),
there is CDW LRO. The blue dotted line is the boundary of the
SC (Abrikosov lattice) phase. The two phase boundaries cross
at a decoupled tetracritical point, and there is a broad region
of coexisting SC and CDW order. The assumption that the two
orders have comparable strength is reflected in the relatively
small magnitude of Tc − TCDW.

γ > 0 with σ = 0: For small γ > 0, the coexistence
regime persists, but its area is reduced. In Fig. 1(a) we show
a representative phase diagram for σ = 0 and γc2 > γ > γc1

(where γc1 and γc2 were defined above). Because γ > γc1, the
SC order prevents any CDW LRO at H = 0; however, because
γ < γc2, at small but nonzero H , CDW halos form around
each vortex below the crossover temperature, Thal, shown as
the vertical dashed green line in the figure. CDW LRO in
the coexistence phase occurs below the solid blue line; it is
highly inhomogeneous at low magnetic fields, triggered by the
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(relatively weak) coupling from one vortex halo to the next,
and hence it is labeled “fragile.” At higher fields, the balance
between CDW and SC is reversed, with the result that there
arises a pure CDW phase with uniform order. Note that at low
temperatures, the relatively low value of Hc2 is a consequence
of competition with the CDW rather than a property of the SC
state itself.

For large enough γ > γc3 > γc2, the coexistence phase is
entirely quenched, as shown in Fig. 1(b). The thick purple
line delineates a first-order field driven SC to CDW transition,
which ends in a bicritical point at which the phase boundaries
of the pure SC (solid blue line) and CDW phases (red solid
line) meet.

In fact, there are many other possible topologies of this
phase diagram depending on parameters: For instance, even
for γ > γc3, rather than a tetracritical point, one can have a
first-order line that extends to higher temperatures than either
of the ordered phases. For smaller values of γ , it is possible
to have more than one multicritical point—for instance, at the
high-temperature side of the phase diagram, the SC and CDW
phase boundaries could meet at a bicritical point, but then at
lower T a region of two-phase coexistence could arise in one
of several possible ways. In the case in which γc1 > γ > 0,
the phase boundary between the SC phase and the coexistence
phase can hit the H = 0 axis at a nonzero critical temperature,
while for γc3 > γ > γc2 (assuming that the initial tetracritical
point remains stable) this same phase boundary will hit the
T = 0 axis at a nonzero critical value of the magnetic field.

γc2 > γ > γc1 and σc � σ > 0: Even when we entirely
ignore the effects of pair-breaking, when the disorder strength
exceeds a critical value, σc, the locally pinned CDW correla-
tions are sufficiently strong that SC cannot arise—for σ > σc,
no broken symmetry phases exist at any T .

The solid black curve in Fig. 1(c) shows the only true phase
boundary in the presence of weak but nonvanishing disorder,
σc � σ > 0. It is a SC to nonsuperconducting (“normal”)
transition. In any dimension d � 4, the presence of weak
disorder precludes the existence of CDW LRO. A Bragg-
glass phase with CDW quasi-LRO is in principle possible
in d = 3, but for a quasi-2D system it seems unlikely that
such a phase would occur robustly. Similarly, no first-order
transition is allowed in d � 2, and correspondingly it is likely
that even rather weak disorder eliminates the possibility of
such a transition in a quasi-2D system. Thus, this transition
is continuous. At long distances, the SC phase is a “vortex
glass,” a phase with nonvanishing long-range phase rigidity
and (to the extent that gauge-field fluctuations can be ignored)
a superconducting version of an Edwards-Anderson order
parameter [43].

The upturn of the SC phase boundary at low T is the
most notable aspect of this phase diagram. This upturn is the
promised consequence of the presence of topological defects.
In the entire range of field and temperatures between the blue
dotted line and the solid black line, it is only the presence
of strong, local CDW correlations that is quenching the SC
order. Thus, so long as the superconducting coherence length
is not too long (κ < κc), a locally superconducting halo forms
about CDW dislocations where the CDW order vanishes.
Inevitably, a form of granular SC correlations is generated.
At elevated temperatures, the Josephson coupling between

neighboring dislocation halos is small compared to T , so
there are at best extremely weak macroscopic signatures of
these SC correlations. However, global SC phase coherence
onsets below a disorder-dependent characteristic temperature,
T �(σ ), comparable to the Josephson coupling J between
neighboring dislocations. Note that the resulting SC phase
is “fragile,” both in the sense that it is destroyed by thermal
fluctuations at temperatures far lower than the zero field Tc,
but also in that the critical current of the SC state is set by
J (ξCDW), and so it is also increasingly small the weaker is the
disorder.

Tetragonal crystal with γc2 > γ > γc1 and σc � σ > 0:
In the interest of simplicity, all of the model calculations
we perform in the present paper are for the case of an
orthorhombic crystal, where the direction of the CDW order
is uniquely determined. However, here and in the Conclusion,
we include a brief discussion of how the phase diagram differs
in a tetragonal crystal where even if the preferred CDW order
is unidirectional, it can condense in either of at least two
symmetry-related directions. (If the preferred CDW order is
not along a symmetry direction, then there are four symmetry-
related directions the CDW order can choose).

In this case, for σ = 0, CDW LRO breaks not only transla-
tion symmetry, but also a discrete rotational (or mirror) sym-
metry of the crystal. For nonzero σ , the translation symmetry
aspect of the CDW order is lost, but the discrete point-group
symmetry-breaking aspect survives up to a critical disorder
strength. Thus, in this case, as illustrated in Fig. 1(d), even
for nonzero σ there can be a well-defined thermodynamic
phase transition to a state with “vestigial nematic order,” that
is, one in which there is long-range CDW orientational order
without positional order [45]. Consequently, what appear as
CDW crossover lines in the orthorhombic case shown in
Fig. 1(c) become the red solid phase boundaries in Fig. 1(d)
in the tetragonal case. We will return to this case in the final
section.

III. THE MODEL

To make the discussion explicit, and since the qualitative
behavior we are exploring is relatively insensitive to micro-
scopic details, we begin by considering the properties of a
minimal classical Landau-Ginzburg-Wilson (LGW) effective
field theory. We consider two complex scalar fields, a charge
2e field 
 representing the local SC order parameter, and φ

representing the amplitude of a unidirectional incommensu-
rate CDW. (Generalizing the considerations to bidirectional
CDW order or multicomponent SC orders is straightforward,
although not entirely without qualitatively new features).
We will focus on a quasi-2D limit in which there are only
weak couplings between neighboring 2D layers of a 3D
crystal.

The effective free-energy density of a plane is

H2D = κ

2
|(−i�∇ − 2e�A)
|2 − α


2
|
|2 + |
|4

4

+ κx

2
|∂xφ|2 + κy

2
|∂yφ|2 − αφ

2
|φ|2 + |φ|4

4

+ γ

2
|
|2|φ|2 + h�φ + φ�h. (3.1)
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The weak couplings between order parameters [φn and 
n in
neighboring planes (n and n + 1)], are taken to be

H⊥ = −Jφ

2
[φ�

n+1φn + H.c.] − J


2
[
�

n+1
n + H.c.]. (3.2)

This is at best an effective Hamiltonian, obtained by integrat-
ing out microscopic degrees of freedom, which means that
even the parameters that enter the model should properly be
taken to have analytic dependences on temperature, T , and
magnetic field, �H = �∇ × �A. Moreover, in general there should
be higher-order terms, both in powers of the fields and in
powers of derivatives, and at low enough temperatures the
quantum dynamics of the fields can be important.

Without loss of generality, we have chosen units of the
two order parameters to set the coefficients of |φ|4, |
|4 to 1.
Moreover, we can chose units of distance and energy so
that α
 = κ = 1. Because φ is a unidirectional CDW, κx

and κy need not be equal, even in a tetragonal system, but
for simplicity we will set κx = κy = 1. In the above, h is
a Gaussian random complex field representing the effect of
quenched disorder, with

h(�r) = 0 h(�r)h(�r′) = 2σ 2δ(�r − �r′), (3.3)

the overline represents the configuration average, and σ

characterizes the strength of the disorder. Importantly, the
magnetic field couples directly only to the superconducting
order, while the disorder couples only to the CDW order.
Since we will focus in particular primarily on the case in
which superconductivity is the dominant zero-field order, but
in which CDW is only weakly subdominant, we will assume
1 � 1 − αCDW > 0. We will also assume that the repulsion
between the two orders is reasonably strong, γ ∼ 1.

Ideally, we would treat the

S = β
∑

n

∫
d �r(H2D + H⊥) (3.4)

as the effective action, where e−S gives the Boltzmann weight
for each field configuration. Below we carry this out in several
approximate ways. [There have been many earlier studies of
competing orders in the context of just such a LGW effective
field theory. In particular, the problem in the absence of the
gauge-field coupling (�A = �0) and in the absence of disorder is
the standard model for analysis of bi- and tetracritical points.
For the state-of-the-art theory of this, with references to the
earlier literature, see Ref. [46]].

IV. SADDLE-POINT SOLUTION—LANDAU-GINZBURG
THEORY

The field configurations that minimize S determine the
classical ground-state (T = 0) configurations of the fields.
[More generally, if we treat S as the Landau-Ginzburg (LG)
free energy, in which the coefficients α
 and αφ and possibly
others are taken to be T -dependent, minimizing S corresponds
to LG mean-field theory].

1. σ = 0

In the following discussion, we focus on γc1 < γ < γc2.
For H = 0, the ground state has SC order and vanishing CDW

order. In this case, the CDW order develops, and increases
in strength with increasing magnetic fields. However, the
magnetic field produces a vortex crystal and suppresses the
overall SC order—most strongly in vortex cores. Needless to
say, the CDW order develops a spatially varying magnitude
in response to the field-induced vortex lattice. No analytic
solution of this modulated state exists.

However, the state is increasingly homogeneous as H
approaches the upper critical field, Hc2, defined such that SC
order is quenched for H > Hc2:

Hc2 = H (0)
c2 (1 − γαφ/α
), (4.1)

where H (0)
c2 = (2e)−1α
 is the value of Hc2 in the absence of

competition with the CDW.

2. H (0)
c2 > H > Hc2 and σ > 0

In the presence of weak disorder, dilute pinned dislocations
disrupt the CDW order, opening the possibility of local super-
conductivity. We now consider the problem of superconduc-
tivity at an isolated CDW dislocation. If there is a nontrivial
solution for this problem, long-range superconductivity will
always develop at low enough temperature in the presence of
infinitesimal disorder up to a critical magnetic field Hc2(σ ) >

Hc2 ≡ Hc2(σ = 0).
Around the critical magnetic field, 
 is small, so the CDW

profile can be first solved while neglecting superconductivity.
Superconductivity can then be studied treating the CDW
as a fixed potential. Neglecting all 
 terms, the simplified
Hamiltonian for the CDW is

H[φ] = κφ

2
|∇φ|2 − αφ

2
|φ|2 + 1

4
|φ|4. (4.2)

We assume an ansatz for an isolated dislocation, with the
following boundary conditions:

φ(r, θ ) = √
αφ f (r)eiθ ,

f (r → ∞) = 1,

f (r → 0) = 0.

(4.3)

The solution f (r) can be obtained numerically, as shown in
Fig. 2. The characteristic length of the dislocation is Rφ =√

κφ/αφ .
Near the critical field, where SC is weak, the backreaction

of the SC correlations on the form of the dislocation can be
ignored. Thus, the saddle-point equation for 
 is

Ô
 = −(1/2) |
|2
,
(4.4)

Ô ≡ [−κ
(−i∇ − 2eA)2 − α
 + (γαφ ) f 2].

To have a nontrivial solution, the operator Ô must have at
least one negative eigenvalue. This problem is equivalent to
the Schrödinger equation for a charged particle in a magnetic
field H and a potential V (r) = γαφ| f (r)|2.

If we work in a symmetric gauge, the solutions can be
classified by their out-of-plane angular momentum, m, with
the lowest-energy solution lying in the m = 0 sector. In this
sector,

Ôm=0 = −κ
∇2 − α
 + γαφ f 2 + κ
e2B2r2. (4.5)
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FIG. 2. The magnitude of CDW order inside a single disloca-
tion as a function of the distance from the center obtained from
numerically minimizing H in Eq. (4.2). The characteristic length is
Rφ = √

κφ/αφ .

The critical field H̃c2 can be obtained numerically as the
point at which the lowest eigenvalue vanishes. Representative
results are shown in Fig. 3; as expected, limσ→0 Hc2(σ ) =
H̃c2 > Hc2.

The fact that for nonzero γ , H̃c2 > Hc2, implies a strikingly
nonanalyticity behavior of Hc2(σ ). Specifically, since we ex-
pect a nonzero concentration of dislocations for any nonzero
value of σ ,

lim
σ→0

Hc2(σ ) = H̃c2 > Hc2(σ = 0) ≡ Hc2. (4.6)

With increasing σ , the concentration of dislocations in-
creases, and consequently one expects a range in which
Hc2(σ ) is an increasing function of σ as the halos begin to
overlap. However, as we will see below, for large enough σ

there is no superconductivity even at H = 0, which implies

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

FIG. 3. Upper critical fields Hc2 (in the absence of disorder) and
H̃c2 (in the presence of dilute, disorder-induced dislocations) as a
function of γ as computed from solution of the Landau-Ginzburg
equations. Here H (0)

c2 is the value of the critical field in the absence
of competition with CDW order (γ = 0). Here we have taken αφ =
0.95α
 and κ
 = κφ = 1.
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/
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FIG. 4. Variational result for Hc2 as a function of σ . Here H (0)
c2 is

the value of the critical field in the absence of competition with CDW
order (γ = 0), σc is the zero-field critical disorder from Eq. (5.7), and
we have set αφ = 0.95α
, γ = α
 = 1, and κ
 = κφ = 1.

the existence of a critical disorder strength, σc, such that
Hc2(σ ) → 0 as σ → σc from below (see Fig. 4).

V. VARIATIONAL SOLUTION

A first step beyond LG theory is obtained by treating fluctu-
ations approximately using the Feynman approach, in which
we introduce a quadratic trial Hamiltonian, with parameters
optimized according to a variational principle. To treat the
disorder averages properly, we introduce n replicas of the
theory, evaluate the trace over disorder fields h as if they were
in equilibrium, and then take the limit as n → 0. (Details of
this procedure are reported in Ref. [45]). The replicated trial
Hamiltonian density in the normal phase (i.e., in the absence
of broken symmetry) is then of the form

Htr =
n∑
a

[
κφ

2
|∇φa|2 + μφ

2
|φa|2 + κ


2
|(−i∇ − 2eA)
a|2

+ μ


2
|
a|2

]
− βσ 2

n∑
ab

φ�
aφb, (5.1)

where, after taking the n → 0 limit, the self-consistency for
the variational parameters, μ
 and μφ , becomes

μφ = −αφ + (N + 2)

N
〈|φ1|2〉 + γ 〈|
1|2〉,

μ
 = −α
 + (N + 2)

N
〈|
1|2〉 + γ 〈|φ1|2〉,

(5.2)

and where N = 2. (We have introduced N to signify the num-
ber of components of the order-parameter fields, as there is
an interesting large-N limit in which the variational approach
becomes exact, but we will always work with N = 2 in the fol-
lowing). These equations are valid so long as no symmetries
are broken. The expectation values that enter these equations
are taken with respect to the trial Hamiltonian, and so they
depend (in a complicated nonlinear manner) on the variational
parameters.

The mean-square density-wave fluctuations are the sum
of two terms—the first reflecting the disorder-induced
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fluctuations and the latter the thermal fluctuations:

〈|φ1|2〉 = 4σ 2
∫

d3k

(2π )3

1

(μφ + κφk2
‖ + 2Jφ cos k⊥)2

+ 2T
∫

d3k

(2π )3

1

μφ + κφk2
‖ + 2Jφ cos k⊥

. (5.3)

In the absence of disorder, the CDW transition temperature,
TCDW, is the point at which μφ → 2Jφ . However, notice that
the disorder-induced fluctuations diverge as μφ → 2Jφ , which
(correctly) encodes the fact that for σ �= 0, CDW order is
precluded in d � 4. The mean-square superconducting fluc-
tuations do not depend explicitly on the disorder, but they are
different in the presence and absence of a magnetic field. For
B = 0,

〈|
1|2〉 = 2T
∫

d3k

(2π )3

1

μ
 + κ
k2
‖ + 2J
 cos k⊥

, (5.4)

while in the presence of a magnetic field it can be expressed
as a sum over Landau levels,

〈|
1|2〉 = 2T Be

π

∞∑
p=0

∫
dk⊥
(2π )

× 1

μ
 + 4eBκ
(p + 1/2) + 2J
 cos k⊥
.

The value of Tc is extracted from the self-consistency equa-
tions as the point at which μ
 → 2J
 − 2eκ
B.

The variational approach can be extended to the ordered
phase by adding an explicit symmetry-breaking field. For
instance, for the case of an ordered CDW (in the absence of
disorder), a term of the form m

2 [φ + φ�] must be added to Htr.
More about applying this more general approach to the present
problem is presented in the Appendix.

A. Critical value of σ at T = 0

As already mentioned, nonzero disorder always precludes
CDW LRO. From Eq. (5.2) it follows that μ
 decreases
monotonically as a function of increasing disorder for fixed
T and H . Thus in the variational solution, CDW disorder
is always harmful for superconductivity. (This is not unex-
pected, as the replica trick does not explicitly incorporate the
disorder-generated dislocations that lead to the nonanalytic
enhancement of superconductivity by disorder at low T and
moderate H). The dependence of the T = 0 critical field as
a function of disorder, Hc2(σ ), that results from the present
analysis is shown in Fig. 4. Note that there is a critical disorder
strength, σc, where even though long-range CDW correlations
have been entirely destroyed, the short-range amplitude of
the pinned CDW order is sufficiently strong that it quenches
superconductivity, even at T = 0 and H = 0.

Specifically, at T = 0 (no thermal fluctuations), the self-
consistent equations simplify to

μφ = −αφ + 2〈|φ1|2〉,
μ
 = −α
 + γ 〈|φ1|2〉, (5.5)

〈|φ1|2〉 = 4σ 2
∫

d3k

(2π )3

1

(μφ + κφk2
‖ + 2Jφ cos k⊥)2

.

The solutions for these equations are

μφ = −αφ + 8σ 2
∫

d3k

(2π )3

1

(μφ + κφk2
‖ + 2Jφ cos k⊥)2

,

μ
 = −α
 + γ

2
(μφ + αφ ). (5.6)

The critical disorder strength σc can be extracted from
μ
 → μ
,c ≡ 2J
 − 2eκ
H , i.e.,

σ 2
c = π

2
κφ (αφ + μφ,c)

√
μ2

φ,c − μ2

,c,

(5.7)
μφ,c = 2α
 + μ
,c

γ
− αφ.

At H = 0, the value of σc extracted in this way agrees well
with the results from the Monte Carlo calculations in the next
section.

B. Hc2 in the absence of disorder

The phase boundaries in the limit σ = 0 are somewhat
more complicated to derive. In particular, the Hc2 line over
much of the range of T separates a non-SC phase with
CDW LRO from a phase with coexisting SC and CDW LRO.
However, while for H < Hc2 the coexisting phase is a spatially
inhomogeneous Abrikosov lattice, the Hc2 line itself can be
approached from above, where the system remains spatially
uniform. Thus the only new complication is that this involves
treating the problem in the presence of a broken symmetry,
as discussed in the Appendix. Representative results of this
analysis are shown in Fig. 5.

The nature of the multicritical points that occur in this
limit is still more subtle. Often even when the mean-field
phase diagram suggests a single tetracritical point, the vari-
ational approach yields weakly first-order transitions and a
still more complex phase diagram. This is likely unphysical,
and in any case affects only a very limited range around the
multicritical point. For this reason, in presenting the results of
the variational calculation in Fig. 5, we have ignored these
subtleties, and we have instead presented only the phase
boundaries derived under the assumption that all transitions
are continuous. For reasons discussed in the Appendix, these
results are computed in the presence of nonvanishing inter-
plane couplings, J
 = Jφ = 0.3.

VI. CLASSICAL MONTE CARLO RESULTS

Finally, we treat e−S as the Boltzmann weight and compute
the phase diagram that results by exact numerical Monte Carlo
evaluation of thermodynamic correlation functions. Of course,
the down side of this is that it does not give analytic insight,
and it requires specific choices of model parameters, but it
does allow us to verify the qualitative validity of some of
the inferences made on the basis of the approximate analytic
results discussed above. In the following, we set κ
 = κφ ,
αφ = 0.95 α
, and γ = α
. Since the calculations are carried
out in 2D, this corresponds to setting the interplane couplings,
J
 and Jφ = 0.

To permit numerical solution, we discretize the continuum
Hamiltonian, but with the lattice constant (which is not physi-
cally meaningful) chosen smaller than the coherence lengths.
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FIG. 5. Monte Carlo results for the magnitude of the SC pair-
field correlator, GSC, at large distances as defined in Eq. (6.1).
Parameters are given in the first paragraph of Sec. VI. The bright
region (where this correlation is large) roughly corresponds to the
ordered SC phase, while the dark region is the disordered phase.
Hc2(σ = 0) = Hc2 is the upper critical magnetic field in the absence
of disorder, obtained in Eqs. (4.1) and (4.6). Top panel: results
with zero disorder, σ = 0. Bottom panel: results for weak disorder,
σ = 0.05σc. The solid line is the SC phase boundary obtained from
the variational calculation for J
 = Jφ = 0.3. The summation over k‖
in Eq. (5.3) is capped at k‖,max = 20π , and the summation over p in
Eq. (5.4) is capped at 4eB(pmax + 1

2 ) = (k‖,max)2. Notice that, consis-
tent with theoretical expectations, weak disorder decreases the range
of temperature in which strong superconducting correlations survive
(i.e., it decreases the effective critical temperature) but increases the
extent of superconducting correlations at low fields (i.e., it increases
the effective critical magnetic field). While the variational calculation
captures some aspects of the exact results at low fields and T near Tc,
it manifestly fails to explain the behavior at higher fields where CDW
dislocations and possibly also vortex fluctuations play an essential
role in the physics.

The simulation is set on a square lattice with (Lx, Ly) =
(20, 100) and periodic boundary conditions. The vector po-
tential A is set to be (−By, 0). The Monte Carlo simulation
is performed for 400 000 steps, and measurement is done on
the last 320 000 steps. For systems with disorder, the whole
process is averaged over 60 different disorder configurations.

Because we are studying a 2D model, for any nonzero T
there can be no true long-range order, and for nonzero H
and σ there should be no sharply defined superconducting or
CDW phase. As a suitable proxy to compare with the analytic

theories, we thus define the following quantities:

GX ( �R) ≡ 1

LxLy

∑
i

|〈XiXi′ 〉|, (6.1)

where Xi is the SC or CDW order parameter on each site i.
i′ is chosen for each i such that the displacement between
them is �R, 〈 〉 represents the thermal average, and the overline
represents the average over disorder configurations. Note that
for each value of the magnetic field, the lattice constant is
chosen to allow periodic boundary conditions. We choose
| �R| to be the largest possible distance between two points in
the system with the smallest lattice constant (i.e., the largest
magnetic field). We first perform thermal averaging to obtain
the correlation function over sites i and i′. Then we take the
average of the absolute value of the correlation function for all
the pairs of sites. This is a physically meaningful measure of
the strength of the CDW and SC correlations, and is relatively
less sensitive to the presence or absence of small interplane
couplings.

We now compare the phase diagram for zero disorder and
σ = 0.05σc, where σc is defined in Eq. (5.7) for H = 0. Here
we plot the order parameter 〈
〉 as a function of temperature
and magnetic field, as shown in Fig. 5. As expected, the
disorder suppresses the superconducting Tc, but at low T it
enhances the range of magnetic field over which SC survives,
thus confirming the most dramatic qualitative expectation
from the above theory. On the other hand, the mean-field
phase boundary shown as the solid line in the lower panel
of the figure clearly overestimates the strength of the super-
conductivity correlation at large magnetic fields. Conversely,
since our diagnostic of SC correlations in the Monte Carlo
results is crude, the full extent of the fragile superconducting
phase at low T and high H (which by its very character has
rather small-amplitude mean superconducting correlations) is
not visible in Fig. 5.

VII. CONCERNING THE CUPRATE PHASE DIAGRAM

In a complex material such as the cuprates, various mi-
croscopic and material-specific features always complicate
any theoretical analysis. Even at the level of order-parameter
theories, there are more players than the SC and a single-
component CDW order. To begin with, since the Cu-O plane
is approximately tetragonal, it is necessary to include at
least two CDW orders, with ordering vectors related by a
C4 rotation. In various parts of the phase diagram—as well
as in serious studies of model problems [9,33,47–52] such
as the Hubbard model, which are thought to capture some
of the essence of the microscopic physics of the cuprates—
there is also clear evidence of incommensurate SDW order,
and suggestive evidence of PDW order [12,53–56]. An addi-
tional complication is that at T → 0, the presence of gapless
quasiparticles leads to nonlocal interactions, and of course
quantum fluctuations of the various order parameters need to
be included; none of these features are captured in the LGW
framework adopted above.

Still, in certain cuprates, there is a range of doping in which
the only two orders that have been clearly identified are CDW
and SC order [57–65]. It is thus interesting to explore to what
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Τ

Η

Τ (σ)

FIG. 6. Schematic phase diagrams showing competition between
unidirectional CDW and SC order in a weakly disordered tetragonal
system as a function of T and B. The solid black line indicates the
superconducting transition, and the solid red line is the nematic phase
boundary. The various descriptive texts are explained in Sec. VII.

extent the salient features of the phase diagram in this regime
can be understood, following the above considerations, as
an expression of the competition between these two forms
of order. To get closer to the physics of the cuprates, we
generalize the above discussion to the case of the competition
between CDW and SC orders in a tetragonal system, where
there are two CDW order parameters, φx and φy, which are
the slowly varying CDW amplitudes for ordering vectors
along the x and y axes, respectively. Following the analysis
in Refs. [45,66], we assume that there is a strong repulsive
interaction between these two components of the CDW order,
so that the preferred ordered state is unidirectional (striped)
rather than bidirectional (checkerboard). When we generalize
the above model to include both φx and φy, the bulk of the
considerations go through in an analogous fashion. As already
mentioned in the Introduction, the most important difference
is that in addition to breaking translational symmetry (in one
direction), a stripe ordered CDW also spontaneously breaks
C4 rotational symmetry down to C2. As shown in Ref. [45],
this has a profound effect on the phase diagram in the presence
of weak disorder—while no true incommensurate CDW order
exists, the spontaneous breaking of rotational symmetry per-
sists for disorder strength less than an order 1 critical value—a
genuine vestigial nematic phase with a well-defined critical
temperatures is robust in this case.

We are thus led to the schematic phase diagram sketched
in Fig. 6 for a putative tetragonal cuprate with weak disorder
in a regime in which the competition between CDW and
SC dominates the physics. This is a decorated version of
Fig. 1(d). The principal difference relative to the orthorhombic
case is that what was formally a crossover to a high-field
regime with substantial CDW order in Fig. 1(c) now appears
as the thermodynamic phase boundary of an ordered nematic
phase, as in Fig. 1(d). [Another potentially new feature of
the tetragonal case is that there is a new class of topologi-
cal defects—domain-wall defects in the Ising-nematic order

parameter, across which the local orientation of the CDW or-
der rotates. The CDW order is generally suppressed (although
it need not vanish) at these defects as well, so it is natural
to expect enhanced superconducting order here as well]. As
before, the “fragile SC” is a state in which global phase
coherence is mediated by the Josephson coupling between SC
halos associated with neighboring dislocations separated by
a typical distance of order the CDW correlation length. The
“fragile nematic” is a dual of this state, in which nematic LRO
is mediated by the interaction between neighboring CDW
halos associated with neighboring vortices.

There are other features we have included in Fig. 6 that
go beyond the considerations of the classical effective action
we have analyzed. In the first place, we have conjecturally
included the effect of quantum fluctuations of the SC on the
phase diagram at the highest fields and lowest T , where they
will likely give rise to an “anomalous metallic” regime [67].
Here, quantum fluctuations of the phase of the order parameter
on each dislocation halo destroy global phase coherence,
even at T = 0, but there remain substantial SC correlations
that extend across multiple halos. We have also indicated
a regime in which PDW order is most likely to arise—
associated with vortex halos where CDW and SC order coexist
[11–13,17].

These results potentially give some theoretical basis for an
understanding of observed phenomena in various cuprates. In
particular, the fact that many features of the phase diagram in
Fig. 6 correspond to observed behaviors in underdoped YBCO
in a range of dopings between 0.08 < p < 0.15 supports
the conjecture that the principal feature governing the phase
diagram is a fierce competition [68] between CDW and SC
orders. Some of the salient features that we have in mind are
as follows:

(i) Recent high-field transport and magnetization measure-
ments [69] have revealed a phase diagram with a sharp upturn
in the resistively determined Hc2 at temperatures T � 2 K.
This behavior was presented as evidence of “resilient” SC and
correlated with previous studies [70–72] that found evidence
of SC correlations that persist to much higher fields than
the typical Hc2. The observation that the critical current is
anomalously small in this low-T superconducting phase was
adduced as the reason it had not been previously observed,
but the fact that it correlates with magnetic hysteresis [73]
(vortex pinning) was interpreted as evidence that it is a “bulk”
effect. (An obvious possibility that must be considered is that
the resilient SC reflects some form of chemical inhomogene-
ity in the sample that gives rise to “filamentary” SC. The
observed magnetic hysteresis is inconsistent with the most
straightforward versions of this interpretation, but a system
of structural inhomogeneities with correlations on appropriate
length scales could probably provide an alternative explana-
tion of all the observed phenomena. There are various ways
to test this, including by comparing properties of crystals
with similar doped hole concentration grown under different
conditions).

(ii) A form of the phase diagram that is also reminiscent of
our Fig. 6 was proposed in Ref. [74] largely on the basis of
NMR studies, although given a somewhat different interpre-
tation than in Ref. [69]. One difference is that the fragile SC
regime inferred from NMR does not extend to as high fields as
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the “resilient SC” reported in Ref. [69]. More importantly, the
Knight shift was found to be approximately field-independent
in the regime of the phase diagram, which roughly corre-
sponds to the region labeled “SC SRO—dislocation halos”
in Fig. 6; this was (sensibly) taken as evidence that SC
correlations are essentially absent here.

(iii) It was conjectured in Ref. [75], on the basis of high-
field x-ray diffraction data [63,64,75], that the “ideal” CDW
order, i.e., the order that would arise in a disorder-free system
at high enough fields to quench SC, would be unidirectional
stripe CDW order with in-phase ordering in the interplane
(c-axis) direction. However, to account for the presence of
bidirectional short-range CDW correlations (with the same
in-plane ordering vector) with little in the way of c-axis
correlations, it was conjectured that the CDW order must
be effectively inhomogeneous, with more and less ordered
regions coexisting. More recent studies of the effect of uni-
directional strain on CDW order [76] are broadly consistent
with this picture.

(iv) Quantum oscillations with all the signatures of a
nonsuperconducting Fermi liquid with a reconstructed Fermi
surface (presumably due to the presence of the CDW) are
observed [73,77] in the same range of fields and temperatures
in which that the resilient superconductivity is detected. In
common with the field independence of the Knight shift
(discussed above) and of various thermal transport coefficients
[74,78], these observations are most readily understood under
the assumption that the SC correlations are entirely quenched
by the magnetic field.

Reconciling the conflicting evidence from different mea-
surements that appear to indicate that the high-field state is
both entirely metallic and a host to strong local SC cor-
relations is difficult—conceivably impossible—in terms of
any uniform electronic structure. However, as the materials
involved are highly crystalline and believed to be structurally
homogeneous, there is a natural prejudice against any inter-
pretation that invokes electronic inhomogeneities. (It has been
established beyond dispute in STM studies of BSCCO that the
low-temperature electronic structure of this cuprate is highly
inhomogeneous [79–81]. Moreover, the dual behavior—the
appearance of enhanced CDW correlations near the SC vor-
tex cores—has been directly visualized in these materials
[16,17]. By some metrics, this material is more disordered
than YBCO, so a direct comparison is not possible. However,
it seems likely that what is occurring on relatively short length
scales in BSCCO is likely applicable in YBCO at somewhat
larger scales). In this context, we reiterate that the electronic
inhomogeneities we have invoked are intrinsic features of
real systems that always have some degree of disorder, even
when that disorder is statistically homogeneous and the high-
temperature “normal” state shows no significant electronic
inhomogeneities. Moreover, there is an important correlation
that is, in principle, experimentally testable. More disordered
regions have stronger but more short-range correlated CDW
order, and thus they will tend to have lower local values of
the SC Tc, but higher values of Hc2. So, for example, we
would expect that light Zn doping of YBCO would produce
a small decrease in the zero-field Tc, but a broadening of the
range of T in which the fragile SC persists at low T and
large H .
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APPENDIX: MORE CONCERNING THE
VARIATIONAL SOLUTION

To obtain the phase boundary of superconductivity in the
CDW ordered phase in the absence of disorder, we need to
extend the variational treatment to the interior of the broken
symmetry phase. We thus consider the following nonrepli-
cated trial Hamiltonian density:

Htr = κφ

2
|∇φ|2 + μφ

8
[φ� + φ]2 − m

2
[φ� + φ]

+ κ


2
|(−i∇ − 2eA)
|2 + μ


2
|
|2. (A1)

We have chosen a convention such that the expectation value
of φ is real, in which the small-amplitude fluctuations of the
imaginary part are gapless (i.e., it is the Goldstone mode).
Then, if we express φ in terms of the real and imaginary parts,
φ ≡ 〈φ〉 + ψr + iψi, the mean values of various quantities are

〈φ〉 = m

μφ

,

〈[ψr]2〉 = T
∫

d3k

(2π )3

1

μφ + κφk2
‖ + 2Jφ cos k⊥

, (A2)

〈[ψi]
2〉 = T

∫
d3k

(2π )3

1

κφk2
‖ + 2Jφ cos k⊥

,

while 〈|
|2〉 is still given by Eq. (5.5).
The self-consistency for the variational parameters μ
, μφ ,

and m is

m2 = μ2
φ

[
αφ − 〈

ψ2
r

〉 − 〈
ψ2

i

〉 − λ〈|
|2〉],
μφ = −αφ + m2

μ2
φ

+ 3
〈
ψ2

1,r

〉 + 〈
ψ2

i

〉 − λ〈|
|2〉, (A3)

μ
 = −α
 + 2〈|
|2〉 + γ

[
m2

μ2
φ

+ 〈
ψ2

r

〉 + 〈
ψ2

i

〉]
.

The value of Tc is extracted from the self-consistency equa-
tions as the point at which μ
 → 2J
 − 2eκ
B. This set of
equations is valid so long as there is CDW LRO (m �= 0) but
no SC LRO.

This extension of the variational approach is necessary to
compute the phase boundary (Hc2 at low T ) between the phase
with only CDW order and the phase with coexisting CDW
and SC order. The phase boundary could be identified as the
point at which μ
 → 2J
 − 2eκ
B. It typically occurs that
near the putative multicritical point, the transition becomes
(presumably unphysically) weakly first order. Here, phase
boundaries must be determined by comparing the variational
free energy of the CDW ordered non-SC phase with that of
the SC non-CDW and the fully disordered phase.
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Another artifact of the variational approach is that it pre-
dicts that all transition temperatures vanish for J
 = Jφ = 0,
i.e., it fails to incorporate the physics of the BKT transitions

to phases with quasi-long-range order. When comparing our
variational results with the Monte Carlo result, we choose
J
 = Jφ = 0.3.
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